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Abstract: Apomorphine (APOM) is a non-selective dopamine agonist for Parkinson’s disease (PD). 

It also offers protection against oxidative stress. Thus, it has been used for treating advanced PD 

patients who do not respond to levodopa or other dopamine agonists. However, side effects such as 

orthostatic hypotension, nausea, and fibrotic nodules at the site of APOM injection have been reported 

after long-term use of APOM in PD patients. To secure the use of APOM for PD treatment without 

side effect, it is essential to understand the molecular mechanism involved in the action of APOM in 

PD. In this study, gene expression profile changes by APOM in a PD cell model, i.e., MPP+-treated 

SH-SY5Y cells, were measured at six time points (0, 3, 6, 9, 12, and 24 h) after APOM treatment using 

a commercial whole-genome expression array. A total of 2249 genes showed significant and 

differential expression profile. Pathways significantly affected by APOM were estimated using 

signaling pathway impact analysis (SPIA). In addition, differentially regulated regions within each 

affected pathway were identified with covariance analysis using a structure equation model. 

Keywords: apomorphine; gene expression; structure equation model; signaling pathway analysis; 

SH-SY5Y cells; Parkinson’s disease 

 

 

1. Introduction 

 

Apomorphine (APOM) is a strong antioxidant and free radical scavenger as well as a non-

selective dopamine agonist that can stimulate D1-like (D1, D5) and D2-like (D2, D3, D4) receptors [1]. 

Due to its bioactivities, APOM has become the first dopamine agonist used to treat patients with 
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Parkinson’s disease (PD). As PD is caused by the loss of dopamine-generating neurons in the central 

nervous system, increase of dopamine in the brain has been used as a standard strategy for treating PD. 

Levodopa (l-dihydroxyphenylalanine), a natural dopamine precursor, can cross the blood-brain barrier. 

It can be converted to dopamine in the brain. Therefore, it has been used as a main drug for initial 

treatment of PD [2, 3]. However, long-term use of levodopa may cause drug resistance and aggravation 

of the symptoms [4]. APOM has been used to treat advanced PD patients with persistent and disabling 

motor fluctuations [5-7]. It has been suggested that APOM’s dyskinetic effect might be mediated by 

excessive activation of afferents to the centromedian-striatopallidal or pallidal-pedunculopontine 

pathways [8]. 

Although the neuroprotective effect of APOM has been demonstrated both in vivo and in vitro 

experiments [9,10], the molecular mechanisms involved in the protection remains unclear. 

Furthermore, long-term use APOM for treatment of PD patients may lead to side effects such as 

orthostatic hypotension, nausea, and fibrotic nodules at the site of APOM injection [2]. To secure the 

use of APOM in PD treatment, it is essential to understand the underlying molecular mechanisms 

involved in the protection of APOM in PD patients. The aim of this study was to identify pathway 

regions significantly affected by APOM in PD cell model through analyzing two groups of time series 

microarray data, i.e., APOM treatment group and reference group using a structure equation model 

(SEM). Human neuroblastoma SH-SY5Y cells were treated with 1-methyl-4-phenyl-pyridium (MPP+) 

and used as a PD cell model because they mimic many aspects of dopaminergic (DAergic) neuronal 

death observed in PD [11,12]. MPP+, an active metabolite of 1-methyl-4-phenyl-1, 2, 3, 6-

tetrahydropyridine (MPTP), is taken up by DAergic neurons via dopamine and noradrenaline 

transporters, resulting in inhibition of complex I of the mitochondrial membrane potential and 

formation of reactive oxygen species (ROS) [13,14]. As mitochondrial complex I deficiency has long 

been implicated in the pathogenesis of PD [15], MPP+ treated SH-SY5Y cells have been extensively 

used as PD cell model. We investigated gene expression profile of SH-SY5Y cells co-treated by APOM 

and MPP+ at six time points (0, 3, 6, 9, 12, and 24 h) with a commercial whole-genome expression 

array. To examine the effect of APOM in MPP+-treated SH-SY5Y cells, a reference without APOM 

treatment was needed for comparison. It has been reported that the genome-wide gene expression data 

of MPP+-treated SH-SY5Y cells at 0 (control), 3, 6, 9, 12, and 24 h without APOM treatment [12]. 

Therefore, these expression data were used as reference. The treatment with APOM to MPP+-treated 

SH-SY5Y cells resulted in significant expression profile changes for a total of 2249 genes. Signaling 

pathway impact analysis (SPIA) for these 2249 genes were performed and identified KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways significantly affected by APOM, including 

endoplasmic reticulum (ER) protein processing pathway, fanconi anemia pathway, colorectal cancer, 

pathogenic Escherichia coli infection, cell cycle, and TGF-beta signaling pathway. Covariance 

structure analysis of these perturbed pathways using SEM identified differentially regulated regions, 

i.e., significant modules within them. Significant modules might be closely related to the molecular 

function of APOM in PD cell model. Therefore, our results might improve the understanding of 

neuroprotective mechanisms of APOM in PD caused by the loss of DAergic neurons. 

 

2. Materials and Methods 

 

2.1. Cell culture and co-treatment of SH-SY5Y cells with MPP+ and APOM 

 

Human neuroblastoma SH-SY5Y cells (ATCC CRL-2266) were cultured at 37 °C in 5% CO2 and 

95% air in a humidified incubator. They were maintained in Dulbecco’s modified Eagle’s Medium 
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(DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS, 

Gibco BRL, Grand Island, NY, USA), 100 units/mL penicillin, and 100 mg/mL streptomycin. Freshly 

prepared APOM and MPP+ were added simultaneously to 100 mm2 cell culture dishes (Corning, 

Cambridge, MA, USA) plated with 1 × 106 cells followed by incubation at 37 °C for 0 (control), 3, 6, 

9, 12 and 24 h, respectively. The concentrations of APOM and MPP+ in the cultures were 10 μM and 

1 mM, respectively. Control and treatment experiments were repeated three times. 

 

2.2. RNA extraction and microarray experiment 

 

At each time point after co-treatment with APOM and MPP+, cells were harvested and total RNAs 

were extracted using TRIzol® (Invitrogen Life Technologies, USA). RNAs were purified using 

RNeasy columns (Qiagen, USA) according to the manufacturers’ protocol. The purity and integrity of 

the extracted RNA were examined with denaturing gel electrophoresis, optical density comparison of 

260/280 ratio, and Agilent 2100 Bioanalyzer (Agilent Technologies, USA). Microarray experiment 

was performed for the extracted RNA according to protocols described in Choi et al. [16]. Briefly, 550 

ng of the extracted total RNA was reverse-transcribed to first-strand cDNA using a T7 oligo (dT) 

primer. These first-stand cDNA was then converted to double stranded cDNA (ds-cDNA). The 

resulting ds-cDNA was employed as template for in vitro transcription to prepare labeled cRNA with 

biotin-NTP. Labeled cRNA (750 ng) was then hybridized to each human HT-12 expression v.4 bead 

array at 58 °C for 16–18 h according to the manufacturer’s instructions (Illumina, Inc., San Diego, 

USA). Detection of the array signal was carried out using Amersham fluorolink streptavidin-Cy3 (GE 

Healthcare Bio-Sciences, Little Chalfont, UK) following the bead array manual. Arrays were scanned 

using Illumina bead array Reader confocal scanner according to the manufacturer’s instructions. A 

total of 18 bead arrays were used for three controls (before treatment) and three samples at each time 

point (3, 6, 9, 12, and 24 h) after co-treatment with APOM and MPP+. 

 

2.3. Normalization of microarray data 

 

After microarray data were exported using Illumina GenomeStudio software v2011.1, values of 

probe signal were log2 transformed and normalized using the function of lumiN() from the R package 

lumi [17]. Since the Illumina BeadChip employed in this study was a single-channel array, quantile 

normalization was chosen. After the normalization, signals under the detection limit were replaced 

with missing values. Probes with two missing values for the three replicates were filtered out. 

 

2.4. Reference microarray data   

 

To identify perturbed pathways after the addition of APOM to MPP+-treated SH-SY5Y cells, 

gene expression data of MPP+-treated SH-SY5Y cells from the study of Kim et al. [12] were used as 

reference, including time series microarray data at the control (before MPP+ treatment) and 3, 6, 9, 12, 

and 24 h after exposure to 1 mM of MPP+.  

 

2.5. Selection of genes with differential expression profiles between two time series of microarray data 

 

To select genes showing differential expression profile from two time-series microarray data, 

maSigPro bioconductor package was employed [18]. This program uses a two-step regression 

approach to identify DEGs in time series microarray data. A global model was adjusted in the first step 
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whereas the application of variable selection strategy was made to identify significant profile 

differences between two groups under comparison in the second step. Before comparing expression 

profiles between two groups of microarray data, log2 ratio of treated sample versus untreated sample 

(control) was calculated for each group of the microarray data. Microarray data from the study of Kim 

et al. [12] were used as data for the reference group. Genes showing differential expression profiles 

were considered significant genes. Enriched GO terms in the set of significant genes were explored 

with the function enrichGO() in the R package clusterProfiler [19].  

 

2.6. Identification of perturbed pathways with SPIA 

 

To identify affected pathways by APOM addition to MPP+-treated SH-SY5Y cells, an R package 

called SPIA [20] was employed. This program can find significantly affected pathways based on two 

types of evidence captured by two independent probability values, PNDE and PPERT. PNDE captures the 

significance of a given pathway Pi as provided by an over-representation analysis of the number of 

DEGs observed in the pathway whereas PPERT captures a total perturbation of the pathway and is 

estimated in a bootstrapping process where both pathway and the number of DEGs per pathway are 

maintained. Global probability PG was used for pathway ranking. It was estimated with the following 

equation:  

 
ln( )G i i iP c c c    

 

where ( ) ( )i NDE PERTc P i P i  . The net perturbation accumulation at the level of each gene i ( ig ), 

( )iAcc g , was calculated using the following equation: 
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where ij  was the strength of the interaction between genes ig  and jg . In this study, the value of 

  was +1 for activation and −1 for inhibition. ( )iPF g  was the perturbation factor of gene ig whereas 

( )ds jN g was the number of down-stream genes of gene jg . Activation/inhibition of pathway was 

decided by the sign of the total net accumulated perturbation in the pathway: ( )A i
i

t Acc g .  

 

2.7. Construction of the shortest path model for perturbed pathways 

 

After identifying pathways affected by APOM addition to MPP+ treated SH-SY5Y cells, 

connected structures of DEGs within them were assessed by considering each pathway as a directed 

graph with the function get.shortest.paths() of the R package igraph [21]. Each node and edge in the 

shortest path could not be presented for more than once. Self-loops were excluded but feed-backs and 

cycles were kept. Non-DEGs might be included in the shortest paths linking DEGs to allow the 

discovery of genes that are not DEGs but can be important for their mediating roles. The shortest path 

model (SPM) for each perturbed pathway was constructed by merging all of shortest paths among 

DEGs for the corresponding pathway as shown in our previous work [22, 23]. 
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2.8. Modularity measurement of SPM 

 

The modularity of SPM for each perturbed pathway was calculated with the following equation: 
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Where m is the number of edges, ijA  is the element of the i-th row and j-th column of the A adjacency 

matrix, ik and jk  are the degree of i and j, respectively, ic  and jc are component of i and j, 

respectively. The sum includes over all i and j pairs of vertices, and ( , )x y  is 1 if x y  and 0 

otherwise [24]. Modules within each SPM were detected by using the function walktrap.community() 

in the R package igraph [21], which could find densely connected subgraphs in a graph via random 

walks. If the value of modularity is greater than 0.35, each module in the SPM is considered separately.  

 

2.9. Evaluation of module/SPM with SEM 

 

To examine if a module or SPM are statistically significant by the addition of APOM in MPP+-

treated SH-SY5Y cells, they were evaluated with SEM, as in our previous work [22, 23]. Briefly, a 

module or SPM are considered to have casual relationships among variables such as structure of SEM 

where all variables can be represented as a system of linear equation: 
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With a covariance structure: 
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Every ith node in the set of variables V are characterized by uni-directional relationships with its 

“parents” pa(i) via path coefficients ( ij ). The covariance structure can delineate the bi-directional 

relationships between the ith node ( iU ) and its “siblings” sib(i), as quantified by their covariance ( ij ). 

The parameters ( ; )ij ij    in SEM were estimated by Maximum Likelihood Estimation (MLE) with 

the R package lavaan. After parameter estimation of a module/SPM, the significant module/SPM was 

detected with the following omnibus test: 

   

0 1
1 2 1 2

: ( ) ( )        vs.    : ( ) ( )H H         

 

Where
1
( )  and 

2
( )  are model-implied covariance matrices of control and APOM added 

samples in MPP+-treated SH-SY5Y cells,   indicates the model parameter. A statistically significant 

module/SPM is determined by comparison of the likelihood ratio test (LRT) Chi-square ( 2
 ) values 

at a given degree of freedom. When the p-value in the Chi-square test is less than 0.05, the 

module/SPM is considered as statistically significant.   
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3. Results 

 

3.1. Identification of genes with differential expression profiles  

 

Gene expression profiles of SH-SY5Y cells co-treated with APOM and MPP+ were determined with 

Illumina whole-genome array (human HT-12 expression v.4 bead array) using 47,231 probes. A total of 18 

arrays were employed for the examination of gene expression profile at six time points (0, 3, 6, 9, 12, and 

24 h) with three replicates for each time point. After log2 transformation, probe signals were normalized 

with quantile normalization. Log2 ratio (co-treated sample with APOM and MPP+ vs. control sample at 0 h) 

was obtained by subtraction of the average of normalized log2 values of three control arrays from 

normalized log2 value of each time point. When a gene had multiple probe IDs, the average value was 

assigned to the gene. Of 47,321 probes, only 32,421 probes with unique gene name were considered. To 

explore gene expression profile changes by the addition of APOM to MPP+-treated SH-SY5Y cells, gene 

expression data of MPP+-treated SH-SY5Y cells were required as reference. Thus, we employed the 

microarray data from the work of Kim et al. [12] as reference (see Materials and Methods section for details).  

To identify genes showing differential expression profile between the two groups (APOM added 

group and reference group), a bioconductor package maSigPro [18] was employed using a two-

regression step approach. In the first step, a global regression model was adjusted with all the defined 

variables to detect differentially expressed genes (DEGs). In the second step, a variable selection 

strategy was applied to examine differences between groups and identify statistically significant 

profiles. When the p-value threshold associated to the F-Static in general regression model was 0.05, 

the number of DEGs in the first step was 9395. In the second step, 2249 genes of these 9395 DEGs 

were found to have significantly differential expression profiles between the APOM added group and 

the reference group (adjusted p-value < 0.05). In this study, genes showing differential expression 

profiles were considered as significant genes. Their expression profiles are shown in Figures 1 and 2 

using the clustering and plotting functions available in the maSigPro. In Figure 1, horizontal axis 

represents the array of reference and APOM added group at different time point. Replicate of each 

array was marked with a number. The vertical axis represents expression value (log2 ratio). A 

positive/negative value indicates up-/down-regulation, respectively. A value of 0 means no expression 

change. Clear contrast in expression profiles between the APOM added group and the reference group 

was observed in cluster 1. Genes in cluster 1 tended to be up-regulated in the APOM added group. 

However, they were not changed at expression level or down-regulated in the reference group. For 

easy comparison of their expression profiles between the two groups, average expression profiles were 

shown in Figure 2. The three values at each time point corresponded to the three replicates. Red and 

green lines represent the average expression profiles of the reference and the APOM added group, 

respectively. In the APOM added group, genes in cluster 1 and 3 tended to be up-regulated while genes 

in cluster 2 and 4 tended to be down-regulated at early stage.  

To catch functional characteristic of each cluster genes, enriched gene ontology (GO) terms were 

examined with the function enrichGO in the R package clusterProfiler [19]. With a cutoff q-value of 

0.05, GO terms such as GO:0036297 (interstrand cross-link repair) and GO:0022616 (DNA strand 

elongation) were significantly enriched in cluster 1 whereas GO terms such as GO:0009185 

(ribonucleoside diphospahte metabolic process), GO:0019320 (hexose catabolic process), and 

GO:0006096 (glycolytic process) were significantly enriched in cluster 3. The up-regulation of genes 

in cluster 1 and 3 might have contributed to resistance against DNA damage and cellular metabolic 

deactivation resulted from MPP+ toxicity. No significantly enriched GO terms were detected for cluster 

2 or 4. Top 15 genes of each cluster ranked by p-value are shown in Table 1.  
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Figure 1. Expression profiles of significant genes in four clusters for the reference group 

and the APOM added group. 

 

Table 1. Top 15 genes of each cluster ranked by p-value among significant genes showing differential 

profiles between the APOM added group and the reference group. 

Group Gene Description p-value 

1 EGR2 Early growth response 2 (Krox-20 homolog, Drosophila) (EGR2), mRNA. 5.49E−25 

NR4A3 Nuclear receptor subfamily 4, group A, member 3 (NR4A3), transcript variant 

3, mRNA. 

3.93E−22 

FOSB FBJ murine osteosarcoma viral oncogene homolog B (FOSB), mRNA. 6.58E−20 

SRF Serum response factor (c-fos serum response element-binding transcription 

factor) (SRF), mRNA. 

1.99E−18 

NPAS4 Neuronal PAS domain protein 4 (NPAS4), mRNA. 2.50E−18 
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EGR1 Early growth response 1 (EGR1), mRNA. 1.19E−16 

GINS2 GINS complex subunit 2 (Psf2 homolog) (GINS2), mRNA. 5.86E−16 

PDCL3 Phosducin-like 3 (PDCL3), mRNA. 9.04E−16 

ZNF503 Zinc finger protein 503 (ZNF503), mRNA. 9.41E−16 

HAUS8 HAUS augmin-like complex, subunit 8 (HAUS8), transcript variant 1, mRNA. 1.05E−15 

KLF6 Kruppel-like factor 6 (KLF6), transcript variant 2, mRNA. 1.32E−15 

DUSP1 Dual specificity phosphatase 1 (DUSP1), mRNA. 4.41E−15 

SLC30A1 Solute carrier family 30 (zinc transporter), member 1 (SLC30A1), mRNA. 4.49E−15 

MYADM Myeloid-associated differentiation marker (MYADM), transcript variant 4, 

mRNA. 

6.05E−15 

ARC Activity-regulated cytoskeleton-associated protein (ARC), mRNA. 7.41E−15 

2 TM4SF4 Transmembrane 4 L six family member 4 (TM4SF4), mRNA. 2.09E−23 

EFNA1 Ephrin-A1 (EFNA1), transcript variant 1, mRNA. 9.91E−20 

ARID5B AT rich interactive domain 5B (MRF1-like) (ARID5B), mRNA. 1.61E−17 

N4BP2L1 NEDD4 binding protein 2-like 1 (N4BP2L1), transcript variant 2, mRNA. 5.05E−15 

ABTB1 Ankyrin repeat and BTB (POZ) domain containing 1 (ABTB1), transcript 

variant 3, mRNA. 

1.32E−14 

NINJ1 Ninjurin 1 (NINJ1), mRNA. 4.48E−14 

SCG5 Secretogranin V (7B2 protein) (SCG5), mRNA. 4.94E−14 

WASPIP Wiskott-Aldrich syndrome protein interacting protein (WASPIP), mRNA. 8.18E−14 

SIRT4 Sirtuin (silent mating type information regulation 2 homolog) 4 (S. cerevisiae) 

(SIRT4), mRNA. 

2.26E−13 

CHODL Chondrolectin (CHODL), mRNA. 2.55E−13 

PRTFDC1 Phosphoribosyl transferase domain containing 1 (PRTFDC1), mRNA. 3.69E−13 

PAQR8 Progestin and adipoQ receptor family member VIII (PAQR8), mRNA. 4.27E−13 

PCTP Phosphatidylcholine transfer protein (PCTP), mRNA. 4.68E−13 

RWDD2A RWD domain containing 2A (RWDD2A), mRNA. 4.70E−13 

BTN3A3 Butyrophilin, subfamily 3, member A3 (BTN3A3), transcript variant 2, 

mRNA. 

6.09E−13 

3 FHL2 Four and a half LIM domains 2 (FHL2), transcript variant 4, mRNA. 3.51E−22 

MIR1978 MicroRNA 1978 (MIR1978), microRNA. 9.42E−22 

ID1 Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein (ID1), 

transcript variant 2, mRNA. 

7.40E−17 

CDC25A Cell division cycle 25 homolog A (S. pombe) (CDC25A), transcript variant 1, 

mRNA. 

3.13E−14 

ACTB Actin, beta (ACTB), mRNA. 3.74E−14 

WDR1 WD repeat domain 1 (WDR1), transcript variant 1, mRNA. 6.86E−14 

TMEM178 Transmembrane protein 178 (TMEM178), mRNA. 1.83E−13 

LOC440043 PREDICTED: misc_RNA (LOC440043), miscRNA. 2.17E−13 

TSKU Tsukushin (TSKU), mRNA. 2.26E−13 

C17orf96 Chromosome 17 open reading frame 96 (C17orf96), mRNA. 2.71E−13 

POTEF POTE ankyrin domain family, member F (POTEF), mRNA. 3.85E−13 
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JUN Jun oncogene (JUN), mRNA. 4.30E−13 

SLC7A5 Solute carrier family 7 (cationic amino acid transporter, y+ system), member 5 

(SLC7A5), mRNA. 

5.78E−13 

ENO1 Enolase 1, (alpha) (ENO1), mRNA. 6.82E−13 

FAM80A Family with sequence similarity 80, member A (FAM80A), mRNA. 7.91E−13 

4 LOC643031 PREDICTED: similar to NADH dehydrogenase subunit 5 (LOC643031), 

mRNA. 

7.00E−18 

ZNF564 Zinc finger protein 564 (ZNF564), mRNA. 1.32E−17 

HSPC047 HSPC047 protein (HSPC047), mRNA. 2.83E−16 

LOC1001345

84 

PREDICTED: hypothetical protein LOC100134584 (LOC100134584), 

mRNA. 

5.32E−16 

SCGN Secretagogin, EF-hand calcium binding protein (SCGN), mRNA. 8.23E−15 

IFNAR1 Interferon (alpha, beta and omega) receptor 1 (IFNAR1), mRNA. 8.37E−15 

SNORA25 Small nucleolar RNA, H/ACA box 25 (SNORA25), small nucleolar RNA. 1.63E−14 

ZNF606 Zinc finger protein 606 (ZNF606), mRNA. 1.98E−14 

NAPEPLD N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), mRNA. 1.08E−13 

CLK4 CDC-like kinase 4 (CLK4), mRNA. 1.12E−13 

BCL2 B-cell CLL/lymphoma 2 (BCL2), nuclear gene encoding mitochondrial 

protein, transcript variant alpha, mRNA. 

1.85E−13 

ZNF35 Zinc finger protein 35 (ZNF35), mRNA. 2.39E−13 

C1orf63 Chromosome 1 open reading frame 63 (C1orf63), transcript variant 1, mRNA. 3.62E−13 

COX19 COX19 cytochrome c oxidase assembly homolog (S. cerevisiae) (COX19), 

mRNA. 

3.81E−13 

RPL23AP13 Ribosomal protein L23a pseudogene 13 (RPL23AP13), non-coding RNA. 4.93E−13 

 

3.2. Analysis of perturbed pathways by the addition of APOM in MPP+-treated SH-SY5Y cells 

 

Pathways significantly affected by APOM might be closely related to molecular roles of APOM 

in MPP+-treated SH-SY5Y cells. Thus, pathways significantly affected by the addition of APOM were 

examined with a Bioconductor package SPIA through signaling pathway impact analysis [20]. This 

analysis considered two independent probability values, PNDE and PPERT, which were calculated for 

each pathway with incorporating parameters such as log2 ratios (APOM added group/reference group) 

of genes showing differential profiles, statistical significance of the set of pathway genes, and the 

topology of the signaling pathway. Two types of probability were finally combined into a global 

probability value, PG, which was used for ranking the pathways and testing the hypothesis that the 

pathway was significantly perturbed by APOM addition. The impact analysis was performed for 2249 

significant genes that showed differential expression profiles between the APOM added group and the 

reference group for 135 well characterized human gene signaling pathways available in KEGG (Kyoto 

Encyclopedia of Genes and Genomes). Since several pathways were tested simultaneously, the 

significance level was set at 5% after false discovery rate (FDR) correction [25].  

Three KEGG pathways (protein processing in endoplasmic reticulum (ER), Fanconi anemia 

pathway, and TGF-beta signaling pathway) showed significant perturbation at 6, 12, and 24 h after 

APOM treatment. It is interesting to note that the ER protein pressing pathway is affected by APOM 

addition because MPP+ toxicity in SH-SY5Y cells might induce ER stress [16]. Table 2 shows the six   
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Figure 2. Average expression profiles of significant genes in four clusters of Figure 1 for 

the reference group and the APOM added group. 

 

perturbed pathways detected at 12 h. Status of each pathway was determined by the total net 

accumulated perturbation of a given pathway, At , which was calculated as the sum of all perturbation 

accumulations for all genes in the pathway. If the value of At  for a given pathway was negative, the 

pathway was considered as negatively perturbed, i.e., inhibited. On the contrary, if the value of At  for 

a given pathway was positive, the pathway was considered as activated. APOM addition to MPP+-

treated SH-SY5Y cells resulted in the activation of three pathways (ER protein processing, colorectal 

cancer, and TGF-beta signaling pathway) and the inhibition of three pathways (fanconi anemia, 

pathological Escherichia coli infection, and cell cycle) compared to the reference group (Table 2).   
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Table 2. Perturbed pathways at 12 h after APOM addition to MPP+-treated SH-SY5Y cells. 

KEGG pathway KEGG ID Psize NDE PNDE TA PPERT PG, FDR Status 

Protein processing in 

endoplasmic reticulum 

4141 166 31 0.000 1.462 0.257 0.001 Activated 

Fanconi anemia pathway 3460 52 14 0.000 −0.041 0.947 0.013 Inhibited 

Colorectal cancer 5210 62 12 0.002 3.392 0.032 0.027 Activated 

Pathogenic Escherichia coli 

infection 

5130 54 12 0.000 −3.299 0.232 0.032 Inhibited 

Cell cycle 4110 124 21 0.000 −2.411 0.411 0.032 Inhibited 

TGF-beta signaling 

pathway 

4350 84 11 0.044 8.516 0.004 0.037 Activated 

 

3.3. Identification of significantly affected regions within each perturbed pathway with SEM 

 

In the above section, pathways significantly affected by APOM addition in MPP+-treated SH-

SY5Y cells were estimated with SPIA. Perturbed pathway may have different regulation structure 

between the two groups under comparison. To detect specific regions showing different regulation in 

each perturbed pathway, a graph model describing interactions in the pathway is useful. Since the 

perturbation of pathway is driven by significant genes showing differential profile between the APOM 

added group and the reference group, we focused on the connection of these genes. To identify how 

significant genes were connected in each perturbed pathway with the other genes on the microarray, 

the shortest paths (geodesic distance) between genes with differential profile on each perturbed 

pathway were searched with the function get.shortest.paths() of the R package igraph [21]. All shortest 

paths detected in a given pathway were merged into a graph called a shorted path model (SPM), where 

each node and each edge could not be presented for more than once while self-loops were excluded 

but feed-backs and cycles were kept. Table 3 shows the number of nodes and edges of SPMs 

corresponding to the six perturbed KEGG pathways shown in Table 2. Modularity and module for 

each SPM were detected by using the function of walktrap.community() of the R package igraph. The 

modularity indicates how good the division is or how separate the different vertices are from each 

other. A high degree of modularity indicates dense connections between the nodes within the same 

module but rare connections between nodes in different modules. The SPM for cell cycle and its 

module are shown in Figure 3. The connections between nodes in the same module were indicated in 

a black arrow while the connections between nodes in the different modules were represented by a red 

arrow. Each module within the SPM of the cell cycle was connected with genes such as CDC2 and 

CDC6. 

Next, we detected specific regions showing significantly different regulation in each perturbed 

pathway. For this, each SPM/module was evaluated with SEM to verify whether the covariance 

structure was significantly different between the two groups. Here, covariance structures for 

SPM/module were calculated from the two conditions of gene expression data, i.e., the APOM added 

group and the reference group. SPM/module showing significantly different covariance structures 

between the two groups corresponded to regions perturbed by the addition of APOM in MPP+-treated 

SH-SY5Y cells. Evaluation of covariance structure with SEM was performed against each module of 

SPM except for two pathways (fanconi anemia and pathogenic Escherichia coli infection) which 

showed very low modularity in their SPMs (Table 3). 
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Table 3. Modularity evaluation of shortest path models constructed from significant genes within 

perturbed pathways. 

KEGG pathway Original 

pathway 

(nodes/edges) 

Shortest path 

model 

(nodes/edges) 

Modularity of shortest 

path model 

No. of 

module 

Protein processing in endoplasmic 

reticulum 

51/83 11/10 0.395 3 

Fanconi anemia pathway 39/185 14/43 0.055 3 

Colorectal cancer 49/106 18/22 0.458 3 

Pathogenic Escherichia coli 

infection 

40/74 4/3 0.000 4 

Cell cycle 124/932 47/105 0.412 5 

TGF-beta signaling pathway 73/186 11/10 0.395 3 

 

 
 

Figure 3. Five modules within the cell cycle SPM. Genes (nodes) in the same module are 

shown in the same color.  

 

Evaluation of these two pathways was carried out against SPM itself and no significant difference 

was detected at any time points. Significant modules were detected in the other four pathways and 

summarized in Table 4. Module 1 of TGF-beta signaling pathway showed significance only at 3 h 

whereas module 4 of cell cycle showed significance at 6, 9, and 24 h. The fusion of all significant 

modules might provide an insight into the specific cellular mechanisms induced by APOM addition in 

MPP+-treated SH-SY5Y cells. Figure 4 shows the union of all significant modules in Table 4. The 

yellow and green nodes represent significant genes and non-significant genes within modules, 

respectively. The total number of genes on the graph of Figure 4 was 47, including 18 significant genes 

and 29 non-significant genes. Although non-significant genes did not show differential expression 
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profile between the APOM-added group and the reference group, they might have important role as 

signal mediator when they are connected directly or indirectly to significant genes.  

To examine the association of these 47 genes with disease, enriched disease ontology (DO) terms 

were investigated with the function enrichDO() of the R package DOSE [26]. DO analysis against 

these 47 genes detected many significant DO terms such as DOID:0060116 (sensory system cancer, 

q-value = 1.52 × 10−15), DOID:768 (retinoblastoma, q-value = 6.07 × 10−14), and DOID:769 

(neuroblastoma, q-value = 6.99 × 10−6). Most of the enriched DO terms were related to cancer. 

 

Table 4. Significant modules detected by covariance analysis with SEM for the four shortest path models. 

Shortest path model Time (h) 

3 6 9 12 24 

Protein processing in endoplasmic 

reticulum 

- - Module 1 Module 3 Module 3 

Colorectal cancer Module 2 Module 2 - - - 

Cell cycle - Module 4 Module 3, 4 Module 3 Module 4 

TGF-beta signaling pathway Module 1 - - - - 

 

 
 

Figure 4. Merged graph of significant regions. Yellow and green colors represent 

significant and non-significant genes, respectively.  
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This indicates that APOM might induce the expression change of cancer related genes to overcome 

the toxicity of MPP+. Figure 5 shows the expression profiles of 18 significant genes shown in Figure 5. 

The red color and the green color represent the reference and the APOM added group, respectively. The 

expression profile of BCL2 showed clear contrast between the two groups. It showed a time-dependent 

increase in the reference group but a time-dependent decrease in the APOM added group. This indicates 

that APOM may be able to induce the inhibition of BCL2 in MPP+-treated SH-SY5Y cells. Genes such 

as CDC14A, RBL2, and SMAD4 tended to be up-regulated in the reference group while genes such as 

ABL1, GADD45G, and GSK3B tended to be up-regulated in the APOM added group.  

 

 
 

Figure 5. The expression profiles of significant genes (yellow nodes) in the network shown 

in Figure 4. Red and green lines represent average expression profiles of the reference and 

APOM added groups, respectively. The expression values of replicates were indicated with 

three circles (○) at each time point.   
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4. Discussion and Conclusion 

 

The antiparkinsonian effect of APOM on PD patients is similar to that of levodopa. However, 

different from levodopa, APOM does not require decarboxylation to be activated. That is, levodopa 

needs to be converted into dopamine to be effective for PD, whereas APOM is readily diffused across 

the blood-brain barrier, directly playing a role as non-selective dopamine agonist. Besides its receptor-

mediated action, APOM functions as a potent antioxidant and free radical scavenger [9,10]. Currently, 

APOM is used for treating advanced PD patients who do not respond to levodopa or other dopamine 

agonists [27]. However, side effects such as orthostatic hypotension, nausea, and fibrotic nodules at 

the site of APOM injection have been reported after long-term use of APOM for treatment of PD 

patients [2]. To secure the use of APOM in PD treatment, it is essential to understand the molecular 

mechanism involved in its effect. In this study, genome-wide gene expression profiles were examined 

at several time points after the addition of APOM to a PD cell model, i.e., MPP+-treated human 

neuroblastoma SH-SY5Y cells. They were compared to those of PD cell model without APOM 

treatment. Among a total of 32,421 genes, 2249 genes showed significantly different expression 

profiles between the APOM added group and the reference group. These 2249 genes were divided four 

clusters (Figure 1). Genes of cluster 1 were up-regulated in the APOM added group but down-regulated 

in the reference group. GO enrichment analysis against genes of cluster 1 showed enrichment of GO 

terms such as GO:0036297 (interstrand cross-link repair) and GO:0022616 (DNA strand elongation). 

This suggests that APOM might provide protective mechanism against DNA damage induced by MPP+ 

toxicity. The up-regulation of genes in cluster 3 indicated that APOM could activate the metabolic 

process because GO terms such as GO:0009185 (ribonucleoside diphospahte metabolic process), 

GO:0019320 (hexose catabolic process) and GO:0006096 (glycolytic process) were enriched in cluster 

3.  

To systematically investigate the role of significant genes in cells, significantly affected pathways 

by APOM addition were explored with SPIA. Significant perturbation at 6, 12, and 24 h was found for 

the following three KEGG pathways: protein processing in endoplasmic reticulum (ER), Fanconi 

anemia pathway, and TGF-beta signaling pathway. To detect specific regions with differential 

regulation of each perturbed pathway, SPM/module constructed with significant genes were evaluated 

with SEM. Significant modules were detected from SPMs for the following four pathways: ER protein 

processing, colorectal cancer, cell cycle, and TGF-beta signaling pathway (Table 4). As significant 

modules may reflect the effect of APOM on PD cells in terms of molecular interaction, identification 

of them will be important for understanding the molecular mechanism involved in the action of APOM. 

The fusion of all significant modules consisting of 18 significant genes and 29 non-significant genes 

was shown in Figure 4. Non-significant genes connected to significant genes might have important 

role as signal mediators. DO analysis against these 47 genes detected many enriched DO terms, most 

of which were related to cancer. This suggests that APOM might induce changes in the expression of 

some cancer related genes for survival from MPP+-induced neuronal toxicity. Crosstalk among these 

47 genes might improve our understanding of the molecular mechanism involved in the effect of 

APOM on PD.  
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