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1. Introduction

The present paper deals with elliptic equations in planar domains with mixed boundary conditions
and aims at proving asymptotic expansions and unique continuation properties for solutions near
boundary points where a transition from Dirichlet to Neumann boundary conditions occurs.

A great attention has been devoted to the problem of unique continuation for solutions to partial
differential equations starting from the paper by Carleman [5], whose approach was based on some
weighted a priori inequalities. An alternative approach to unique continuation was developed by
Garofalo and Lin [14] for elliptic equations in divergence form with variable coefficients, via local
doubling properties and Almgren monotonicity formula; we also quote [18] for quantitative
uniqueness obtained by monotonicity methods.

The monotonicity approach has the advantage of giving not only unique continuation but also
precise asymptotics of solutions near a fixed point, via a suitable combination of monotonicity
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methods with blow-up analysis, as done in [9, 10, 11, 12, 13]. The method based on doubling
properties and Almgren monotonicity formula has also been successfully applied to treat the problem
of unique continuation from the boundary in [1, 2, 9, 19, 27] under homogeneous Dirichlet conditions
and in [26] under homogeneous Neumann conditions. Furthermore, in [9] a sharp asymptotic
description of the behaviour of solutions at conical boundary points was given through a fine blow-up
analysis. In the present paper, we extend the procedure developed in [9, 10, 11, 12, 13] to the case of
mixed Dirichlet/Neumann boundary conditions, providing sharp asymptotic estimates for solutions
near the Dirichlet-Neumann junction and, as a consequence, unique continuation properties. In
addition, comparing our result with the aforementioned papers, here we also provide an estimate of
the remainder term in the difference between the solution and its asymptotic profile.

Let Q be an open subset of R? with Lipschitz boundary. Let I, ¢ dQ and I'; C dQ be two
nonconstant curves (open in dQ) such that F—n N F—d = {P} for some P € 9Q. We are interested in
regularity of weak solutions u € H'(Q) to the mixed boundary value problem

—Au = f(x)u, inQ,
oyu=gxu, onl,, (1.1)

u=>0, onl,

with f € L®(Q) and g € C'(T,), see Section 2 for the weak formulation. Our aim is to prove unique
continuation properties from the Dirichlet-Neumann junction {P} = I, N T’y and sharp asymptotics of
nontrivial solutions near P provided dQ is of class C>? in a neighborhood of P. We mention that some
regularity results for solutions to second-order elliptic problems with mixed Dirichlet-Neumann type
boundary conditions were obtained in [16, 25], see also the references therein.

Some interest in the derivation of asymptotic expansions for solutions to planar mixed boundary
value problems at Dirichlet-Neumann junctions arises in the study of crack problems, see e.g. [6, 20].
Indeed, if we consider an elliptic equation in a planar domain with a crack and prescribe Neumann
conditions on the crack and Dirichlet conditions on the rest of the boundary, in the case of the crack
end-point belonging to the boundary of the domain we are led to consider a problem of the type
described above in a neighborhood of the crack’s tip (which corresponds to the Dirichlet-Neumann
junction). We recall (see e.g. [6]) that, in crack problems, the coefficients of the asymptotic expansion
of solutions near the crack’s tip are related to the so called stress intensity factor.

In order to get a precise asymptotic expansion of u at point P € T, NIy, we will need to assume that
0Q is of class C>9 near P. The asymptotic profile of the solution will be given by the function

. 2%-1 2k —1
Fi(rcosf,rsinf)) =r z cos

9), r>0, 6€(,n), (1.2)

for some k € N\ {0}. We note that F, € Hll0 C(Rz) and solves the equation

AF, =0, inR2,
Fi(x1,0) =0, for x; <O, (1.3)
GXZFk(xl,O) =0, for X1 > 0,

where here and in the following R? := {(x;, x,) € R? : x, > 0}.
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The main result of the present paper provides an evaluation of the local behavior of weak solutions
u € H'(Q) to (1.1) at the boundary point where the boundary conditions change. In order to simplify the
statement and without losing generality, we can fix the cartesian axes in such a way that the following
assumptions on Q C R? are satisfied. Here and in the remaining of this paper, I,,I; C 0Q are
nonconstant curves (open as subsets of 9Q2) such that F_,, N 1"_,1 = {0} with 0 € 0Q.

(i) The domain Q is of class C*° in a neighborhood of 0, for some § > 0.

(i1) The unit vector e; := (1,0) is tangent to 0 at 0 and pointed towards I',,. Moreover, the exterior
unit normal vector to 9Q at 0 is (0, —1).

We are now in position to state the main result of the present paper.

Theorem 1.1. We assume that Q satisfies the assump_tions (i)-(ii) above. Let u € H'(Q) be a nontrivial
weak solution to (1.1), with f € L*(Q) and g € C'(T',,). Then, there exist ky € N \ {0}, B € R\ {0} and
r > 0 such that, for every o € (0, 1/2), there exists C > 0 such that

lu(x) — BF;,(¢(x))| < Clxlﬂz_l“’, for every x € QN Br. (1.4)
Here, the function ¢ : QN B, — @ is a conformal map of class C?, for some ry > 0 only depending
on Q.

Remark 1.2. Here and in the sequel, we identify R? with the complex plane C; hence, by a conformal
map on an open set U C R? we mean a holomorphic function with complex derivative everywhere non-
zero on U. We notice that, if Q satisfies (i)-(ii) and ¢ : Q N B,, — R? is conformal, then Dp(0) = a'Id
and ¢’(0) = « for some real @ > 0, where D¢ denotes the jacobian matrix of ¢ and ¢’ denotes the
complex derivative of ¢.

As a direct consequence of Theorem 1.1, we derive the following Hopf-type lemma.

Corollary 1.3. Under the same assumptions as in Theorem 1.1, let u € H'(Q) be a non-trivial weak
solution to (1.1), with u > 0. Then

(1) for every t € [0, ),

. u(rcost,rsint t
lim ( ) :ﬁa”zcos(—)>0,
r—0 rl/2

where @ = ¢’(0) > 0 and ¢ is as in Theorem 1.1;
(ii) for every cone C c R? satisfying (1,0) € C and (—-1,0) € R*\ C, we have
u(x)

liminf ——= > 0.
=0 |x]1/2
xeQNC

A further relevant byproduct of our asymptotic analysis is the following unique continuation
principle, whose proof follows directly from Theorem 1.1.

Corollary 1.4. Under the same assumptions as in Theorem 1.1, let u € H'(Q) be a weak solution to
(1.1) such that u(x) = O(|x|") as x € Q, |x| = 0, foranyn € N. Then u = 0.
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We observe that Theorem 1.1 provides a sharp asymptotic expansion (and consequently a unique
continuation principle) at the boundary for %—fractional elliptic equations in dimension 1. Indeed, if
v € H'2(R) weakly solves

(=A)V?y = g(x)v, 1in(0,R),
v =0, in R\ (0,R),

for some g € C'([0, R]), then its harmonic extension V € Hlloc(@) weakly solves

—AV =0, inR2,
3,V = g(x)V, on(0,R) x {0}, (1.5)
V=0, on (R \ (0,R)) x {0},

see [4]. Theorem 1.1 and Corollary 1.4 apply to (1.5). Hence, V (and in particular its restriction v)
satisfies expansion (1.4) and a strong unique continuation principle from O (i.e. from a boundary point
of the domain of v). We mention that unique continuation principles from interior points for fractional
elliptic equations were established in [8].

We do not know if the C?¢ regularity on Q and C' regularity of the boundary potential g in
Theorem 1.1 can be weakened in order to obtain a unique continuation property. On the other hand,
we can conclude that a regularity assumption on the boundary is crucial for excluding the presence of
logarithms in the asymptotic expansion at the junction. Indeed, in Section 8 we produce an example
of a harmonic function on a domain with a C!-boundary which is not of class C*9, satisfying null
Dirichlet boundary conditions on a portion of the boundary and null Neumann boundary conditions
on the other portion, but exhibiting dominant logarithmic terms in its asymptotic expansion.

The proof of Theorem 1.1 combines the use of an Almgren type monotonicity formula, blow-up
analysis and sharp regularity estimates. Indeed regularity estimates yield the expansion of u near zero
as follows:

ko
2kp—1
u=Y alnFrog|  <Cri, (1.6)
k=1 L>(By)
(u,Frop) . . ..
for every o € (0, 1/2), for some C > 0, ky > 1 and where a;(r) = W. Now, if u is nontrivial,
2By

a blow-up analysis combined with Almgren type monotonicity formula allows to depict a ky > 1 for

which a4, (r) — B # 0 and a,(r) — O for every k < ko as r — 0. The proof of (1.6) uses also a blow-up
analysis argument inspired by Serra [24], see also [22, 23].

Remark 1.5. The extension of our results to higher dimensions are the object of current investigation.
First of all, the implementation of the monotonicity argument for Dirichlet-Neumann problems
exhibits substantial additional difficulties due to the positive dimension of the junction set and some
role played by the geometry of the domain. Moreover, further technical difficulties appear in higher
dimension since, in such a situation, we can no more make use of conformal transformations like the
ones employed in Section 2 which are based on the Riemann mapping Theorem.

Remark 1.6. For the sake of simplicity of the exposition, in the present paper we considered an elliptic
problem with the Laplacian and a linear term with a bounded potential; a possible extension to more
general elliptic problems with variable coefficients and first order terms could be obtained with a more
sophisticated monotonicity approach like in [9].
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The paper is organized as follows. In Section 2 we introduce an auxiliary equivalent problem
obtained by a conformal diffeomorphic deformation straightening B; N 92 near 0 and state Theorem
2.1 giving the sharp asymptotic behaviour of its solutions. Section 3 contains some Hardy-Poincaré
type inequalities for H'-functions vanishing on a portion of the boundary of half-balls. In Section 4 we
develop an Almgren type monotonicity formula for the auxiliary problem which yields good energy
estimates for rescaled solutions thus allowing the fine blow-up analysis performed in Section 5 and
hence the proof of Theorem 2.1. Section 7 contains the proof of the main Theorem 1.1, which is based
on Theorem 2.1 and on some regularity and approximation results established in Section 6. Finally,
Section 8 is devoted to the construction of an example of a solution with logarithmic dominant term in
a domain violating the C*°-regularity assumption.

2. The auxiliary problem

For every R > 0 let Bz = {(x1,x) € R* : x] + x; < R*} and B}, = {(x1, x2) € Bg : x, > 0}. Since 9Q
is of class C?>9 near zero, we can find r, > O such that " := 9Q N B, isa C* curve. Here and in the
following, we let B be a C*? simply connected open bounded set such that B ¢ Q and 48 N IQ = T.
For some functions

feL®®B) and geC\T,), 2.1)

let u € H'(B) be a solution to
—-Au = f(x)u, in B,
ou=gxu, onl,, (2.2)

u=20, onl,.
We introduce the space Hé,rd(B) as the closure in H'(8) of the subspace
Cor,(B) :={ueC(B):u=0onT,NoB.
We say that u € H'(8B) is a weak solution to (2.2) if

ue Hé’rd(B),
f Vu(x)Vv(x) dx = f SOu(x)v(x)dx + f guvds foranyv e Cgp - (B)
B B L

where CS?&B\Fn(B) ={ueC “(@) :u=00n08B\T,}. Since B is of class C>’, in view of the Riemann

mapping Theorem and [17, Theorem 5.2.4], there exists a conformal map ¢ : 8 — B; which is of class

C2. Let N = $(0) € 9B, and let S be its antipodal. We then consider the map ¢ : R?\ {S} — R?\ {S}

given by ¢(z) := 2|Z?:SS|2 + S, where, for every z € R? ~ C, 7 denotes the complex conjugate of z. This

map is conformal and @(N) = 0. In addition @(B; \ {S}) C P where P is the half plane not containing
S whose boundary is the line passing through the origin orthogonal to S .

Then the map ¢ o ¢ is a conformal map which is of class C? from a neighborhood of the origin
BN B, into P for some r > 0. It is now clear that there exists a rotation R and a real number R > 0
such that, letting Ug := ¢~ '(B},), the map ¢ :=Ropo: Ug — B_;; is an invertible conformal map of

class C2 with inverse ¢! : Bf; — Uy of class C2. Moreover ¢(0) = 0.
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Since ¢ is a conformal diffeomorphism, in view of Remark 1.2 we have that, under the assumptions
of Theorem 1.1,
D¢(0) =ald, witha = ¢'(0) >0, 2.3)

being ¢’(0) the complex derivative of ¢ at 0, which turns out to be real because of the assumption
that (1, 0) is tangent to 0Q at 0 and strictly positive because of the assumption that the exterior unit
normal vector to 0Q at 0 is (0, —1). In addition, (2.3) implies that, if R is chosen sufficiently small,
¢~ (=R, 0) x {0}) c Ty and ¢~'((0, R) X {0}) C T,

Therefore lettingw = uo ¢~ : B » Rand ¥ := ¢!, we then have that w € H'(B},) solves

—Aw(z) = p(2w(2), in By,
dw(x1,0) = glx)w(x1,0), x; € (0,R), (2.4)
w =0, on (—R, 0) x {0},
with
p@) = V' @Ff(¥Q), q(x1) = (g(¥(x1, )Y (x1, 0).
It is plain that p € L*(B}) and g € C'([0, R)). Here and in the following, for every r > 0, we define
I, :=(0,r) x {0} and I, := (=r,0) x {0}. (2.5)

The following theorem describes the behaviour of w at 0 in terms of the limit of the Almgren quotient
associated to w, which is defined as

fB; [Vw|?dz — fB,T pwidz — for g(x)w?(x,0) dx

N(r) = =
fo w2(rcost, rsint)dt

In Section 4 we will prove that N is well defined in the interval (0, Rj) for some R, > O.

Theorem 2.1. Let w be a nontrivial solution to (2.4). Then there exists kg € N, ky > 1, such that

. 2ko — 1
rlg(l)l+ N(r) = - (2.6)

Furthermore
2k~

gt 2yt | .
T w(12) - Blz] 2 COS(TArgz) ast— 0

strongly in HI(B:)for all r > 0 and in CO’”(@\ {0}) for every u € (0, 1), where B # 0 and

loc

2 (7 -
13:;]0‘ R‘yw(Rcos s,Rsins)cos(Zkoz_ls) ds

2 n R —ko+3/2 1-2k, +1/2 . . —
+ —f [ f LR ) (1 cos 5, £ sin s)W(E COS s, £ in ) dt] cos (2"% ! s) ds
o LJo

T 2ko—1
2 R t1/2—k0 _ Rl—ZkOtko—l/Z
+ = Hw(t,0)dt. 2.7
ﬂfo 7o e (O LY 2.7)
In particular
o=t . 2ko—1 .0 +
T T w(rcost, Tsint) - Beos (24r) in CO4([0,7]) asT - 0 (2.8)

The proof of Theorem 2.1 is based on the study of the monotonicity properties of the Almgren
function N and on a fine blow-up analysis which will be performed in Sections 4 and 5.
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3. Hardy-Poincaré type inequalities

In the description of the asymptotic behavior at the Dirichlet-Neumann junction of solutions to
equation (2.4) a crucial role is played by eigenvalues and eigenfunctions of the angular component of

the principal part of the operator.
Let us consider the eigenvalue problem

—‘ﬁ” = /h/’a in [Oa 7T],
Y'(0) =
Y(m) =0
It is easy to verify that (3.1) admits the sequence of (all simple) eigenvalues
1
A= 7(2k - 1% keN, kx1,
with corresponding eigenfunctions
Yi(t) = cos (&11), ke, k> 1.

It is well known that the normalized eigenfunctions

{ \/7COS (2k2 1 t)}kzl

form an orthonormal basis of the space L?(0,n). Furthermore, the first eigenvalue A, =

characterized as

1 P
Ay =5= mn —F——
4 weH O\ f (PR dt
For every r > 0, we let (recall (2.5) for the deﬁmtlon of I'")
H, ={weH' (BY):w=0onTI7}.
As a consequence of (3.3) we obtain the following Hardy-Poincaré inequality in H,.

Lemma 3.1. For every r > 0 and w € H,, we have that

W)

IVw(2) dz —
jl;,. 4 B} |zI*

Proof. Letw € C“(B_;f) with w = 0 on 1"_2 = [-r, 0] X {0}. Then, in view of (3.3),

1

1

r T 2 1
f IVw(z)]* dz = f f p()%(w(p COS t, p sin t))‘ +— |§(w(p cost, psin t))|2) dtdp
B 0 Jo Y

I"l T
Zf —( (%(w(pcost,psint))|2dt) dp
0o P\Jo

2
>—f (f |w(pcostpsmt)|2dt)d ——f Mdz
4 B} |zI?

3.1

(3.2)

can be

(3.3)

We conclude by density, recalling that the space of smooth functions vanishing on [—r, 0] X {0} is dense

in H,, see e.g. [7].

O
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Lemma 3.2. For every r > 0 and w € H,, we have that xl‘lwz(xl ,0) € L'(0,r) and

ro..2 ’0
f w0 o x f IVw(2) dz.
0 B}

X1

Proof. Letw € C°°(B_;f) with w = 0 on [-r,0] X {0}. Then forany 0 < x; < r

Iw(xy,0)] =

" d
f —w(x; cost, x; sint) dt‘ =
0

T
7 f x1Vw(x; cost, xysint) - (—sint, cost) dt
0

T
< \/f xX2|Vw(x; cos £, x; sin )| dt.
0

It follows that

ro2 ,0 Al
f w0 )dxl < ﬂf f x1|Vw(x; cost, x; sint)]* dt dx; = ﬂf VW) dz.
0 0 Jo B;

X1

r

We conclude by density. O
4. The monotonicity formula

Letwe H! (By) be a non trivial solution to (2.4). For every r € (0, R] we define

D(r):f |Vw|2dz—f pwzdz—f q(xl)wz(xl,O)dxl 4.1)
By B} 0
and | i
H®r) = - f w?ds = f w?(rcost, rsint)dt, 4.2)
r sy 0

where S} := {(x1, x2) : x7 + x5 = r* and x, > 0}.
In order to differentiate the functions D and H, the following Pohozaev type identity is needed.

Theorem 4.1. Let w solve (2.4). Then for a.e. r € (0, R) we have

,
= | [VwPds=r f
2 fs; s

- % f (g(x)) + x1¢"(x))w?(x1,0) dx; + %q(r)wz(r, 0) + f pwz-Vwdz (4.3)
0 Bt

2

0
st

ov

and
a r
IVw|*dz = f pwrdz + f MW ds + f g(x)w*(x1, 0) dx;. (4.4)
B S dv 0

Bf ;
Proof. We observe that, by elliptic regularity theory, w € H*(Bf \ Bf) forall 0 < & < r < R.

Furthermore, the fact that w has null trace on I'¥ implies that gTV”l has null trace on I'®. Then, testing
(2.4) with z - Vw and integrating over B} \ B}, we obtain that
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f f Vwlds — £ f Vwlds = f pwz- Vwdz
2 Js; 2 Js; BF\BY

f ow 0
+r
S¥

2
owl® f w ow
s:10
An integration by parts, which can be easily justified by an approximation argument, yields that

2 r
ds + f G(x)w, 01 701, 0) dx. (4.5)
& 1

oy v

" 0
f g(e)w(x,, 0)x, 6—W(x1, 0)dx; = —q(r)wA(r, 0)
P X1 2

g 1 (7 ,
- Zaew 0 5 [ g+ a0 dn. G0
We observe that there exists a sequence €, — 0* such that

lim {gnwz(gn, 0) + &, |Vw|2dsl =0.

n—oo g+

€n

Indeed, if no such sequence exists, there would exist £y > 0 such that

C
w?(r,0) + f [Vw’ds > = forall r € (0,&,), forsome C > 0;
S r

integration of the above inequality on (0, &y) would then contradict the fact that w € H 1(B;;) and, by
trace embedding, w € L*>(I'."). Then, passing to the limit in (4.5) and (4.6) with & = &, yields (4.3).
Finally (4.4) follows by testing (2.4) with w and integrating by parts in B} . O

In the following lemma we compute the derivative of the function H.

Lemma4.2. H € W.!(0,R) and
H(r)=2 foﬂ w(rcost, rsin t)g—vvv(rcos t,rsint)dt = % L+ wg—VVV ds, 4.7
in a distributional sense and for a.e. r € (0, R), and r
H((r) = %D(r), fora.e. r € (0,R). (4.8)

Proof. Let ¢ € CZ(0,R). Since w, Vw € L*(B}) and w € C'(B},), using twice Fubini’s Theorem we
obtain that

R R T
f H(re' () dr = f ( f wz(rcost,rsint)dt)r/)’(r)dr
0 0 0

7T R 5 ‘ , - R d ) ‘
:I} (fo w(rcost,rsmt)¢(r)dr)dt:—‘[O (L E(w (rcost,rs1nt))¢(r)dr)dt

T R
=— f ( f (2w(r COS ¢, rsin t)‘;—vvv(r COS t, rsin t))¢(r) dr) dt
0 0

R,
o f ( f (2w(rcost. rsinne(reost. rsing)) dt)¢(r) dr
0 0

thus proving (4.7). Identity (4.8) follows directly from (4.7) and (4.4). O
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Let us now study the regularity of the function D.

Lemma 4.3. The function D defined in (4.1) belongs to W"'(0, R) and

D'(r) = 2f
st

1 [ 2
- _f (g(x1) + x1g’ (x))w?(x1, 0) doxy + —f pwz - Vwdz — f pwrds (4.9)
rJo r Js; s

2

0
st

v

in a distributional sense and for a.e. r € (0, R).

Proof. From the fact that w € H'(B},) and wer € LA(I'®), we deduce that D belongs to W'!(0, R) and

D'(r) = f [Vw|’ds — f pwids — g(r)w*(r, 0) (4.10)
S¥ S¥

r r

for a.e. r € (0, R) and in the distributional sense.
The conclusion follows combining (4.10) and (4.3). O

Lemma 4.4. There exists Ry € (0, R) such that H(r) > 0 for any r € (0, Ry).
Proof. Let R € (0, R) be such that

4||P||L°°(B;)R(2) + 71llgll o7y Ro < 1. 4.11)

Assume by contradiction that there exists ro € (0, Ry) such that H(r) = 0, so that w = O a.e. on S} .
From (4.4) it follows that

IVw|*dz — f
B, B

+
o

0]
pwzdz — f q(xl)wz(xl, 0)dx; =0.
0

From Lemmas 3.1 and 3.2, we get

70
0= f IVwl*dz - f pwidz - f q(xpw?(x1,0) dx,
By, B}, 0

0

2 2
> |1 = 4lIpllz=csy s — mligllsyro] f Vwldz,
B+
0

which, together with (4.11) and Lemma 3.1, implies w = 0 in B} . From classical unique continuation
principles for second order elliptic equations with locally bounded coeflicients (see e.g. [28]) we can
conclude that w = 0 a.e. in By, a contradiction. O

Thanks to Lemma 4.4, the frequency function

D(r)

N:(0,R) - R, N(@) = "Y'

(4.12)

is well defined. Using Lemmas 4.2 and 4.3, we now compute the derivative of N.

Mathematics in Engineering Volume 1, Issue 1, 84-117



94

Lemma 4.5. The function N defined in (4.12) belongs to W, (0, Ry) and

loc
N'(r) = vi(r) + vo(r) (4.13)

in a distributional sense and for a.e. r € (0, Ry), where

2 18 ) (5, ) - F, vt ]|

aw
Vi () = » (4.14)

(fS,* w? ds)2

and

for (g(x) + xq'(x))w*(x,0) dx N fB? pwz - Vwdz B rfs: pwrds
fs: w2ds fs: w2ds fs: wds

(4.15)

vao(r) = —

Proof. From Lemmas 4.2, 4.4, and 4.3, it follows that N € Wﬁ)’cl (0, Rp). From (4.8) we deduce that

D'(nH(r) - D(NH'(r) _ D'(NH(r) = 37(H'(n)?
(H(r))? - (H(r))?

and the proof of the lemma easily follows from (4.7) and (4.9). |

N'(r) =

We now prove that N(r) admits a finite limit as r — 0.
Lemma 4.6. There exists y € [0, +0) such that lim,_g+ N(r) = .

Proof. From Lemmas 3.1 and 3.2 it follows that
D(r) 2 |1 = 4lplizesyr® = allgllsrr] f Vwldz,
B}
hence there exist 7 € (0, Ry) and C; > 0 such that

D(r) > C, f IVw[*dz, forall r € (0, 7).
B+

r

In particular
N(r) >0, forallre(0,7). 4.16)

Moreover, using again Lemmas 3.1 and 3.2 we can estimate v, in (0, 7) as follows

g + xq lpsemyar [, IVWPdz  (1plls@yyr(l +4r7) [, [Vw()I* dz
r + r
fsr w2ds fsr w2ds

1
< = (g + xq/lpwaym + 1Pl +47) N + Flpllsay. (4.17)
1

va(r)l < + rllplle=esy)

Since v; > 0 by Schwarz’s inequality, from Lemma 4.5 and the above estimate it follows that there
exists C, > O such that
N'(r) > —Co(N(r)+ 1) forall r € (0,7), (4.18)
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which implies that
d
— (e (1 + N(r)) 2 0.

dr
It follows that the limit of r — e“2"(1 + N(r)) as r — 0% exists and is finite; hence the function N has
a finite limit y as r — 0*. From (4.16) we deduce thaty > 0. O

The function H defined in (4.2) can be estimated as follows.
Lemma 4.7. Let y := lim,_o- N(r) be as in Lemma 4.6. Then
H(r)= 0(™) asr— 0" (4.19)

Moreover, for any o > 0,
r2y+(T

=O(H(r)) asr— 0. (4.20)
Proof. From Lemma 4.6 we have that

N is bounded in a neighborhood of 0, “4.21)

hence from (4.18) it follows that N’ > —C; for some positive constant C5 in a neighborhood of 0. Then

N@r)—vy= f N'(p)dp > —Csr (4.22)
0

in a neighborhood of 0. From (4.8), (4.12), and (4.22) we deduce that, in a neighborhood of 0,
H'(r) 2N() S 2_)/

= -2
H(r) r r s,

which, after integration, yields (4.19).
Since y = lim,_+ N(r), for any o > 0 there exists r, > 0 such that N(r) < y + o/2 for any
H(r) _ 2N

r € (0, r,) and hence "o = 7 < 27# for all r € (0, r,). By integration we obtain (4.20). ]

5. Blow-up analysis for the auxiliary problem

Lemma 5.1. Letw e H 1(B}) be a non trivial solution to (2.4). Let y := lim,_+ N(r) be as in Lemma
4.6. Then there exists kg € N, kg > 1, such that
2ky — 1

7 = 2 °

Furthermore, for every sequence 1, — 0%, there exist a subsequence {T,, }xen such that
w(T,,2)
VH(Ty)

strongly in H'(B') and in CO’“(B_;r \ {0}) for every u € (0,1) and all r € (0, 1), where

loc

— Ww(2) (5.1)

k-1

_ 2 ko — 1
w(rcost,rsint):-_i-\/jr : cos( s z), forall re 0,1y and t € [0, ). (5.2)
T
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Proof. Let us set
w(rz)

VH®)

We notice that, for all 7 € (0,R), w™ € H; and fS+ W' Pds = foﬂ lw™(cos t, sin#)|> dt = 1. Moreover, by
1

scaling and (4.21),

wi(z) = (5.3)

1
fmemkqﬁmwﬂmﬂﬁ—(fq@mwmmmu:Nmzom (5.4)
B 0

as T — 0%, whereas from Lemmas 3.1 and 3.2 it follows that

(7)
= 1 = 4lpll=sp - 7llgllza ] f VW' dz (5.5)
B}

1
N> 1= Al = alalieyr] [ 19wPde
BY

for every 7 € (0, Ry), being R as in (4.11). From (5.4), (5.5), and Lemma 3.1 we deduce that
(W ie.ry 1S bounded in H'(B). (5.6)

Therefore, for any given sequence 7, — 0*, there exists a subsequence 7, — 0* such that w™ — w
weakly in H l(B;r) for some w € H l(B;r). Due to compactness of trace embeddings, we have that w = 0
on T and

wi*ds = 1. (5.7)

ST
In particular w # 0. For every small 7 € (0, Ry), w™ satisfies
—-Aw" = ?p(rZ)w’, in BY,
Ow* = 1q(tx;,0w", onT}, (5.8)

w' =0, onTl,

in a weak sense, i.e.

1
f Vwi(2) - Vp(z)dz = 7° f paw (e dz + 7 f g(rw(x, 0)p(x;, 0) dx
B Bt 0

1 1

forall ¢ € H'(B}) s.t. ¢ =0 on S} UT). From weak convergence w™ — w in H'(B}), we can pass to
the limit in (5.8) along the sequence 7,, and obtain that w weakly solves

-Aw =0, in Bf,
dw=0, onl}, (5.9)
w =0, onT).

From (5.6) it follows that {rq(rx)w™(x, 0)};c.r,) is bounded in H'*(T}). Then, by elliptic regularity
theory, forevery 0 < r; < r, < 1 we have that {w"}.¢r,) is bounded in HZ(Bj2 \B,). From compactness
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; . ok W s 72
of trace embeddings we have that, up to passing to a further subsequence, <5~ — S* in L*(S)) for

every r € (0, 1). Testing equation (5.8) for 7 = 7, with w™ on B} we obtain that

ow™
f |VWTnk(Z)|2 dZ :f w kWT,,k ds
5; ; Ov

+ T f pE W™ @I dz + T, f q(T, ) W™ (x, 0)]* dx
0

By

O _ _
N —wds= | |Vw(2)]dz,
k—+0c0 St v B

thus proving that [[w™ || gr) = |[Wllg1 (s for all r € (0, 1), and hence
w™ — w in H'(B}) (5.10)

for every r € (0, 1). Furthermore, by compact Sobolev embeddings, we also have that, up to extracting
a further subsequence,
W — W in CY*(BF \ {0)),

loc

for every r € (0, 1) and u € (0, 1).
For any r € (0, 1) and k£ € N, let us define the functions

Dy(r) = Vw™* dz - T, f P W™ () dz = Ty, f (T, ) W™ (x, 0)* dx,
B} 0

B}

1
Hk(f’)=;f w™|* ds,
st

and Ny (r) = Z"E’) Direct calculations yield that Ny(r) = N(z,r) for all r € (0,1). From (5.10) it

follows that, for any fixed r € (0, 1),
— _ — 1 _
Dy(r) = D(r) := f \Vwl*dz and Hi(r) = D(r) := —f wl* ds.
B r sy

From classical unique continuation principles for harmonic functions it follows that D(r) > 0 and
H(r) > 0 for all r € (0, 1) (indeed D(r) = 0 or H(r) = 0 for some r € (0, 1) would imply that w = 0 in
B! and, by unique continuation, w = 0 in B}, a contradiction). Hence, by Lemma 4.6,

Ny = 20

= %irn Ni(r) = l}im N(ty,r) =y (5.11)

(r)

for all r € (0, 1). Therefore N is constant in (0,1) and hence N "(r) =0 for any r € (0, 1). By (5.9) and
Lemma 4.5 with p = 0 and ¢ = 0, we obtain

A

w~hich implies that w and % are parallel as vectors in L*(S}). Hence there exists 7 = n(r) such that
‘;—Vv“(r cost,rsint) = n(r)w(rcost, rsint) for all » € (0, 1) and ¢ € [0, xr]. It follows that

ow

2
0
— ds)-(f Wzds)—(f wa—v:ds) =0 forallre(0,1),

ov

w(rcost,rsint) = e(ry(t), re(0,1), te[0,n], (5.12)
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where ¢(r) = el 1995 and y(r) = W(cost, sinf). From (5.7) we have that foﬂ ¥? = 1. From (5.9) and
(5.12) we can conclude that

@ (MY (@) + 2 (DY) + ey (1) =0, re(0,1), te[0,1],
Y(r) =0,
w'(0) = 0.

Taking r fixed, we deduce that i is necessarily an eigenfunction of the eigenvalue problem (3.1). Then

there exists kg € N \ {0} such that y(r) = + \/% cos(Zkg—_lt) and ¢(r) solves the equation

1, (ke —17
¢ (F)+;90 _ Gk 17 Zrz ) o(r) = 0.

Hence ¢(r) is of the form
kg1 k-1
pry=cir = +cr =
for some ¢y, c, € R. Since the function r‘@w(t) ¢ H 1(B;r), we deduce that necessarily ¢, = 0 and
ey —
o(r) = clr#. Moreover, from ¢(1) = 1, we obtain that ¢; = 1 and then

2%ky-1

— 2 2ko — 1
w(rcost,rsint) = J_r\/;rz cos( 02 t), forall » € (0,1) and ¢ € [0, ]. (5.13)

From (5.13) it follows that
H(r) = f w2 (rcost, rsint)dt = r* !,
0

Hence, in view of (4.8),

~ rH(r) _r P2 Dk -1
=Nr)==-—=——==2k -1 = .
The proof of the lemma is thereby complete. O

We observe that at this stage of our analysis we cannot exclude that the limit function w found in
Lemma 5.1 depends on the subsequence. In order to prove that the convergence in (5.1) actually holds
as T — 0" we need to univocally identify the limit profile w.

Lemma 5.2. Let w # 0 satisfy (2.4), H be defined in (4.2), and y := lim,_o- N(r) be as in Lemma 4.6.
Then the limit lim,_o+ r~2Y H(r) exists and it is finite.

Proof. In view of (4.19) it is sufficient to prove that the limit exists. By (4.2), (4.8), and Lemma 4.6 we

have that
d H(r)

dr r%

and then, by integration over (r, Ry),

HQRy) H | g " H ’
%— rg) =2 fr ng ( fo vl(t)dt)dp+2 fr ngﬂ? ( fo Vz(t)dt)dp (5.14)

0

— 2’_—27—1(D(r) _ yH(r)) — 2r—2y—1H(r) fr N/(p)dp,
0
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where v; and v, are as in (4.14) and (4.15). Since, by Schwarz’s inequality, v; > 0, we have that
lim, _,o+ fr o p 2 'H(p) ( fop Vi (t)dt) dp exists. On the other hand, from Lemma 4.6 N is bounded and
hence from (4.17) we deduce that v, is bounded close to 0". Hence, in view of (4.19), the function
p = p 2 'H(p) ( fop vz(t)dt) is bounded and hence integrable near 0. We conclude that both terms at
the right hand side of (5.14) admit a limit as r — 0" thus completing the proof. O

The following lemma provides some pointwise estimate for solutions to (2.4).

Lemma 5.3. Let w € H l(B;;) be a nontrivial solution to (2.4). Then there exist C4,Cs > 0 and
7 € (0, Ry) such that

(i) supg- [wl* < % f5+ w(2)|*> ds for every 0 < r < F,
(ii) w(z)| < Cslz|” for all z € B, with y as in Lemma 4.6.

Proof. We first notice that (ii) follows directly from (i) and (4.19). In order to prove (i), we argue by
contradiction and assume that there exists a sequence 7,, — 0 such that

sup

T Tn .\ T
w(—= cost, — sin t)‘ > nH(—")
t€[0,7] 2

2 2

with H as in (4.2), i.e., defining w™ as in (5.3)

sup [w™(2)* > 2n f W™ (2)*ds. (5.15)

.
XeST), 12

From Lemma 5.1, there exists a subsequence 7,, such that w™ — w in Cc%S T/z) with w being as in
(5.2), hence passing to the limit in (5.15) a contradiction arises. O

To obtain a sharp asymptotics of H(r) as r — 0, it remains to prove that lim,_q+ ¥"2YH(r) is strictly
positive.

Lemma 5.4. Under the same assumptions as in Lemmas 5.2 and 5.3, we have that

lim 2 H(r) > 0.

Proof. From Lemma 5.1 there exists ky € N, ky > 1 such that y = 2"02_1. Let us expand w as
w(rcost,rsint) = Z @i(r) cos (%Z) (5.16)
=1
where 5 [
ou(r) = = f w(rcost, rsint) cos (%) dr. (5.17)
T Jo
The Parseval identity yields
H) =23 g}, forall0<r<R (5.18)
25
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From (4.19) and (5.18) it follows that, for all k > 1,
o(r)=0@") asr— 0",

Letn € C2(0, R). Testing (2.4) with the function 7(r) cos( ) by (5.16) we obtain

n (f , , T (2k=1)? K
5 f el (N dr + 3 f elt () dr = f 4rw(r, On(r) dr
0 0 0

R T
+ f rn(r) (f p(rcost, rsin )w(rcost, rsin ) cos (2" 1 ) dt) dr.
0 0

(5.19)

(5.20)

Integrating by parts in the first in integral on the left hand side of (5.20) and exploiting the fact that

n € C2(0,R) is an arbitrary test function, we infer

2‘Pk(”)

1
— (r) — ;SDIQ(V) —(2k -1 = &(r), in(0,R),

where

2 2 ("
§(r) = — q(rw(r,0) + — f p(rcost, rsint)w(rcost, rsint) cos (”‘T_lt) dt.
nr 7 Jo

Then, by a direct calculation, there exist ¢}, ¢5 € R such that

21 R Z‘Q+1 2k R lzk :
or(r) = r2(c'1‘ +f 1 {k(z‘)dt)+ rz (Clé +f —

From Lemma 5.3 it follows that

+1

G0 dt).

B +
§k0(r)=0(r 2 ) as r — 0%,
and hence the functions
ﬂﬂ MH
t=>172 TG, () and te T T ()
belong to L'(0, R). Hence

1-2kg

L R g+l .
r2 (¢’ + T {ko(t)dt —o(r . ) asr — 07,
r 0~

and then, by (5.19), there must be

2kg-1
ko — f r 1) dt.
¢ = | g
From (5.23), we then deduce that

2yl
1-2k, Tt +1

R H0l
1-2ky k() t _ 2]\0 k()+
o (02 ; f {ko(t)dt) o f L) dt = 06
r 0 2k0

(5.21)

(5.22)

(5.23)

(5.24)
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as r — 0*. From (5.22) and (5.24), we obtain that

1-2kg

dorf o (R .
o) = 13 (c1 - gko(r)dr+0(r)) as r — 0F (5.25)

Let us assume by contradiction that lim,_g+ 7~2?H(r) = 0. Then (5.18) would imply that
2kp-1
lir(r)l+ rT () =0
and hence, in view of (5.25), we would have that

1-2ky

3 =+l
0 ndt=0

which, together with (5.23), implies

2k~

2o 4y ro 20
o B Tl dt) = 1 L ydi = 00 (5.26)
P 2k — 10 - o 1= 2k N '

as r — 07. From (5.25) and (5.26), we conclude that ¢y, (r) = O(r%”‘O) as r — 07, namely,

VH(T) f w'(cost,sint) cos (2k02—1
0
where wT is defined in (5.3). From (4.20), there exists C > 0 such that VH(7t) > Ct'*: fort small, and

therefore .
f w'(cost,sint) cos (
0

From Lemma 5.1, for every sequence 7, — 07, there exist a subsequence {7, }xery such that

t) dt = O(T%”“’) as 1t — 0%,

) dt = 0(t?) ast— 0. (5.27)

2 2%k -1
W (cos t, sin ) — + \/j cos( L z) in L2(0, 7). (5.28)
T
From (5.27) and (5.28), we infer that

T
) Vi
0= lim w'k(cos t, dt =+ \/7 cos? dt =+ .[=,
k—+00 0 2

thus reaching a contradiction. O

Proof of Theorem 2.1. Identity (2.6) follows from Lemma 5.1, thus there exists kg € N, ky > 1, such
that y = lim,_o- N(r) = 2=

Let {1, }, e C (0, +00) be such that lim,,_,,, 7, = 0. Then, from Lemmas 5.1 and 5.4, scaling and a
diagonal argument, there exists a subsequence {7, }xeny and g # 0 such that

W(Tn Z) 2ko—1 2ko—1
y" — Blz| 2 cos( = Argz) (5.29)

ng
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strongly in H'(BY) for all » > 0 and in CloC (R2 \ {0}) for every u € (0, 1). In particular

ko — 1
7 W(1,, (cos 1, sin 1)) — ,BCOS( 2 z) (5.30)

in C®#([0, 7r]). To prove that the above converge occurs as T — 0 and not only along subsequences,
we are going to show that 8 depends neither on the sequence {7,},e nor on its subsequence {7, }ren.
Defining ¢y, and i, as in (5.17) and (5.21), from (5.30) it follows that

‘Pko(Tnk):%fﬂ W(TnkCOSt’TnkSint)CO (Zko ) PR 'Bf cos2 2ko )dt—,B (5.31)
0

Y Y
Thy T Ty

as k — +oo. On the other hand, from (5.22), (5.24) , and (5.25) we know that that

%ol (g R []T“ -2k 7 tzg +1
() = T3 (c1 v | 5 gko(t)dt)+r AL

1-2kg

_ t—+1
= TM%I(CIIO + f T gko(t) dt + O(T)) ast — 0. (5.32)
Choosing 7 = R in the first line of (5.32), we obtain
& -1 |2k R MO +1
=R 77 ¢, (R)—R ™ 1) dt.
c] ono( ) 0 2k() _ 1{/{0( )

Hence, from the second line of (5.32), we obtain that

1-2kg

. g 2% -t ol
T (pkO(T) — R 2 ‘pk()(R) - R 2k0 lgko(l‘) dt + 2k0 1{k0(l) dt,
0 - 0 -

as T — 0*. Then, from (5.31) we deduce that

1-2ky

. tZkOTH P
ﬁ R 2 SDkO(R) RI—ZkO‘[O 2k0 — 14]{0(1‘) dt + fo 2k0 — 1§k0(t) dt. (533)

In particular 8 depends neither on the sequence {7,},en nor on its subsequence {7, }ien, thus implying
that the convergence in (5.29) actually holds as 7 — 0* and proving the theorem. We observe that (2.7)
follows by replacing (5.17) and (5.21) into (5.33). |

6. Some regularity estimates

In this section, we prove some regularity and approximation results, which will be used to estimate
the Holder norm of the difference between a solution « to (1.1) and its asymptotic profile SFy,.

Proposition 6.1. Let f € L¥(B}), g € L™(I'}) and let v € H'(B4) N L™(BY) solve

-Av=f, inBj],
dv=g onlH (6.1)
v=0, onT%.

Then, for every € > 0, there exists a constant C > 0 (independent of v, f, and g) such that

||V||Cl/z-e(,7;) <C (”f”L“’(B:{) + ||g||Lm(r3> + ||V||L°°(B;)) .
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Proof. In the sequel we denote as C > 0 a positive constant independent of v, f, and g which may vary
from line to line. We consider a C* domain €’ such that Bj ¢ Q' ¢ B} and ', UT? c 0. We define
the functions (obtained uniquely by minimization arguments) v; € H'(Q') satisfying

“Avi = f, inQ,
oy =0, onl3, (6.2)
v, =0, onc’)Q’\Ff,,

and v, € H'2(R) satisfying
(=) =g, in(0,4),
v, =0, onR\ (0,4).

Therefore by (fractional) elliptic regularity theory (see e.g. [21, Proposition 1.1]), we deduce that

IVallerzmy < Cligllzes)- (6.3)

Consider the Poisson kernel P(x;, x,) = }szlxl‘2 with respect to the half-space Ri, see [4, Section 2.4].
We define

— 1
Va(x1, x2) = (P, x2) * vp)(x1) = ;Xzf dr

Rx§+(x1—t)2 _7T

Va(?) d = 1 f%()q —7X2)
R

1472

where with the symbol * we denoted the convolution product with respect to the first variable. One
can check that v, € H!

loc

(@) (see for example [3, Subsection 2.1]) and

—Av, =0, inR2,
dvy=g, onl?, (6.4)
v, =0, on R\ (0,4).

It is easy to see that
Vallzo@2y < ClVallrse).-

Moreover by (6.3), for x,y € R_i we get

max(1,|r["/?)
v2(x) = V2] < Cligll oy lx = y1'7 f ——————dr < Cllgllp~s)lx — yI'%.

R 1+7"2

It follows that
Wallzgez, < Cllgllqrsy (6.5)

By [25, Theorem 1] and continuous embeddings of Besov spaces into Holder spaces, we get
I ey < Clvillincan (1o + IVl -
Multiplying (6.2) by v, integrating by parts and using Young’s inequality, we get

2 2 2 2
ClviliZ g, < Vil < Willzan iz < elbvillagy, + Coll sy,
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where in the first estimate we have used the Poincaré inequality for functions vanishing on a portion of
the boundary. We then conclude that

Ivillciz-e@ry < Cllfllz=esp)- (6.6)
Now, thanks to (6.1), (6.2) and (6.4), the function V := v — (v; + v,) € H'(€') solves the equation

-AV =0, inC,
a,V=0, onl3, (6.7)
V=0, onT?.

By elliptic regularity theory, we have that

“V”CZ(W) < CliVlim ) (6.8)

where r is a fixed radius satisfying % < r < 3 and C > 0 is independent of V. Let n a radial cutoff
function compactly supported in Bj satisfying n = 1 in B,; testing (6.7) with nV, we infer that
VIl sty < ClIVII2y for some constant C > 0 independent of V. Hence by (6.8) we obtain

”V”CZ(W) < ClIVllz=@)- (6.9)
Letn € C2(Bs),) be a radial function, with 77 = 1 on B,. Then the function V= 7V € H'(R?) solves

—AV = VA7 -2VV-V3, inR2,
8,V(x1,0) =0, x1 € (0, +00),
V(x1,0) = 0, X1 € (—00,0).

Then by [25, Theorem 1], the arguments above, (6.9), (6.5) and (6.6), we deduce that
v —(vi + VZ)”CI/Z-E(F;) S ||V||C|/Z_E(R@) < ClVllw@) <C (||f||L°°(B;) + gl ooy + ||V||L°°(B;))-

This, combined again with (6.5) and (6.6) completes the proof. O

Recalling (1.2), for every k € N with k > 1, we consider the finite dimensional linear subspace of

LZ(B;T), given by
k
Sk::{Zaij : (al,_,,,ak)ERk}.

j=1

Forevery r > 0,k > 1, and u € L*(B}), we let
Fy, := Argming g, f (u(x) - F(x))*dx
B
be the L*(B;")-projection of u on Sy, so that

min (u(x) = F(x))*dx = f (u(x) — F,‘(”r(x))2 dx
B}

FeSy Jpr
r
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and
f (u(x) = F,,(x))F(x)dx =0, forall F € S;. (6.10)
B}

Next, we estimate the L™ norm of the difference between a solution of a mixed boundary value problem
on B} and its projection on S;.

Proposition 6.2. Let u € H'(B}) N L¥(R3) solve

—Au = f, inBj,
ou=g, onll (6.11)
u=20, on 1“(11,

where, for some k € N \ {0} and C >0,

! 3
If(x)] < Cl™> 20" for every x € By,

lg(x)] < Elxllmax(yk_%’o), for every x; € (0, 1),
and y; = % Then, for every a € (0, 1/2), we have that

sup r " u — F ll=sr) < oo.
r>0

Proof. In the sequel, C > 0 stands for a positive constant, only depending on a, C and k, which may
vary from line to line. Assume by contradiction that, there exists @ € (0, 1/2) such that

sup r‘y"_”Hu - F]L:,r”L“(B,T) = 00.
r>0

We consider the nonincreasing function

— Vi~
r Yk

O(r) := sup

> lloe — FZJ”L""(B;)-
r>r

It is clear from our assumption that
Q) / +oo asr — 0.

Then there exists a sequence r, — 0 such that

e F i) 2
We define
b (x) 1= g u(rpx) — Fil, (rax)
R er,)
so that |
||Vn||L°°(Bl+) > 5 (6.12)
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Moreover, by a change of variable in (6.10), we get

f Va(X)F(x)dx =0 for every F € ;.
B+

1
Claim: For R = 2" and r > 0, we have

1

- u _ u ot < Vit
ryk+a®(r)”Fk,rR Fk,r”L (Bh) = CR .

Indeed, by definition, for every r > r > 0, we have
e = F iy < PO
and thus, using the monotonicity of ®, for every x € B} we get
|Fi 2, (%) = Fi (Ol < = Fip, lliegs; ) + llu = Fylleesp) < RV Q(r) < CrtO(r).

Letting F,’:J = Z’;zl ajr)Fjandy; = %, by taking the LZ(B;r)—norm in (6.15), we get

la;(2r) — a;(rr’’ < Cr*™*0(r) for every r > 0.
Then
1 1 k
u _pu . (MmN myy;j
e Pl ~ Pl < Sy 21402 = a0l

1 kK m - ~ .
< e >0 a2 = a2 2y

j=1 =l

k m
c | |
— vima =y j+a)(i-1) yi+a i-1
< e @(r) 2 i 2 2772 e r)

j=1 =1

k m k
<C Z Z pYimyn—yjra)i-1) < ¢ Z oY imy(=yj+am

j=1 i=1 J=1
< C2M(7k+d) )

This proves the claim.
From the definition of ® and (6.14), for R = 2™ > 1, we have

sup |[v,(x)| =

——a—llu = F{, ||z~
e i’zkm@)(l’n) k,rn (B; g)

u u u
B rZ"m@(rn)Hu Frlli= o + erm@(rn)”Fk’r”R Fhrlleeis; o

< ———(r,R)"*"*0O(r,) + CR"*
T N

< CR™",

(6.13)

(6.14)

(6.15)
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Consequently, letting R > 1 and m € N be the smallest integer such that 2™ > R, we obtain that

sup [V,(x)]| < sup [vu(x)| < C2M0HD < C(2R)** < CR'**, (6.16)

+ +
X€Bg xeBsz

with C being a positive constant independent of R. Thanks to (1.3) and (6.11), it is plain that

2 —Yi—a@
—Av, = @(r) o5 f(ra), in By, ,

I—y—a

1 n
Oy = Bg(ry), onL,/™,

v, =0, on Fl/r"

By assumption, we have that ° 600 f(rnx) and - 600 g(rnxl) are bounded in L*(B),) and LM
respectively, for every M > 0. Hence, by Proposition 6.1 and (6.16), we have that v, is bounded in
C5(B ) for every M > 0 and 6 € (0,1/2). Furthermore, it is easy to verify that v, is bounded in
H'(B?,) for every M > 0. Then, for or_every M > 0and 6 € (0,1/2), v, converges in C‘S(B ) (and

weakly in H'(Bj},)) to some v € C}_(R?) N H; (R?) satisfying
“Av=0, inR2,
0,v=0, onI},
v =0, onI?,

and by (6.16), for every R > 1,
[IVllz=s) < CR™™.

By Lemma 6.3 (below), we deduce that necessarily
Vv E Sk.

This clearly yields a contradiction when passing to the limit in (6.12) and (6.13). O

The following Liouville type result was used in the proof of Proposition 6.2.

Lemma 6.3 (Liouville theorem). Let v € C(@) N H. (R?) satisfy
-Av=0, inR2,
0v=0, only,
v=0, only,
and, for some a € (0,1/2) and C > 0,
V=) < CR™  for every R > 1, (6.17)

where y; = % k € N\ {0}. Then
Vv E Sk.
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Proof. Arguing as in the proof of Lemma 5.4, we expand v in Fourier series with respect to the
orthonormal basis of L2(0, r) given in (3.2) as

v(rcost,rsint) = i @;(r) cos (%t)

J=1
where ¢;(r) = fo v(rcost, rsint)cos ( ) dt. From assumption (6.17) and the Parseval identity we
have that
4l _ . 2 2(y+a)
EZ (r) v(rcost,rsmt)dtsirCr , forallr>1.

It follows that
l;(r)| < const”*™ forall j>1andr> 1, (6.18)

for some const > 0 independent of j and r.

From the equation satisfied by v it follows that the functions ¢; satisfy

290,( r)

1
_QO},(F) - ;(,0](7') + (2.] - 1) O’ in (07 +OO),

and then, for all j > 1, there exist c{ , cé € R such that

@i(r)=clr> +cér = forall r > 0.

The fact v is continous and v(0) = 0 implies that ¢;(r) = o(1) as r - 0*. As a consequence we have
that ¢; = O for all j > 1. On the other hand (6.18) implies that ¢; = O for all j > k. Therefore we
conclude that

k k
. joA-L 2j-1 j .
v(rcost,rsint) = E cr? cos(Tt): E ¢ Fi(rcost,rsing),
j=1 j=1

i.e.VE Sk. O
7. Asymptotics for u

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let w = u o ¢!, with ¢ : Uz — B_jg being the conformal map constructed in
Section 2. Lety = 2"" , with k( being as in Theorem 2.1. We define (recalling (5.3))

wi(z) == 77w(tz) = T T VH(TOW (2).
From Theorem 2.1 we have that there exists 8 # 0 such that w* — SF}, in H'(B}) for all r > 0 and in

(R2 \ {0}) for every u € (0, 1).

loc

Claim 1: We have
w(y) = BF,(y) + o(yl”) as |yl - Oand y € By. (7.1)
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If this does not hold true then there exists a sequence of points y,, € (Bj U ')\ {0} and C > 0 such that
yn — 0 and

Yl W) = BF i )l = W™ (@) = BFiy(zm)l = C > 0,

where 7, = |y,,| and z,, = g—:l If m is large enough, we get a contradiction with (2.8). This proves (7.1)
as claimed.

Let o € (0,1/2) and let p and g be the functions introduced in (2.4). By (7.1), by the fact that
pEL”(Bg)andg e C 1([0, R)), and by Proposition 6.2 applied to w, we have that, for every r € (0, R),

w(x) = Fj. (0 < Cr'™¢,  forevery x € B, (7.2)

for some positive constant C > 0 independent of r, which could vary from line to line in the sequel.
From (7.1) and (7.2) we deduce that

sup r7|BF,(x) = Fy (x)] = 0, asr— 0" (7.3)
xeB}
Claim 2: We have
IBFi,(x) = F; ()] < Cr’™e,  for every x € B;. (7.4)

Once this claim is proved, then according to (7.2), we can easily deduce that for any r € (0, R)

W(x) = BF,(X)] < w(x) = F ()] + |F) . = BF,(x)] < Cr’*®,  for every x € B.

ko,r

In particular,
Iw(x) — BFi,(x)| < C|x"*®,  for every x € By

which finishes the proof of Theorem 1.1.
Let us now prove Claim 2. Writing F ,:)’r(x) = Z'J‘.‘; ,a;j(NF;(x), by (7.3) we have that
I8 — ay,(r)| = 0, asr— 0. (7.5)

Moreover by taking the L*(B})-norms in (7.3), we find that

ko—1
(ar,(r) = B r7 + Z a;(rrit? < Cr"*?, forevery R > r >0,
1

with y; = 221, This yields, for j = 1,...,ky — L,
laj(r)| < Cr7 —= 0 asr — 0. (7.6)

From (7.2), we get, for every x € Bf and R > r > 0,

ko
w0 = " a0

=

<Crév.

+

Y2 WE have that

Hence, for every x € B

<|F} (x)—w(x)| + IFZ)’z_,r(x) —w(x)| < Cre,

ko,r

ko
D (@) - a2 ) F(x)
j=1
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Taking the LZ(B:/z)—norms in the previous inequality, we find that, for every r € (0, R)

ko
Z la;(r) — a; 27" I < Cre.
j=1
This implies that
laj(r) = a; 27\ < Cr7 - forall 1 < j < kyand r € (0,R).

From this, (7.5) and (7.6), we obtain

ko—1 ky o )
1B — a,(NIr e + Z la;(H|r i < Z Z Iaj(r2""1) - aj(rz—i)|r—9—7+7j <C Z i
j=1 Jj=1 i=0 =0
This implies that, for every x € B,
ko—1

IBFi(x) = Fy, (0] < 1B = ag, (I + > la;(r)l” < Crre.

J=1
That is (7.4) as claimed. O

Remark 7.1. (i) Since ¢ is conformal, we have that F:=F k © @ satisfies FeH '(Ug) and solves
the homogeneous equation

F=0, inUp,
F=0, onl,ndUy (1.7)
4,F =0, onT,N0Ug.

B

(i) Let T : U* := BNU — B, define a C? parametrization (e.g. given by a system of Fermi
coordinates), for some open neighborhood U of 0, with Y(0) = 0, DY(0) = Id, Y, N U) c I*,
and TI'yNU)C I“Z. By Theorem 1.1, for every o € (0, 1/2), there exist C, py > 0 such that

(Y 3)) - Ba T Fy)| < Chy| =72, forevery y € B (7.8)

PO’

with @ > 0 as in (2.3). Indeed, to see this, we first observe that (7.8) is equivalent to
lu(x) = BF, (@Y(x))| < clxlyﬂ’, for every x € T‘I(B;()), (7.9)
for some constant ¢ > 0. We then further note that
IDF, (0] < o+ !

and thus

2kp—1

|Fiy (@Y(x)) = Fiy (@) < elxl ™ e Y(x) — ¢()|
T )
< clx 7 A

k-1

E
Sl

in a neighborhood of 0, where ¢ > 0 is a positive constant independent of x possibly varying from
line to line. This, together with (1.4) and the triangular inequality, gives (7.9).
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Proof of Corollary 1.3. From Theorem 1.1 and (7.8) it follows that, if u € H'(Q) is a non-trivial
solution to (1.1), then there exist ky € N \ {0} and 8 € R \ {0} such that, for every ¢ € [0, 7),
lri_l}(} r‘yu(rcos t,rsint) :ﬁa% cos (y‘%—_lt) (7.10)
Therefore, if u > 0, we have that necessarily ky = 1 so that statement (i) follows. Moreover, (7.8)
implies that
u(rcost,rsint) > Ba'’?r'’? cos (é) —Crl/re,

which easily provides statement (ii). O

Proof of Corollary 1.4. Let us assume by contradiction that # # 0. Then, Theorem 1.1 and (7.8) imply

that (7.10) holds for every ¢ € [0, ) and for some ky € N\ {0} and 8 € R \ {0}. Taking n > #¢-1, (7.10)

contradicts the assumption that u(x) = O(|x[") as |x| — O. O

8. An example

In this section we show that the presence of a logarithmic term in the asymptotic expansion cannot
be excluded without assuming enough regularity of the boundary.
Let us define in the Gauss plane the set

A:=C\{xyeRcC:x <0}
and the holomorphic function 77 : A — C defined as follows:
n(z) :=logr+if foranyz=re’ cA,r>0,0c¢ (-nx,n).

Let us consider the holomorphic function

v(z) 1= e""Fn(—iz)  foranyz e C\ {ix, : x, <0}
and the set
Z:={z€ C\{ixs: x, <0} : J(v(2)) = 0}. (8.1)
If 7 = re with r > 0,0 € (-2, %)\ {-£,0,%,%, % 7z, ¥}, then z € Z if and only

r = p(6) := exp [—(9 - g)cot(ZG)] ) 3.2)

VI8

For some fixed o € (O, 5), we define the curve I’y ¢ Z parametrized by

0 e (-0,0). (8.3)

x1(6) = p(@)cos b
x2(0) = p(6) sin 6

If we choose o > 0 sufficiently small then I'; is the graph of a function 4, defined in a open right
neighborhood U, of 0. Moreover A, is a Lipschitz function in U,, h, € C*(U,) and

h
im %) 20 i () = 0. (8.4)

x—0" Xy x1—0*
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Then we define the harmonic function
u(xy, x) := =3I((2) forany z = x; +ix, € C\ {iy : y < 0}. (8.5)
In polar coordinates the function u reads
Mn@:ﬂkmymm@@+@—g%maml (8.6)

From (8.1-8.2) and (8.6) we deduce that u vanishes on I',.
The next step is to find a curve I'_ on which % = 0 where v = (v, ;) is the unit normal to I'_
satisfying v, < 0. We observe that
X2
arctan (—) +
X1

u(xy, Xp) = X1 log(x% + x%) + g (x% - x%) for any x; <0, x, € R.

From direct computation we obtain

0

_u(xl? x2) = X2 log(xl + x2) + X, + 2 |arctan Xz + E X1,
(9)6 X 2

Ou 2 2 X2 T
—(X1,x2) X1 log(xl + xz) +x; —2|arctan| — |+ = | x5 .
a X2 X1 2

We now define

2

HiGrxy) = 2 [arctan (ﬂ) + %] X and  Hy(xr. 5) = 2 [arctan(;“_f) + E] X

log(x1 + xz) log(x] + xz)

on the set B; N II_ where I_ := {(x;,x;) € R? : x; < 0}. One can easily check that H,, H, admit
continuous extensions defined on B; N IT_ which we still denote by H, and H, respectively. We also
observe that H;, H, € C'(B; N ﬁ_). Therefore H, H, may be extended also on the right of the x,-axis
up to restrict them to a disk of smaller radius. For example one may define

Hi(x1,x2) := 3H (=x1,x2) = 2H(=2x1,x2) and Hy(x1, x2) := 3Hy(—=x1, X2) — 2H>(=2x1, X2)

for any (x, xp) € By, N1, where we put I, := {(x}, x2) € R? : x; > 0}. One may check that the new
functions H,, H, belong to C!(B »).
We can now define the functions Vi, V, : B;;; — R by

Vi) = X + log(x—ﬂz) + Hy(xy, x2), if (x1, x2) # (0,0),
0, if (x1,x2) = (0,0),
Vy(rpn) = X1+ m Hy(x1,x2),  if (x1,x2) # (0,0),
0, if (x1,x2) = (0,0).
One may verify that Vy, V, € C!(B, ,2). Moreover we have
ov ov ov. ov
—kom 0, %om—l %om—l %om—
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Then we consider the dynamical system

X (1) = Vi(x1(2), x2(1))
x5(8) = Va(xi(2), x2(2)) -

After linearization at (0, 0), by [15, Theorem IX.6.2] we deduce that the stable and unstable manifolds
corresponding to the stationary point (0, 0) of (8.7), are respectively tangent to the eigenvectors (1, —1)
and (1, 1) of the matrix DV(0, 0) where V is the vector field (V;, V,).

We define the curve I'_ as the stable manifold of (8.7) at (0, 0) intersected with B, N II_ where
g€ (0, %) can be chosen sufficiently small in such a way that I'_ becomes the graph of a function /A_
defined in a open left neighborhood U_ of 0. Combining the definitions of 4, and 4_ we can introduce
afunctionh: U, UU_U{0} - Rsuchthath=h,on U,., h=h_on U_ and #(0) = 0.

Then we introduce a positive number R sufficiently small and a domain Q C By such that

(8.7)

Q ={(x1,x) € Bp : xo > h(x))}.

One can easily check that the function u defined in (8.5) belongs to H'(Q). From the above
construction, we deduce that u = 0 on I'; N 9Q and % =0onTI_nNoQ. We observe that 92 admits a
corner at O of amplitude 37”.

The presence of a logarithmic term in u can be explained since the C*°-regularity assumption is not
satisfied from the right, i.e. hyy, 0 ¢ C*°(U, U {0}) for any 6 € (0,1). To see this, it is sufficient to
study the behavior of i(x;) — x;/’(x;) in a right neighborhood of zero.

By (8.3) we know that 6 € (-7, 0) and hence, if x; belongs to a sufficiently small right neighborhood
of 0, by (8.2) we have

1 h h
—log (x? + (h.(x1))*) tan |2 arctan +(0) + arctan L)) 7 =0. (8.8)
2 X1 X1 2
By (8.4) and (8.8) we have that, as x; — 07,
h 2 arctan (@) -7 1 1
tan [2 arctan( +(x1))] =— 5 ‘ I + 0( ) (8.9)
X1 log (x] + (he(x1))?)  2logx; log x;

Differentiating both sides of (8.8) and multiplying by x7 + (h,(x;))* we obtain the identity

(x1 + hi(xDH,(x1)) tan [2 arctan (h+(x1))]

X1

cos? [2 arctan (%ﬁ“))]

2 2
N {1 N log (xl + (h+(x1)) ) }(xlh;(xl) _ h+(-x1)) =0 (810)

and hence (8.4) and (8.9) yield

, T X
Xl (x1) = ho(xp) ~ == —

as x; — 0. 8.11
T logx, 1 (8.11)

This shows that 4, ¢ C>(U, U {0}) (and a fortiori cannot be extended to be of class C>9).
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We observe that the reason of the appearance of a logarithmic term is not due to the presence
of a corner at 0; indeed we are going to construct a domain with C'-boundary for which the same
phenomenon occurs. In order to do this, it is sufficient to take the domain Q and the function u defined
above and to apply a suitable deformation in order to remove the angle. We recall that Q exhibits a
corner at 0 whose amplitude is 3”

For this reason, we define F : C \ {ix; : x, <0} —» Cby

. . 3
F(z):=r3 €3’ foranyz=re?, r>0, He( X ﬂ)

22

We observe that, up to shrink R if necessary, the map F : Q — F(Q) is invertible so that we may define
Q:=FQ)and7%: Q> R, ﬁ(yl,yz) = u(F~'(y1,y)) for any (y1,y2) € Q.

We also define the curves I', := F(I',) and T := F(I_). Up to shrink R if necessary, we may
assume that ', and T_ are respectlvely the graphs of two functions h, and h_

It is immediate to verify thatu = O on T,. We also prove that 7 3~ =0 onT_. To avoid confusion with
the notion of normal unit vectors to I'_ and T we denote them respectlvely with vr_ and vg . Since u

u
> dvr_

is still harmonic =0onT_ and F is a conformal mapping, for any ¢ € C§°(§~2 U F_), we have

a"l - — —
[ gowds= [ VaEOIdy = [ (Vur GNOFE 00 950 ds
r- OVr_ Q Q
= fg [Vu(x)(DF(x))"'|V@(F(x)) | det(DF (x))| dx

= f [Vu(x)(DF ()" [[Vo(x)(DF (x))~'] | det(DF (x))| dx
Q

fVu(x)Vgo(x) dx —f —c,ods =0

where we put ¢(x) = a?f =0onT_.
r—

Finally we prove for iz:r an estimate simﬂar to (8.11).
From the definition of F it follows that I', admits a representation in polar coordinates of the type

— 2 30
r=p0) :=exp|—|0—- il cot|—1| . (8.12)
3 2
Proceeding exactly as for (8.8)-(8.9) one can prove that
1 ~ 3 h. h. 2
~log (x7 + (hy(x1))*) tan | = arctan +(x1) + arctan ) 27 =0. (8.13)
2 2 X1 X1 3

As we did for 4., also for the function E one can prove that

I
im ") _ lim 7, (x)) = (8.14)

x1—0 xl x1—0
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By (8.14) we have

/meg)] 2arctan (BE) -2 5 ( |
= = 0

tan P arctan( - — = — +
2 log (o + (hy(x))?) 3 logx

) asx; —» 0", (8.15)

X log x;

Differentiating both sides of (8.13) and multiplying by x? + (h.(x1))? we obtain the identity

(x1 + 71,+(x1)}l.;(x1)) tan [% arctan (h+(x1)]}

X1

3log (2 + (7, (x1))?)

4 cos? [% arctan (ﬂj‘l))]

X

(01l (x1) = hi(x1)) = 0. (8.16)

By (8.14), (8.15) and (8.16), we obtain

~ ~ 4T x
() = T (x) ~ =%
X1l (x1) — ha(xy) 9 Tog?

as x; — 0. (8.17)

The above arguments show that dQ is of class C! but not of class C'® (and a fortiori not of class C29).
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