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1. Introduction

The present paper deals with elliptic equations in planar domains with mixed boundary conditions
and aims at proving asymptotic expansions and unique continuation properties for solutions near
boundary points where a transition from Dirichlet to Neumann boundary conditions occurs.

A great attention has been devoted to the problem of unique continuation for solutions to partial
differential equations starting from the paper by Carleman [5], whose approach was based on some
weighted a priori inequalities. An alternative approach to unique continuation was developed by
Garofalo and Lin [14] for elliptic equations in divergence form with variable coefficients, via local
doubling properties and Almgren monotonicity formula; we also quote [18] for quantitative
uniqueness obtained by monotonicity methods.

The monotonicity approach has the advantage of giving not only unique continuation but also
precise asymptotics of solutions near a fixed point, via a suitable combination of monotonicity
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methods with blow-up analysis, as done in [9, 10, 11, 12, 13]. The method based on doubling
properties and Almgren monotonicity formula has also been successfully applied to treat the problem
of unique continuation from the boundary in [1, 2, 9, 19, 27] under homogeneous Dirichlet conditions
and in [26] under homogeneous Neumann conditions. Furthermore, in [9] a sharp asymptotic
description of the behaviour of solutions at conical boundary points was given through a fine blow-up
analysis. In the present paper, we extend the procedure developed in [9, 10, 11, 12, 13] to the case of
mixed Dirichlet/Neumann boundary conditions, providing sharp asymptotic estimates for solutions
near the Dirichlet-Neumann junction and, as a consequence, unique continuation properties. In
addition, comparing our result with the aforementioned papers, here we also provide an estimate of
the remainder term in the difference between the solution and its asymptotic profile.

Let Ω be an open subset of R2 with Lipschitz boundary. Let Γn ⊂ ∂Ω and Γd ⊂ ∂Ω be two
nonconstant curves (open in ∂Ω) such that Γn ∩ Γd = {P} for some P ∈ ∂Ω. We are interested in
regularity of weak solutions u ∈ H1(Ω) to the mixed boundary value problem

−∆u = f (x)u, in Ω,

∂νu = g(x)u, on Γn,

u = 0, on Γd,

(1.1)

with f ∈ L∞(Ω) and g ∈ C1(Γn), see Section 2 for the weak formulation. Our aim is to prove unique
continuation properties from the Dirichlet-Neumann junction {P} = Γn ∩ Γd and sharp asymptotics of
nontrivial solutions near P provided ∂Ω is of class C2,γ in a neighborhood of P. We mention that some
regularity results for solutions to second-order elliptic problems with mixed Dirichlet-Neumann type
boundary conditions were obtained in [16, 25], see also the references therein.

Some interest in the derivation of asymptotic expansions for solutions to planar mixed boundary
value problems at Dirichlet-Neumann junctions arises in the study of crack problems, see e.g. [6, 20].
Indeed, if we consider an elliptic equation in a planar domain with a crack and prescribe Neumann
conditions on the crack and Dirichlet conditions on the rest of the boundary, in the case of the crack
end-point belonging to the boundary of the domain we are led to consider a problem of the type
described above in a neighborhood of the crack’s tip (which corresponds to the Dirichlet-Neumann
junction). We recall (see e.g. [6]) that, in crack problems, the coefficients of the asymptotic expansion
of solutions near the crack’s tip are related to the so called stress intensity factor.

In order to get a precise asymptotic expansion of u at point P ∈ Γn∩Γd, we will need to assume that
∂Ω is of class C2,δ near P. The asymptotic profile of the solution will be given by the function

Fk(r cos θ, r sin θ) = r
2k−1

2 cos
(
2k − 1

2
θ

)
, r > 0, θ ∈ (0, π), (1.2)

for some k ∈ N \ {0}. We note that Fk ∈ H1
loc(R

2) and solves the equation
∆Fk = 0, in R2

+,

Fk(x1, 0) = 0, for x1 < 0,
∂x2 Fk(x1, 0) = 0, for x1 > 0,

(1.3)

where here and in the following R2
+ := {(x1, x2) ∈ R2 : x2 > 0}.
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The main result of the present paper provides an evaluation of the local behavior of weak solutions
u ∈ H1(Ω) to (1.1) at the boundary point where the boundary conditions change. In order to simplify the
statement and without losing generality, we can fix the cartesian axes in such a way that the following
assumptions on Ω ⊂ R2 are satisfied. Here and in the remaining of this paper, Γn,Γd ⊂ ∂Ω are
nonconstant curves (open as subsets of ∂Ω) such that Γn ∩ Γd = {0} with 0 ∈ ∂Ω.

(i) The domain Ω is of class C2,δ in a neighborhood of 0, for some δ > 0.

(ii) The unit vector e1 := (1, 0) is tangent to ∂Ω at 0 and pointed towards Γn. Moreover, the exterior
unit normal vector to ∂Ω at 0 is (0,−1).

We are now in position to state the main result of the present paper.

Theorem 1.1. We assume that Ω satisfies the assumptions (i)-(ii) above. Let u ∈ H1(Ω) be a nontrivial
weak solution to (1.1), with f ∈ L∞(Ω) and g ∈ C1(Γn). Then, there exist k0 ∈ N \ {0}, β ∈ R \ {0} and
r > 0 such that, for every % ∈ (0, 1/2), there exists C > 0 such that

|u(x) − βFk0(ϕ(x))| ≤ C|x|
2k0−1

2 +%, for every x ∈ Ω ∩ B+
r . (1.4)

Here, the function ϕ : Ω ∩ Br0 → R
2
+ is a conformal map of class C2, for some r0 > 0 only depending

on Ω.

Remark 1.2. Here and in the sequel, we identify R2 with the complex plane C; hence, by a conformal
map on an open set U ⊂ R2 we mean a holomorphic function with complex derivative everywhere non-
zero on U. We notice that, if Ω satisfies (i)-(ii) and ϕ : Ω ∩ Br0 → R

2
+ is conformal, then Dϕ(0) = α Id

and ϕ′(0) = α for some real α > 0, where Dϕ denotes the jacobian matrix of ϕ and ϕ′ denotes the
complex derivative of ϕ.

As a direct consequence of Theorem 1.1, we derive the following Hopf-type lemma.

Corollary 1.3. Under the same assumptions as in Theorem 1.1, let u ∈ H1(Ω) be a non-trivial weak
solution to (1.1), with u ≥ 0. Then

(i) for every t ∈ [0, π),

lim
r→0

u(r cos t, r sin t)
r1/2 = β α1/2 cos

( t
2

)
> 0,

where α = ϕ′(0) > 0 and ϕ is as in Theorem 1.1;

(ii) for every cone C ⊂ R2 satisfying (1, 0) ∈ C and (−1, 0) ∈ R2 \ C, we have

lim inf
x→0

x∈Ω∩C

u(x)
|x|1/2

> 0.

A further relevant byproduct of our asymptotic analysis is the following unique continuation
principle, whose proof follows directly from Theorem 1.1.

Corollary 1.4. Under the same assumptions as in Theorem 1.1, let u ∈ H1(Ω) be a weak solution to
(1.1) such that u(x) = O(|x|n) as x ∈ Ω, |x| → 0, for any n ∈ N. Then u ≡ 0.
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We observe that Theorem 1.1 provides a sharp asymptotic expansion (and consequently a unique
continuation principle) at the boundary for 1

2 -fractional elliptic equations in dimension 1. Indeed, if
v ∈ H1/2(R) weakly solves (−∆)1/2v = g(x)v, in (0,R),

v = 0, in R \ (0,R),

for some g ∈ C1([0,R]), then its harmonic extension V ∈ H1
loc(R

2
+) weakly solves

−∆V = 0, in R2
+,

∂νV = g(x)V, on (0,R) × {0},
V = 0, on (R \ (0,R)) × {0},

(1.5)

see [4]. Theorem 1.1 and Corollary 1.4 apply to (1.5). Hence, V (and in particular its restriction v)
satisfies expansion (1.4) and a strong unique continuation principle from 0 (i.e. from a boundary point
of the domain of v). We mention that unique continuation principles from interior points for fractional
elliptic equations were established in [8].

We do not know if the C2,δ regularity on Ω and C1 regularity of the boundary potential g in
Theorem 1.1 can be weakened in order to obtain a unique continuation property. On the other hand,
we can conclude that a regularity assumption on the boundary is crucial for excluding the presence of
logarithms in the asymptotic expansion at the junction. Indeed, in Section 8 we produce an example
of a harmonic function on a domain with a C1-boundary which is not of class C2,δ, satisfying null
Dirichlet boundary conditions on a portion of the boundary and null Neumann boundary conditions
on the other portion, but exhibiting dominant logarithmic terms in its asymptotic expansion.

The proof of Theorem 1.1 combines the use of an Almgren type monotonicity formula, blow-up
analysis and sharp regularity estimates. Indeed regularity estimates yield the expansion of u near zero
as follows: ∥∥∥∥∥∥∥u −

k0∑
k=1

ak(r) Fk ◦ ϕ

∥∥∥∥∥∥∥
L∞(Br)

≤ Cr
2k0−1

2 +%, (1.6)

for every % ∈ (0, 1/2), for some C > 0, k0 ≥ 1 and where ak(r) =
〈u,Fk◦ϕ〉L2(Br )

‖F j◦ϕ‖
2
L2(Br )

. Now, if u is nontrivial,

a blow-up analysis combined with Almgren type monotonicity formula allows to depict a k0 ≥ 1 for
which ak0(r)→ β , 0 and ak(r)→ 0 for every k < k0 as r → 0. The proof of (1.6) uses also a blow-up
analysis argument inspired by Serra [24], see also [22, 23].

Remark 1.5. The extension of our results to higher dimensions are the object of current investigation.
First of all, the implementation of the monotonicity argument for Dirichlet-Neumann problems
exhibits substantial additional difficulties due to the positive dimension of the junction set and some
role played by the geometry of the domain. Moreover, further technical difficulties appear in higher
dimension since, in such a situation, we can no more make use of conformal transformations like the
ones employed in Section 2 which are based on the Riemann mapping Theorem.

Remark 1.6. For the sake of simplicity of the exposition, in the present paper we considered an elliptic
problem with the Laplacian and a linear term with a bounded potential; a possible extension to more
general elliptic problems with variable coefficients and first order terms could be obtained with a more
sophisticated monotonicity approach like in [9].
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The paper is organized as follows. In Section 2 we introduce an auxiliary equivalent problem
obtained by a conformal diffeomorphic deformation straightening B1 ∩ ∂Ω near 0 and state Theorem
2.1 giving the sharp asymptotic behaviour of its solutions. Section 3 contains some Hardy-Poincaré
type inequalities for H1-functions vanishing on a portion of the boundary of half-balls. In Section 4 we
develop an Almgren type monotonicity formula for the auxiliary problem which yields good energy
estimates for rescaled solutions thus allowing the fine blow-up analysis performed in Section 5 and
hence the proof of Theorem 2.1. Section 7 contains the proof of the main Theorem 1.1, which is based
on Theorem 2.1 and on some regularity and approximation results established in Section 6. Finally,
Section 8 is devoted to the construction of an example of a solution with logarithmic dominant term in
a domain violating the C2,δ-regularity assumption.

2. The auxiliary problem

For every R > 0 let BR = {(x1, x2) ∈ R2 : x2
1 + x2

2 < R2} and B+
R = {(x1, x2) ∈ BR : x2 > 0}. Since ∂Ω

is of class C2,δ near zero, we can find r0 > 0 such that Γ := ∂Ω ∩ Br0 is a C2,δ curve. Here and in the
following, we let B be a C2,δ simply connected open bounded set such that B ⊂ Ω and ∂B ∩ ∂Ω = Γ.
For some functions

f ∈ L∞(B) and g ∈ C1(Γn), (2.1)

let u ∈ H1(B) be a solution to 
−∆u = f (x)u, in B,
∂νu = g(x)u, on Γn,

u = 0, on Γd.

(2.2)

We introduce the space H1
0,Γd

(B) as the closure in H1(B) of the subspace

C∞0,Γd
(B) := {u ∈ C∞(B) : u = 0 on Γd ∩ ∂B}.

We say that u ∈ H1(B) is a weak solution to (2.2) if
u ∈ H1

0,Γd
(B),∫

B

∇u(x)∇v(x) dx =

∫
B

f (x)u(x)v(x) dx +

∫
Γn

guv ds for any v ∈ C∞0,∂B\Γn
(B)

where C∞0,∂B\Γn
(B) = {u ∈ C∞(B) : u = 0 on ∂B \ Γn}. Since B is of class C2,δ, in view of the Riemann

mapping Theorem and [17, Theorem 5.2.4], there exists a conformal map ϕ̂ : B → B1 which is of class
C2. Let N = ϕ̂(0) ∈ ∂B1 and let S be its antipodal. We then consider the map ϕ̃ : R2 \ {S } → R2 \ {S }
given by ϕ̃(z) := 2 z−S

|z−S |2 + S , where, for every z ∈ R2 ' C, z denotes the complex conjugate of z. This

map is conformal and ϕ̃(N) = 0. In addition ϕ̃(B1 \ {S }) ⊂ P where P is the half plane not containing
S whose boundary is the line passing through the origin orthogonal to S .

Then the map ϕ̃ ◦ ϕ̂ is a conformal map which is of class C2 from a neighborhood of the origin
B ∩ Br into P for some r > 0. It is now clear that there exists a rotation R and a real number R > 0
such that, lettingUR := ϕ−1(B+

R), the map ϕ := R ◦ ϕ̃ ◦ ϕ̂ : UR → B+
R is an invertible conformal map of

class C2 with inverse ϕ−1 : B+
R →UR of class C2. Moreover ϕ(0) = 0.
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Since ϕ is a conformal diffeomorphism, in view of Remark 1.2 we have that, under the assumptions
of Theorem 1.1,

Dϕ(0) = α Id, with α = ϕ′(0) > 0, (2.3)

being ϕ′(0) the complex derivative of ϕ at 0, which turns out to be real because of the assumption
that (1, 0) is tangent to ∂Ω at 0 and strictly positive because of the assumption that the exterior unit
normal vector to ∂Ω at 0 is (0,−1). In addition, (2.3) implies that, if R is chosen sufficiently small,
ϕ−1((−R, 0) × {0}) ⊂ Γd and ϕ−1((0,R) × {0}) ⊂ Γn.

Therefore letting w = u ◦ ϕ−1 : B+
R → R and Ψ := ϕ−1, we then have that w ∈ H1(B+

R) solves
−∆w(z) = p(z)w(z), in B+

R,

∂νw(x1, 0) = q(x1)w(x1, 0), x1 ∈ (0,R),
w = 0, on (−R, 0) × {0},

(2.4)

with
p(z) = |Ψ′(z)|2 f (Ψ(z)), q(x1) = (g(Ψ(x1, 0))|Ψ′(x1, 0)|.

It is plain that p ∈ L∞(B+
R) and q ∈ C1([0,R)). Here and in the following, for every r > 0, we define

Γr
n := (0, r) × {0} and Γr

d := (−r, 0) × {0}. (2.5)

The following theorem describes the behaviour of w at 0 in terms of the limit of the Almgren quotient
associated to w, which is defined as

N(r) =

∫
B+

r
|∇w|2dz −

∫
B+

r
pw2dz −

∫ r

0
q(x)w2(x, 0) dx∫ π

0
w2(r cos t, r sin t) dt

.

In Section 4 we will prove that N is well defined in the interval (0,R0) for some R0 > 0.

Theorem 2.1. Let w be a nontrivial solution to (2.4). Then there exists k0 ∈ N, k0 ≥ 1, such that

lim
r→0+
N(r) =

2k0 − 1
2

. (2.6)

Furthermore
τ−

2k0−1
2 w(τz)→ β|z|

2k0−1
2 cos

(
2k0−1

2 Arg z
)

as τ→ 0+

strongly in H1(B+
r ) for all r > 0 and in C0,µ

loc (R2
+ \ {0}) for every µ ∈ (0, 1), where β , 0 and

β =
2
π

∫ π

0
R−

2k0−1
2 w(R cos s,R sin s) cos

(
2k0−1

2 s
)

ds

+
2
π

∫ π

0

[ ∫ R

0

t−k0+3/2−R1−2k0 tk0+1/2

2k0−1 p(t cos s, t sin s)w(t cos s, t sin s) dt
]

cos
(

2k0−1
2 s

)
ds

+
2
π

∫ R

0

t1/2−k0 − R1−2k0tk0−1/2

2k0 − 1
q(t)w(t, 0) dt. (2.7)

In particular

τ−
2k0−1

2 w(τ cos t, τ sin t)→ β cos
(

2k0−1
2 t

)
in C0,µ([0, π]) as τ→ 0+. (2.8)

The proof of Theorem 2.1 is based on the study of the monotonicity properties of the Almgren
function N and on a fine blow-up analysis which will be performed in Sections 4 and 5.
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3. Hardy-Poincaré type inequalities

In the description of the asymptotic behavior at the Dirichlet-Neumann junction of solutions to
equation (2.4) a crucial role is played by eigenvalues and eigenfunctions of the angular component of
the principal part of the operator.

Let us consider the eigenvalue problem
−ψ′′ = λψ, in [0, π],
ψ′(0) = 0,
ψ(π) = 0.

(3.1)

It is easy to verify that (3.1) admits the sequence of (all simple) eigenvalues

λk =
1
4

(2k − 1)2, k ∈ N, k ≥ 1,

with corresponding eigenfunctions

ψk(t) = cos
(

2k−1
2 t

)
, k ∈ N, k ≥ 1.

It is well known that the normalized eigenfunctions{√
2
π

cos
(

2k−1
2 t

)}
k≥1

(3.2)

form an orthonormal basis of the space L2(0, π). Furthermore, the first eigenvalue λ1 = 1
4 can be

characterized as

λ1 =
1
4

= min
ψ∈H1(0,π)\{0}

ψ(π)=0

∫ π

0
|ψ′(t)|2 dt∫ π

0
|ψ(t)|2 dt

. (3.3)

For every r > 0, we let (recall (2.5) for the definition of Γr
d)

Hr = {w ∈ H1(B+
r ) : w = 0 on Γr

d }.

As a consequence of (3.3) we obtain the following Hardy-Poincaré inequality inHr.

Lemma 3.1. For every r > 0 and w ∈ Hr, we have that∫
B+

r

|∇w(z)|2 dz ≥
1
4

∫
B+

r

|w(z)|2

|z|2
dz.

Proof. Let w ∈ C∞(B+
r ) with w = 0 on Γr

d = [−r, 0] × {0}. Then, in view of (3.3),∫
B+

r

|∇w(z)|2 dz =

∫ r

0

∫ π

0
ρ

(∣∣∣∣ ∂∂ρ (w(ρ cos t, ρ sin t))
∣∣∣∣2 +

1
ρ2

∣∣∣ ∂
∂t (w(ρ cos t, ρ sin t))

∣∣∣2) dt dρ

≥

∫ r

0

1
ρ

(∫ π

0

∣∣∣ ∂
∂t (w(ρ cos t, ρ sin t))

∣∣∣2 dt
)

dρ

≥
1
4

∫ r

0

1
ρ

(∫ π

0
|w(ρ cos t, ρ sin t)|2dt

)
dρ =

1
4

∫
B+

r

|w(z)|2

|z|2
dz.

We conclude by density, recalling that the space of smooth functions vanishing on [−r, 0]×{0} is dense
inHr, see e.g. [7]. �
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Lemma 3.2. For every r > 0 and w ∈ Hr, we have that x−1
1 w2(x1, 0) ∈ L1(0, r) and∫ r

0

w2(x1, 0)
x1

dx1 ≤ π

∫
B+

r

|∇w(z)|2 dz.

Proof. Let w ∈ C∞(B+
r ) with w = 0 on [−r, 0] × {0}. Then for any 0 < x1 < r

|w(x1, 0)| =
∣∣∣∣∣∫ π

0

d
dt

w(x1 cos t, x1 sin t) dt
∣∣∣∣∣ =

∣∣∣∣∣∫ π

0
x1∇w(x1 cos t, x1 sin t) · (− sin t, cos t) dt

∣∣∣∣∣
≤
√
π

√∫ π

0
x2

1|∇w(x1 cos t, x1 sin t)|2 dt.

It follows that∫ r

0

w2(x1, 0)
x1

dx1 ≤ π

∫ r

0

∫ π

0
x1|∇w(x1 cos t, x1 sin t)|2 dt dx1 = π

∫
B+

r

|∇w(z)|2 dz.

We conclude by density. �

4. The monotonicity formula

Let w ∈ H1(B+
R) be a non trivial solution to (2.4). For every r ∈ (0,R] we define

D(r) =

∫
B+

r

|∇w|2dz −
∫

B+
r

pw2dz −
∫ r

0
q(x1)w2(x1, 0) dx1 (4.1)

and
H(r) =

1
r

∫
S +

r

w2 ds =

∫ π

0
w2(r cos t, r sin t) dt, (4.2)

where S +
r := {(x1, x2) : x2

1 + x2
2 = r2 and x2 > 0}.

In order to differentiate the functions D and H, the following Pohozaev type identity is needed.

Theorem 4.1. Let w solve (2.4). Then for a.e. r ∈ (0,R) we have

r
2

∫
S +

r

|∇w|2ds = r
∫

S +
r

∣∣∣∣∣∂w
∂ν

∣∣∣∣∣2 ds

−
1
2

∫ r

0

(
q(x1) + x1q′(x1)

)
w2(x1, 0) dx1 +

r
2

q(r)w2(r, 0) +

∫
B+

r

pwz · ∇w dz (4.3)

and ∫
B+

r

|∇w|2dz =

∫
B+

r

pw2dz +

∫
S +

r

∂w
∂ν

w ds +

∫ r

0
q(x1)w2(x1, 0) dx1. (4.4)

Proof. We observe that, by elliptic regularity theory, w ∈ H2(B+
r \ B+

ε ) for all 0 < ε < r < R.
Furthermore, the fact that w has null trace on ΓR

d implies that ∂w
∂x1

has null trace on ΓR
d . Then, testing

(2.4) with z · ∇w and integrating over B+
r \ B+

ε , we obtain that
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r
2

∫
S +

r

|∇w|2ds −
ε

2

∫
S +
ε

|∇w|2ds =

∫
B+

r \B+
ε

pwz · ∇w dz

+ r
∫

S +
r

∣∣∣∣∣∂w
∂ν

∣∣∣∣∣2 ds − ε
∫

S +
ε

∣∣∣∣∣∂w
∂ν

∣∣∣∣∣2 ds +

∫ r

ε

q(x1)w(x1, 0)x1
∂w
∂x1

(x1, 0) dx1. (4.5)

An integration by parts, which can be easily justified by an approximation argument, yields that∫ r

ε

q(x1)w(x1, 0)x1
∂w
∂x1

(x1, 0) dx1 =
r
2

q(r)w2(r, 0)

−
ε

2
q(ε)w2(ε, 0) −

1
2

∫ r

ε

(q + x1q′)w2(x1, 0) dx1. (4.6)

We observe that there exists a sequence εn → 0+ such that

lim
n→∞

εnw2(εn, 0) + εn

∫
S +
εn

|∇w|2ds
 = 0.

Indeed, if no such sequence exists, there would exist ε0 > 0 such that

w2(r, 0) +

∫
S +

r

|∇w|2ds ≥
C
r

for all r ∈ (0, ε0), for some C > 0;

integration of the above inequality on (0, ε0) would then contradict the fact that w ∈ H1(B+
R) and, by

trace embedding, w ∈ L2(Γε0
n ). Then, passing to the limit in (4.5) and (4.6) with ε = εn yields (4.3).

Finally (4.4) follows by testing (2.4) with w and integrating by parts in B+
r . �

In the following lemma we compute the derivative of the function H.

Lemma 4.2. H ∈ W1,1
loc (0,R) and

H′(r) = 2
∫ π

0
w(r cos t, r sin t)∂w

∂ν
(r cos t, r sin t) dt =

2
r

∫
S +

r

w∂w
∂ν

ds, (4.7)

in a distributional sense and for a.e. r ∈ (0,R), and

H′(r) =
2
r

D(r), for a.e. r ∈ (0,R). (4.8)

Proof. Let φ ∈ C∞c (0,R). Since w,∇w ∈ L2(B+
R) and w ∈ C1(B+

R), using twice Fubini’s Theorem we
obtain that∫ R

0
H(r)φ′(r) dr =

∫ R

0

( ∫ π

0
w2(r cos t, r sin t) dt

)
φ′(r) dr

=

∫ π

0

( ∫ R

0
w2(r cos t, r sin t)φ′(r) dr

)
dt = −

∫ π

0

( ∫ R

0

d
dr

(
w2(r cos t, r sin t)

)
φ(r) dr

)
dt

= −

∫ π

0

( ∫ R

0

(
2w(r cos t, r sin t)∂w

∂ν
(r cos t, r sin t)

)
φ(r) dr

)
dt

= −

∫ R

0

( ∫ π

0

(
2w(r cos t, r sin t)∂w

∂ν
(r cos t, r sin t)

)
dt

)
φ(r) dr

thus proving (4.7). Identity (4.8) follows directly from (4.7) and (4.4). �
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Let us now study the regularity of the function D.

Lemma 4.3. The function D defined in (4.1) belongs to W1,1(0,R) and

D′(r) = 2
∫

S +
r

∣∣∣∣∣∂w
∂ν

∣∣∣∣∣2ds

−
1
r

∫ r

0

(
q(x1) + x1q′(x1)

)
w2(x1, 0) dx1 +

2
r

∫
B+

r

pwz · ∇w dz −
∫

S +
r

pw2 ds (4.9)

in a distributional sense and for a.e. r ∈ (0,R).

Proof. From the fact that w ∈ H1(B+
R) and w

∣∣∣
ΓR

n
∈ L2(ΓR

n ), we deduce that D belongs to W1,1(0,R) and

D′(r) =

∫
S +

r

|∇w|2ds −
∫

S +
r

pw2ds − q(r)w2(r, 0) (4.10)

for a.e. r ∈ (0,R) and in the distributional sense.
The conclusion follows combining (4.10) and (4.3). �

Lemma 4.4. There exists R0 ∈ (0,R) such that H(r) > 0 for any r ∈ (0,R0).

Proof. Let R0 ∈ (0,R) be such that

4‖p‖L∞(B+
R)R2

0 + π‖q‖L∞(ΓR
n )R0 < 1. (4.11)

Assume by contradiction that there exists r0 ∈ (0,R0) such that H(r0) = 0, so that w = 0 a.e. on S +
r0

.
From (4.4) it follows that∫

B+
r0

|∇w|2dz −
∫

B+
r0

pw2dz −
∫ r0

0
q(x1)w2(x1, 0) dx1 = 0.

From Lemmas 3.1 and 3.2, we get

0 =

∫
B+

r0

|∇w|2dz −
∫

B+
r0

pw2dz −
∫ r0

0
q(x1)w2(x1, 0) dx1

≥
[
1 − 4‖p‖L∞(B+

R)r2
0 − π‖q‖L∞(ΓR

n )r0

] ∫
B+

r0

|∇w|2dz,

which, together with (4.11) and Lemma 3.1, implies w ≡ 0 in B+
r0

. From classical unique continuation
principles for second order elliptic equations with locally bounded coefficients (see e.g. [28]) we can
conclude that w = 0 a.e. in B+

R, a contradiction. �

Thanks to Lemma 4.4, the frequency function

N : (0,R0)→ R, N(r) =
D(r)
H(r)

, (4.12)

is well defined. Using Lemmas 4.2 and 4.3, we now compute the derivative of N .
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Lemma 4.5. The function N defined in (4.12) belongs to W1,1
loc (0,R0) and

N ′(r) = ν1(r) + ν2(r) (4.13)

in a distributional sense and for a.e. r ∈ (0,R0), where

ν1(r) =

2r
[ (∫

S +
r

∣∣∣∂w
∂ν

∣∣∣2 ds
)
·
(∫

S +
r

w2 ds
)
−

(∫
S +

r
w∂w

∂ν
ds

)2 ]
(∫

S +
r

w2 ds
)2 (4.14)

and

ν2(r) = −

∫ r

0

(
q(x) + xq′(x)

)
w2(x, 0) dx∫

S +
r

w2 ds
+ 2

∫
B+

r
pwz · ∇w dz∫
S +

r
w2 ds

−
r
∫

S +
r

pw2 ds∫
S +

r
w2ds

. (4.15)

Proof. From Lemmas 4.2, 4.4, and 4.3, it follows that N ∈ W1,1
loc (0,R0). From (4.8) we deduce that

N ′(r) =
D′(r)H(r) − D(r)H′(r)

(H(r))2 =
D′(r)H(r) − 1

2r(H′(r))2

(H(r))2

and the proof of the lemma easily follows from (4.7) and (4.9). �

We now prove that N(r) admits a finite limit as r → 0+.

Lemma 4.6. There exists γ ∈ [0,+∞) such that limr→0+ N(r) = γ.

Proof. From Lemmas 3.1 and 3.2 it follows that

D(r) ≥
[
1 − 4‖p‖L∞(B+

R)r2 − π‖q‖L∞(ΓR
n )r

] ∫
B+

r

|∇w|2dz,

hence there exist r̄ ∈ (0,R0) and C1 > 0 such that

D(r) ≥ C1

∫
B+

r

|∇w|2dz, for all r ∈ (0, r̄).

In particular
N(r) ≥ 0, for all r ∈ (0, r̄). (4.16)

Moreover, using again Lemmas 3.1 and 3.2 we can estimate ν2 in (0, r̄) as follows

|ν2(r)| ≤
‖q + xq′‖L∞(ΓR

n )πr
∫

B+
r
|∇w|2dz∫

S +
r

w2 ds
+
‖p‖L∞(B+

R)r(1 + 4r2)
∫

B+
r
|∇w(z)|2 dz∫

S +
r

w2 ds
+ r‖p‖L∞(B+

R)

≤
1

C1

(
‖q + xq′‖L∞(ΓR

n )π + ‖p‖L∞(B+
R)(1 + 4r̄2)

)
N(r) + r̄‖p‖L∞(B+

R). (4.17)

Since ν1 ≥ 0 by Schwarz’s inequality, from Lemma 4.5 and the above estimate it follows that there
exists C2 > 0 such that

N ′(r) ≥ −C2(N(r) + 1) for all r ∈ (0, r̄), (4.18)
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which implies that
d
dr

(
eC2r(1 +N(r))

)
≥ 0.

It follows that the limit of r 7→ eC2r(1 +N(r)) as r → 0+ exists and is finite; hence the function N has
a finite limit γ as r → 0+. From (4.16) we deduce that γ ≥ 0. �

The function H defined in (4.2) can be estimated as follows.

Lemma 4.7. Let γ := limr→0+ N(r) be as in Lemma 4.6. Then

H(r) = O(r2γ) as r → 0+. (4.19)

Moreover, for any σ > 0,
r2γ+σ = O(H(r)) as r → 0+. (4.20)

Proof. From Lemma 4.6 we have that

N is bounded in a neighborhood of 0, (4.21)

hence from (4.18) it follows thatN ′ ≥ −C3 for some positive constant C3 in a neighborhood of 0. Then

N(r) − γ =

∫ r

0
N ′(ρ) dρ ≥ −C3r (4.22)

in a neighborhood of 0. From (4.8), (4.12), and (4.22) we deduce that, in a neighborhood of 0,

H′(r)
H(r)

=
2N(r)

r
≥

2γ
r
− 2C3,

which, after integration, yields (4.19).
Since γ = limr→0+ N(r), for any σ > 0 there exists rσ > 0 such that N(r) < γ + σ/2 for any

r ∈ (0, rσ) and hence H′(r)
H(r) =

2N(r)
r < 2γ+σ

r for all r ∈ (0, rσ). By integration we obtain (4.20). �

5. Blow-up analysis for the auxiliary problem

Lemma 5.1. Let w ∈ H1(B+
R) be a non trivial solution to (2.4). Let γ := limr→0+ N(r) be as in Lemma

4.6. Then there exists k0 ∈ N, k0 ≥ 1, such that

γ =
2k0 − 1

2
.

Furthermore, for every sequence τn → 0+, there exist a subsequence {τnk}k∈N such that

w(τnkz)√
H(τnk)

→ w̃(z) (5.1)

strongly in H1(B+
r ) and in C0,µ

loc (B+
r \ {0}) for every µ ∈ (0, 1) and all r ∈ (0, 1), where

w̃(r cos t, r sin t) = ±

√
2
π

r
2k0−1

2 cos
(2k0 − 1

2
t
)
, for all r ∈ (0, 1) and t ∈ [0, π]. (5.2)
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Proof. Let us set

wτ(z) =
w(τz)
√

H(τ)
. (5.3)

We notice that, for all τ ∈ (0,R), wτ ∈ H1 and
∫

S +
1
|wτ|2ds =

∫ π

0
|wτ(cos t, sin t)|2 dt = 1. Moreover, by

scaling and (4.21),∫
B+

1

(
|∇wτ(z)|2 − τ2 p(τz)|wτ(z)|2

)
dz − τ

∫ 1

0
q(τx)|wτ(x, 0)|2 dx = N(τ) = O(1) (5.4)

as τ→ 0+, whereas from Lemmas 3.1 and 3.2 it follows that

N(τ) ≥
1

H(τ)

[
1 − 4‖p‖L∞(B+

R)τ
2 − π‖q‖L∞(ΓR

n )τ
] ∫

B+
τ

|∇w|2dz

=
[
1 − 4‖p‖L∞(B+

R)τ
2 − π‖q‖L∞(ΓR

n )τ
] ∫

B+
1

|∇wτ|2dz (5.5)

for every τ ∈ (0,R0), being R0 as in (4.11). From (5.4), (5.5), and Lemma 3.1 we deduce that

{wτ}τ∈(0,R0) is bounded in H1(B+
1 ). (5.6)

Therefore, for any given sequence τn → 0+, there exists a subsequence τnk → 0+ such that wτnk ⇀ w̃
weakly in H1(B+

1 ) for some w̃ ∈ H1(B+
1 ). Due to compactness of trace embeddings, we have that w̃ = 0

on Γ1
d and ∫

S +
1

|w̃|2ds = 1. (5.7)

In particular w̃ . 0. For every small τ ∈ (0,R0), wτ satisfies
−∆wτ = τ2 p(τz)wτ, in B+

1 ,

∂νwτ = τq(τx1, 0)wτ, on Γ1
n,

wτ = 0, on Γ1
d,

(5.8)

in a weak sense, i.e.∫
B+

1

∇wτ(z) · ∇ϕ(z) dz = τ2
∫

B+
1

p(τz)wτ(z)ϕ(z) dz + τ

∫ 1

0
q(τx)wτ(x, 0)ϕ(x, 0) dx

for all ϕ ∈ H1(B+
1 ) s.t. ϕ = 0 on S +

1 ∪ Γ1
d. From weak convergence wτnk ⇀ w̃ in H1(B+

1 ), we can pass to
the limit in (5.8) along the sequence τnk and obtain that w̃ weakly solves

−∆w̃ = 0, in B+
1 ,

∂νw̃ = 0, on Γ1
n,

w̃ = 0, on Γ1
d.

(5.9)

From (5.6) it follows that {τq(τx)wτ(x, 0)}τ∈(0,R0) is bounded in H1/2(Γ1
n). Then, by elliptic regularity

theory, for every 0 < r1 < r2 < 1 we have that {wτ}τ∈(0,R0) is bounded in H2(B+
r2
\B+

r2
). From compactness
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of trace embeddings we have that, up to passing to a further subsequence, ∂wτnk

∂ν
→ ∂w̃

∂ν
in L2(S +

r ) for
every r ∈ (0, 1). Testing equation (5.8) for τ = τnk with wτ on B+

r we obtain that∫
B+

r

|∇wτnk (z)|2 dz =

∫
S +

r

∂wτnk

∂ν
wτnk ds

+ τ2
nk

∫
B+

r

p(τnkz)|wτnk (z)|2 dz + τnk

∫ r

0
q(τnk x)|wτnk (x, 0)|2 dx

→
k→+∞

∫
S +

r

∂w̃
∂ν

w̃ ds =

∫
B+

r

|∇w̃(z)|2 dz,

thus proving that ‖wτnk ‖H1(B+
r ) → ‖w̃‖H1(B+

r ) for all r ∈ (0, 1), and hence

wτnk → w̃ in H1(B+
r ) (5.10)

for every r ∈ (0, 1). Furthermore, by compact Sobolev embeddings, we also have that, up to extracting
a further subsequence,

wτnk → w̃ in C0,µ
loc (B+

r \ {0}),

for every r ∈ (0, 1) and µ ∈ (0, 1).
For any r ∈ (0, 1) and k ∈ N, let us define the functions

Dk(r) =

∫
B+

r

|∇wτnk |2 dz − τ2
nk

∫
B+

r

p(τnkz)|wτnk (z)|2dz − τnk

∫ r

0
q(τnk x)|wτnk (x, 0)|2 dx,

Hk(r) =
1
r

∫
S +

r

|wτnk |2 ds,

and Nk(r) := Dk(r)
Hk(r) . Direct calculations yield that Nk(r) = N(τnkr) for all r ∈ (0, 1). From (5.10) it

follows that, for any fixed r ∈ (0, 1),

Dk(r)→ D̃(r) :=
∫

B+
r

|∇w̃|2 dz and Hk(r)→ D̃(r) :=
1
r

∫
S +

r

|w̃|2 ds.

From classical unique continuation principles for harmonic functions it follows that D̃(r) > 0 and
H̃(r) > 0 for all r ∈ (0, 1) (indeed D̃(r) = 0 or H̃(r) = 0 for some r ∈ (0, 1) would imply that w̃ ≡ 0 in
B+

r and, by unique continuation, w̃ ≡ 0 in B+
1 , a contradiction). Hence, by Lemma 4.6,

Ñ(r) =
D̃(r)

H̃(r)
= lim

k→∞
Nk(r) = lim

k→∞
N(τnkr) = γ (5.11)

for all r ∈ (0, 1). Therefore Ñ is constant in (0, 1) and hence Ñ ′(r) = 0 for any r ∈ (0, 1). By (5.9) and
Lemma 4.5 with p ≡ 0 and q ≡ 0, we obtain(∫

S +
r

∣∣∣∣∣∂w̃
∂ν

∣∣∣∣∣2 ds
)
·

(∫
S +

r

w̃2 ds
)
−

(∫
S +

r

w̃
∂w̃
∂ν

ds
)2

= 0 for all r ∈ (0, 1),

which implies that w̃ and ∂w̃
∂ν

are parallel as vectors in L2(S +
r ). Hence there exists η = η(r) such that

∂w̃
∂ν

(r cos t, r sin t) = η(r)w̃(r cos t, r sin t) for all r ∈ (0, 1) and t ∈ [0, π]. It follows that

w̃(r cos t, r sin t) = ϕ(r)ψ(t), r ∈ (0, 1), t ∈ [0, π], (5.12)
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where ϕ(r) = e
∫ r

1 η(s)ds and ψ(t) = w̃(cos t, sin t). From (5.7) we have that
∫ π

0
ψ2 = 1. From (5.9) and

(5.12) we can conclude that
ϕ′′(r)ψ(t) + 1

rϕ
′(r)ψ(t) + 1

r2ϕ(r)ψ′′(t) = 0, r ∈ (0, 1), t ∈ [0, 1],
ψ(π) = 0,
ψ′(0) = 0.

Taking r fixed, we deduce that ψ is necessarily an eigenfunction of the eigenvalue problem (3.1). Then

there exists k0 ∈ N \ {0} such that ψ(t) = ±

√
2
π

cos( 2k0−1
2 t) and ϕ(r) solves the equation

ϕ′′(r) +
1
r
ϕ′ −

(2k0 − 1)2

4r2 ϕ(r) = 0.

Hence ϕ(r) is of the form
ϕ(r) = c1r

2k0−1
2 + c2r−

2k0−1
2

for some c1, c2 ∈ R. Since the function r−
2k0−1

2 ψ(t) < H1(B+
1 ), we deduce that necessarily c2 = 0 and

ϕ(r) = c1r
2k0−1

2 . Moreover, from ϕ(1) = 1, we obtain that c1 = 1 and then

w̃(r cos t, r sin t) = ±

√
2
π

r
2k0−1

2 cos
(2k0 − 1

2
t
)
, for all r ∈ (0, 1) and t ∈ [0, π]. (5.13)

From (5.13) it follows that

H̃(r) =

∫ π

0
w̃2(r cos t, r sin t) dt = r2k0−1.

Hence, in view of (4.8),

γ = Ñ(r) =
r
2

H̃′(r)

H̃(r)
=

r
2

(2k0 − 1)
r2k0−2

r2k0−1 =
2k0 − 1

2
.

The proof of the lemma is thereby complete. �

We observe that at this stage of our analysis we cannot exclude that the limit function w̃ found in
Lemma 5.1 depends on the subsequence. In order to prove that the convergence in (5.1) actually holds
as τ→ 0+ we need to univocally identify the limit profile w̃.

Lemma 5.2. Let w . 0 satisfy (2.4), H be defined in (4.2), and γ := limr→0+ N(r) be as in Lemma 4.6.
Then the limit limr→0+ r−2γH(r) exists and it is finite.

Proof. In view of (4.19) it is sufficient to prove that the limit exists. By (4.2), (4.8), and Lemma 4.6 we
have that

d
dr

H(r)
r2γ = 2r−2γ−1(D(r) − γH(r)) = 2r−2γ−1H(r)

∫ r

0
N ′(ρ)dρ,

and then, by integration over (r,R0),

H(R0)

R2γ
0

−
H(r)
r2γ = 2

∫ R0

r

H(ρ)
ρ2γ+1

(∫ ρ

0
ν1(t)dt

)
dρ + 2

∫ R0

r

H(ρ)
ρ2γ+1

(∫ ρ

0
ν2(t)dt

)
dρ (5.14)
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where ν1 and ν2 are as in (4.14) and (4.15). Since, by Schwarz’s inequality, ν1 ≥ 0, we have that
limr→0+

∫ R0

r
ρ−2γ−1H(ρ)

(∫ ρ

0
ν1(t)dt

)
dρ exists. On the other hand, from Lemma 4.6 N is bounded and

hence from (4.17) we deduce that ν2 is bounded close to 0+. Hence, in view of (4.19), the function
ρ 7→ ρ−2γ−1H(ρ)

(∫ ρ

0
ν2(t)dt

)
is bounded and hence integrable near 0. We conclude that both terms at

the right hand side of (5.14) admit a limit as r → 0+ thus completing the proof. �

The following lemma provides some pointwise estimate for solutions to (2.4).

Lemma 5.3. Let w ∈ H1(B+
R) be a nontrivial solution to (2.4). Then there exist C4,C5 > 0 and

r̄ ∈ (0,R0) such that

(i) supS +
r
|w|2 ≤ C4

r

∫
S +

r
|w(z)|2 ds for every 0 < r < r̄,

(ii) |w(z)| ≤ C5|z|γ for all z ∈ B+
r̄ , with γ as in Lemma 4.6.

Proof. We first notice that (ii) follows directly from (i) and (4.19). In order to prove (i), we argue by
contradiction and assume that there exists a sequence τn → 0+ such that

sup
t∈[0,π]

∣∣∣∣w(τn

2
cos t,

τn

2
sin t

)∣∣∣∣2 > nH
(τn

2

)
with H as in (4.2), i.e., defining wτ as in (5.3)

sup
x∈S +

1/2

|wτn(z)|2 > 2n
∫

S +
1/2

|wτn(z)|2ds. (5.15)

From Lemma 5.1, there exists a subsequence τnk such that wτnk → w̃ in C0(S +
1/2) with w̃ being as in

(5.2), hence passing to the limit in (5.15) a contradiction arises. �

To obtain a sharp asymptotics of H(r) as r → 0+, it remains to prove that limr→0+ r−2γH(r) is strictly
positive.

Lemma 5.4. Under the same assumptions as in Lemmas 5.2 and 5.3, we have that

lim
r→0+

r−2γH(r) > 0.

Proof. From Lemma 5.1 there exists k0 ∈ N, k0 ≥ 1 such that γ = 2k0−1
2 . Let us expand w as

w(r cos t, r sin t) =

∞∑
k=1

ϕk(r) cos
(

2k−1
2 t

)
(5.16)

where
ϕk(r) =

2
π

∫ π

0
w(r cos t, r sin t) cos

(
2k−1

2 t
)

dt. (5.17)

The Parseval identity yields

H(r) =
π

2

∞∑
k=1

ϕ2
k(r), for all 0 < r ≤ R. (5.18)
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From (4.19) and (5.18) it follows that, for all k ≥ 1,

ϕk(r) = O(rγ) as r → 0+. (5.19)

Let η ∈ C∞c (0,R). Testing (2.4) with the function η(r) cos
(

2k−1
2 t

)
, by (5.16) we obtain

π

2

∫ R

0
rϕ′k(r)η′(r) dr +

π

2

∫ R

0

(2k−1)2

4

1
r
ϕk(r)η(r) dr =

∫ R

0
q(r)w(r, 0)η(r) dr

+

∫ R

0
rη(r)

(∫ π

0
p(r cos t, r sin t)w(r cos t, r sin t) cos

(
2k−1

2 t
)

dt
)

dr . (5.20)

Integrating by parts in the first in integral on the left hand side of (5.20) and exploiting the fact that
η ∈ C∞c (0,R) is an arbitrary test function, we infer

−ϕ′′k (r) −
1
r
ϕ′k(r) +

1
4

(2k − 1)2ϕk(r)
r2 = ζk(r), in (0,R),

where

ζk(r) =
2
πr

q(r)w(r, 0) +
2
π

∫ π

0
p(r cos t, r sin t)w(r cos t, r sin t) cos

(
2k−1

2 t
)

dt. (5.21)

Then, by a direct calculation, there exist ck
1, c

k
2 ∈ R such that

ϕk(r) = r
2k−1

2

(
ck

1 +

∫ R

r

t
1−2k

2 +1

2k − 1
ζk(t) dt

)
+ r

1−2k
2

(
ck

2 +

∫ R

r

t
2k−1

2 +1

1 − 2k
ζk(t) dt

)
. (5.22)

From Lemma 5.3 it follows that

ζk0(r) = O
(
r

2k0−1
2 −1

)
as r → 0+, (5.23)

and hence the functions
t 7→ t

1−2k0
2 +1ζk0(t) and t 7→ t

2k0−1
2 +1ζk0(t)

belong to L1(0,R). Hence

r
2k0−1

2

(
ck0

1 +

∫ R

r

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt

)
= o(r

1−2k0
2 ) as r → 0+,

and then, by (5.19), there must be

ck0
2 =

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt.

From (5.23), we then deduce that

r
1−2k0

2

(
ck0

2 +

∫ R

r

t
2k0−1

2 +1

1 − 2k0
ζk0(t) dt

)
= r

1−2k0
2

∫ r

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt = O(rk0+ 1

2 ) (5.24)
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as r → 0+. From (5.22) and (5.24), we obtain that

ϕk0(r) = r
2k0−1

2

(
ck0

1 +

∫ R

r

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt + O(r)

)
as r → 0+. (5.25)

Let us assume by contradiction that limr→0+ r−2γH(r) = 0. Then (5.18) would imply that

lim
r→0+

r−
2k0−1

2 ϕk0(r) = 0,

and hence, in view of (5.25), we would have that

ck0
1 +

∫ R

0

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt = 0,

which, together with (5.23), implies

r
2k0−1

2

(
ck0

1 +

∫ R

r

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt

)
= r

2k0−1
2

∫ r

0

t
1−2k0

2 +1

1 − 2k0
ζk0(t) dt = O(r

1
2 +k0) (5.26)

as r → 0+. From (5.25) and (5.26), we conclude that ϕk0(r) = O(r
1
2 +k0) as r → 0+, namely,√

H(τ)
∫ π

0
wτ(cos t, sin t) cos

(
2k0−1

2 t
)

dt = O(τ
1
2 +k0) as τ→ 0+,

where wτ is defined in (5.3). From (4.20), there exists C > 0 such that
√

H(τ) ≥ Cτγ+ 1
2 for τ small, and

therefore ∫ π

0
wτ(cos t, sin t) cos

(
2k0−1

2 t
)

dt = O(τ
1
2 ) as τ→ 0+. (5.27)

From Lemma 5.1, for every sequence τn → 0+, there exist a subsequence {τnk}k∈N such that

wτnk (cos t, sin t)→ ±

√
2
π

cos
(2k0 − 1

2
t
)

in L2(0, π). (5.28)

From (5.27) and (5.28), we infer that

0 = lim
k→+∞

∫ π

0
wτnk (cos t, sin t) cos

(
2k0−1

2 t
)

dt = ±

√
2
π

∫ π

0
cos2

(
2k0−1

2 t
)

dt = ±

√
π

2
,

thus reaching a contradiction. �

Proof of Theorem 2.1. Identity (2.6) follows from Lemma 5.1, thus there exists k0 ∈ N, k0 ≥ 1, such
that γ = limr→0+ N(r) = 2k0−1

2 .
Let {τn}n∈N ⊂ (0,+∞) be such that limn→+∞ τn = 0. Then, from Lemmas 5.1 and 5.4, scaling and a

diagonal argument, there exists a subsequence {τnk}k∈N and β , 0 such that

w(τnkz)
τ
γ
nk

→ β|z|
2k0−1

2 cos
(

2k0−1
2 Arg z

)
(5.29)
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strongly in H1(B+
r ) for all r > 0 and in C0,µ

loc (R2
+ \ {0}) for every µ ∈ (0, 1). In particular

τ−γnk
w(τnk(cos t, sin t))→ β cos

(2k0 − 1
2

t
)

(5.30)

in C0,µ([0, π]). To prove that the above converge occurs as τ → 0+ and not only along subsequences,
we are going to show that β depends neither on the sequence {τn}n∈N nor on its subsequence {τnk}k∈N.

Defining ϕk0 and ζk0 as in (5.17) and (5.21), from (5.30) it follows that

ϕk0(τnk)
τ
γ
nk

=
2
π

∫ π

0

w(τnk cos t, τnk sin t)
τ
γ
nk

cos
(

2k0−1
2 t

)
dt →

2
π
β

∫ π

0
cos2

(
2k0−1

2 t
)

dt = β (5.31)

as k → +∞. On the other hand, from (5.22), (5.24) , and (5.25) we know that that

ϕk0(τ) = τ
2k0−1

2

(
ck0

1 +

∫ R

τ

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt

)
+ τ

1−2k0
2

∫ τ

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt

= τ
2k0−1

2

(
ck0

1 +

∫ R

τ

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt + O(τ)

)
as τ→ 0+. (5.32)

Choosing τ = R in the first line of (5.32), we obtain

ck0
1 = R−

2k0−1
2 ϕk0(R) − R1−2k0

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt.

Hence, from the second line of (5.32), we obtain that

τ−γϕk0(τ)→ R−
2k0−1

2 ϕk0(R) − R1−2k0

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt +

∫ R

0

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt,

as τ→ 0+. Then, from (5.31) we deduce that

β = R−
2k0−1

2 ϕk0(R) − R1−2k0

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt +

∫ R

0

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt. (5.33)

In particular β depends neither on the sequence {τn}n∈N nor on its subsequence {τnk}k∈N, thus implying
that the convergence in (5.29) actually holds as τ→ 0+ and proving the theorem. We observe that (2.7)
follows by replacing (5.17) and (5.21) into (5.33). �

6. Some regularity estimates

In this section, we prove some regularity and approximation results, which will be used to estimate
the Hölder norm of the difference between a solution u to (1.1) and its asymptotic profile βFk0 .

Proposition 6.1. Let f ∈ L∞(B+
4 ), g ∈ L∞(Γ4

n) and let v ∈ H1(B4) ∩ L∞(B+
4 ) solve

−∆v = f , in B+
4 ,

∂νv = g, on Γ4
n,

v = 0, on Γ4
d.

(6.1)

Then, for every ε > 0, there exists a constant C > 0 (independent of v, f , and g) such that

‖v‖C1/2−ε(B+
2 ) ≤ C

(
‖ f ‖L∞(B+

4 ) + ‖g‖L∞(Γ4
n) + ‖v‖L∞(B+

4 )

)
.
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Proof. In the sequel we denote as C > 0 a positive constant independent of v, f , and g which may vary
from line to line. We consider a C2 domain Ω′ such that B+

3 ⊂ Ω′ ⊂ B+
4 and Γ3

n ∪ Γ3
d ⊂ ∂Ω′. We define

the functions (obtained uniquely by minimization arguments) v1 ∈ H1(Ω′) satisfying
−∆v1 = f , in Ω′,

∂νv1 = 0, on Γ3
n ,

v1 = 0, on ∂Ω′ \ Γ3
n ,

(6.2)

and ṽ2 ∈ H1/2(R) satisfying (−∆)
1
2 ṽ2 = g, in (0, 4),

ṽ2 = 0, on R \ (0, 4) .

Therefore by (fractional) elliptic regularity theory (see e.g. [21, Proposition 1.1]), we deduce that

‖̃v2‖C1/2(R) ≤ C‖g‖L∞(Γ4
n). (6.3)

Consider the Poisson kernel P(x1, x2) = 1
π
x2|x|−2 with respect to the half-space R2

+, see [4, Section 2.4].
We define

v2(x1, x2) = (P(·, x2) ? ṽ2)(x1) =
1
π

x2

∫
R

ṽ2(t)
x2

2 + (x1 − t)2
dt =

1
π

∫
R

ṽ2(x1 − rx2)
1 + r2 dr

where with the symbol ? we denoted the convolution product with respect to the first variable. One
can check that v2 ∈ H1

loc(R
2
+) (see for example [3, Subsection 2.1]) and

−∆v2 = 0, in R2
+,

∂νv2 = g, on Γ4
n ,

v2 = 0, on R \ (0, 4).

(6.4)

It is easy to see that
‖v2‖L∞(R2

+) ≤ C‖̃v2‖L∞(R).

Moreover by (6.3), for x, y ∈ R2
+ we get

|v2(x) − v2(y)| ≤ C‖g‖L∞(Γ4
n)|x − y|1/2

∫
R

max(1, |r|1/2)
1 + r2 dr ≤ C‖g‖L∞(Γ4

n)|x − y|1/2.

It follows that
‖v2‖C1/2(R2

+)
≤ C‖g‖L∞(Γ4

n). (6.5)

By [25, Theorem 1] and continuous embeddings of Besov spaces into Hölder spaces, we get

‖v1‖
2
C1/2−ε(Ω′)

≤ C‖v1‖H1(Ω′)

(
‖ f ‖L∞(B+

4 ) + ‖v1‖H1(Ω′)

)
.

Multiplying (6.2) by v1, integrating by parts and using Young’s inequality, we get

C‖v1‖
2
L2(Ω′) ≤ ‖∇v1‖

2
L2(Ω′) ≤ ‖v1‖L2(Ω′)‖ f ‖L2(B+

4 ) ≤ ε‖v1‖
2
L2(Ω′) + Cε‖ f ‖2L∞(B+

4 ),
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where in the first estimate we have used the Poincaré inequality for functions vanishing on a portion of
the boundary. We then conclude that

‖v1‖C1/2−ε(Ω′) ≤ C‖ f ‖L∞(B+
4 ). (6.6)

Now, thanks to (6.1), (6.2) and (6.4), the function V := v − (v1 + v2) ∈ H1(Ω′) solves the equation
−∆V = 0, in Ω′,

∂νV = 0, on Γ3
n,

V = 0, on Γ3
d.

(6.7)

By elliptic regularity theory, we have that

‖V‖C2(B+
5/2\B

+
1 ) ≤ C‖V‖H1(B+

r ) (6.8)

where r is a fixed radius satisfying 5
2 < r < 3 and C > 0 is independent of V . Let η a radial cutoff

function compactly supported in B3 satisfying η ≡ 1 in Br; testing (6.7) with ηV , we infer that
‖V‖H1(B+

r ) ≤ C‖V‖L2(Ω′) for some constant C > 0 independent of V . Hence by (6.8) we obtain

‖V‖C2(B+
5/2\B

+
1 ) ≤ C‖V‖L∞(Ω′). (6.9)

Let η̃ ∈ C∞c (B5/2) be a radial function, with η̃ ≡ 1 on B2. Then the function Ṽ := η̃V ∈ H1(R2
+) solves

−∆Ṽ = −V∆η̃ − 2∇V · ∇η̃, in R2
+,

∂νṼ(x1, 0) = 0, x1 ∈ (0,+∞),
Ṽ(x1, 0) = 0, x1 ∈ (−∞, 0).

Then by [25, Theorem 1], the arguments above, (6.9), (6.5) and (6.6), we deduce that

‖v − (v1 + v2)‖C1/2−ε(B+
2 ) ≤ ‖Ṽ‖C1/2−ε(R2

+)
≤ C‖V‖L∞(Ω′) ≤ C

(
‖ f ‖L∞(B+

4 ) + ‖g‖L∞(Γ4
n) + ‖v‖L∞(B+

4 )

)
.

This, combined again with (6.5) and (6.6) completes the proof. �

Recalling (1.2), for every k ∈ N with k ≥ 1, we consider the finite dimensional linear subspace of
L2(B+

r ), given by

Sk :=

 k∑
j=1

a jF j : (a1, . . . , ak) ∈ Rk

 .
For every r > 0, k ≥ 1, and u ∈ L2(B+

r ), we let

Fu
k,r := ArgminF∈Sk

∫
B+

r

(u(x) − F(x))2 dx

be the L2(B+
r )-projection of u on Sk, so that

min
F∈Sk

∫
B+

r

(u(x) − F(x))2 dx =

∫
B+

r

(u(x) − Fu
k,r(x))2 dx
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and ∫
B+

r

(u(x) − Fu
k,r(x))F(x) dx = 0, for all F ∈ Sk. (6.10)

Next, we estimate the L∞ norm of the difference between a solution of a mixed boundary value problem
on B+

1 and its projection on Sk.

Proposition 6.2. Let u ∈ H1(B+
1 ) ∩ L∞(R2

+) solve
−∆u = f , in B+

1 ,

∂νu = g, on Γ1
n,

u = 0, on Γ1
d,

(6.11)

where, for some k ∈ N \ {0} and C > 0,

| f (x)| ≤ C|x|max(γk−
3
2 ,0), for every x ∈ B+

1 ,

|g(x1)| ≤ C|x1|
max(γk−

1
2 ,0), for every x1 ∈ (0, 1),

and γk = 2k−1
2 . Then, for every α ∈ (0, 1/2), we have that

sup
r>0

r−γk−α‖u − Fu
k,r‖L∞(B+

r ) < ∞.

Proof. In the sequel, C > 0 stands for a positive constant, only depending on α,C and k, which may
vary from line to line. Assume by contradiction that, there exists α ∈ (0, 1/2) such that

sup
r>0

r−γk−α‖u − Fu
k,r‖L∞(B+

r ) = ∞.

We consider the nonincreasing function

Θ(r) := sup
r>r

r−γk−α‖u − Fu
k,r‖L∞(B+

r ).

It is clear from our assumption that

Θ(r)↗ +∞ as r → 0.

Then there exists a sequence rn → 0 such that

r−γk−α
n ‖u − Fu

k,rn
‖L∞(B+

rn ) ≥
Θ(rn)

2
.

We define

vn(x) := r−γk−α
n

u(rnx) − Fu
k,rn

(rnx)

Θ(rn)
,

so that
‖vn‖L∞(B+

1 ) ≥
1
2
. (6.12)
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Moreover, by a change of variable in (6.10), we get∫
B+

1

vn(x)F(x) dx = 0 for every F ∈ Sk. (6.13)

Claim: For R = 2m and r > 0, we have

1
rγk+αΘ(r)

‖Fu
k,rR − Fu

k,r‖L∞(B+
rR) ≤ CRγk+α. (6.14)

Indeed, by definition, for every r > r > 0, we have

‖u − Fu
k,r‖L∞(B+

r ) ≤ rγk+α
Θ(r)

and thus, using the monotonicity of Θ, for every x ∈ B+
r we get

|Fu
k,2r(x) − Fu

k,r(x)| ≤ ‖u − Fu
k,2r‖L∞(B+

2r) + ‖u − Fu
k,r‖L∞(B+

r ) ≤ 21+γk+αrγk+αΘ(r) ≤ Crγk+αΘ(r). (6.15)

Letting Fu
k,r =

∑k
j=1 a j(r)F j and γ j =

2 j−1
2 , by taking the L2(B+

r )-norm in (6.15), we get

|a j(2r) − a j(r)|rγ j ≤ Crγk+αΘ(r) for every r > 0.

Then

1
rγk+αΘ(r)

‖Fu
k,r2m − Fu

k,r‖L∞(B+
r2m ) ≤

1
rγk+αΘ(r)

k∑
j=1

|a j(r2m) − a j(r)|(r2m)γ j

≤
1

rγk+αΘ(r)

k∑
j=1

m∑
i=1

|a j(2ir) − a j(2i−1r)|(r2m)γ j

≤
C

rγk+αΘ(r)

k∑
j=1

m∑
i=1

2γ jm2(γk−γ j+α)(i−1)rγk+αΘ(2i−1r)

≤ C
k∑

j=1

m∑
i=1

2γ jm2(γk−γ j+α)(i−1) ≤ C
k∑

j=1

2γ jm2(γk−γ j+α)m

≤ C2m(γk+α).

This proves the claim.
From the definition of Θ and (6.14), for R = 2m ≥ 1, we have

sup
x∈B+

R

|vn(x)| =
1

rγk+α
n Θ(rn)

‖u − Fu
k,rn
‖L∞(B+

rnR)

≤
1

rγk+α
n Θ(rn)

‖u − Fu
k,rnR‖L∞(B+

rnR) +
1

rγk+α
n Θ(rn)

‖Fu
k,rnR − Fu

k,rn
‖L∞(B+

rnR)

≤
1

rγk+α
n Θ(rn)

(rnR)γk+αΘ(rn) + CRγk+α

≤ CRγk+α.
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Consequently, letting R ≥ 1 and m0 ∈ N be the smallest integer such that 2m0 ≥ R, we obtain that

sup
x∈B+

R

|vn(x)| ≤ sup
x∈B+

2m0

|vn(x)| ≤ C2m0(γk+α) ≤ C(2R)γk+α ≤ CRγk+α, (6.16)

with C being a positive constant independent of R. Thanks to (1.3) and (6.11), it is plain that
−∆vn =

r
2−γk−α
n
Θ(rn) f (rn·), in B+

1/rn
,

∂νvn =
r

1−γk−α
n
Θ(rn) g(rn·), on Γ

1/rn
n ,

vn = 0, on Γ
1/rn
d .

By assumption, we have that r
2−γk−α
n
Θ(rn) f (rnx) and r

1−γk−α
n
Θ(rn) g(rnx1) are bounded in L∞(B+

M) and L∞(ΓM
n )

respectively, for every M > 0. Hence, by Proposition 6.1 and (6.16), we have that vn is bounded in
Cδ(B+

M) for every M > 0 and δ ∈ (0, 1/2). Furthermore, it is easy to verify that vn is bounded in
H1(B+

M) for every M > 0. Then, for every M > 0 and δ ∈ (0, 1/2), vn converges in Cδ(B+
M) (and

weakly in H1(B+
M)) to some v ∈ Cδ

loc(R
2
+) ∩ H1

loc(R
2
+) satisfying

−∆v = 0, in R2
+,

∂νv = 0, on Γ∞n ,

v = 0, on Γ∞d ,

and by (6.16), for every R > 1,
‖v‖L∞(B+

R) ≤ CRγk+α.

By Lemma 6.3 (below), we deduce that necessarily

v ∈ Sk.

This clearly yields a contradiction when passing to the limit in (6.12) and (6.13). �

The following Liouville type result was used in the proof of Proposition 6.2.

Lemma 6.3 (Liouville theorem). Let v ∈ C(R2
+) ∩ H1

loc(R
2
+) satisfy

−∆v = 0, in R2
+,

∂νv = 0, on Γ∞n ,

v = 0, on Γ∞d ,

and, for some α ∈ (0, 1/2) and C > 0,

‖v‖L∞(B+
R) ≤ C Rγk+α for every R > 1, (6.17)

where γk = 2k−1
2 , k ∈ N \ {0}. Then

v ∈ Sk.

Mathematics in Engineering Volume 1, Issue 1, 84–117



108

Proof. Arguing as in the proof of Lemma 5.4, we expand v in Fourier series with respect to the
orthonormal basis of L2(0, π) given in (3.2) as

v(r cos t, r sin t) =

∞∑
j=1

ϕ j(r) cos
(

2 j−1
2 t

)
where ϕ j(r) = 2

π

∫ π

0
v(r cos t, r sin t) cos

(
2 j−1

2 t
)

dt. From assumption (6.17) and the Parseval identity we
have that

π

2

∞∑
j=1

ϕ2
j(r) =

∫ π

0
v2(r cos t, r sin t) dt ≤ πC2r2(γk+α), for all r > 1.

It follows that
|ϕ j(r)| ≤ const rγk+α for all j ≥ 1 and r > 1, (6.18)

for some const > 0 independent of j and r.
From the equation satisfied by v it follows that the functions ϕ j satisfy

−ϕ′′j (r) −
1
r
ϕ′j(r) +

1
4

(2 j − 1)2ϕ j(r)
r2 = 0, in (0,+∞),

and then, for all j ≥ 1, there exist c j
1, c

j
2 ∈ R such that

ϕ j(r) = c j
1r

2 j−1
2 + c j

2r
1−2 j

2 for all r > 0.

The fact v is continous and v(0) = 0 implies that ϕ j(r) = o(1) as r → 0+. As a consequence we have
that c j

2 = 0 for all j ≥ 1. On the other hand (6.18) implies that c j
1 = 0 for all j > k. Therefore we

conclude that

v(r cos t, r sin t) =

k∑
j=1

c j
1r

2 j−1
2 cos

(
2 j−1

2 t
)

=

k∑
j=1

c j
1F j(r cos t, r sin t),

i.e. v ∈ Sk. �

7. Asymptotics for u

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let w = u ◦ ϕ−1, with ϕ : UR → B+
R being the conformal map constructed in

Section 2. Let γ = 2k0−1
2 , with k0 being as in Theorem 2.1. We define (recalling (5.3))

w̃τ(z) := τ−γw(τz) = τ−γ
√

H(τ)wτ(z).

From Theorem 2.1 we have that there exists β , 0 such that w̃τ → βFk0 in H1(B+
r ) for all r > 0 and in

C0,µ
loc (R2

+ \ {0}) for every µ ∈ (0, 1).

Claim 1: We have
w(y) = βFk0(y) + o(|y|γ) as |y| → 0 and y ∈ B+

R. (7.1)
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If this does not hold true then there exists a sequence of points ym ∈ (B+
R ∪ΓR

n ) \ {0} and C > 0 such that
ym → 0 and

|ym|
−γ|w(ym) − βFk0(ym)| = |w̃τm(zm) − βFk0(zm)| ≥ C > 0,

where τm = |ym| and zm =
ym
|ym |

. If m is large enough, we get a contradiction with (2.8). This proves (7.1)
as claimed.

Let % ∈ (0, 1/2) and let p and q be the functions introduced in (2.4). By (7.1), by the fact that
p ∈ L∞(B+

R) and q ∈ C1([0,R)), and by Proposition 6.2 applied to w, we have that, for every r ∈ (0,R),

|w(x) − Fw
k0,r(x)| ≤ Crγ+%, for every x ∈ B+

r , (7.2)

for some positive constant C > 0 independent of r, which could vary from line to line in the sequel.
From (7.1) and (7.2) we deduce that

sup
x∈B+

r

r−γ|βFk0(x) − Fw
k0,r(x)| → 0, as r → 0+. (7.3)

Claim 2: We have
|βFk0(x) − Fw

k0,r(x)| ≤ Crγ+%, for every x ∈ B+
r . (7.4)

Once this claim is proved, then according to (7.2), we can easily deduce that for any r ∈ (0,R)

|w(x) − βFk0(x)| ≤ |w(x) − Fw
k0,r(x)| + |Fw

k0,r − βFk0(x)| ≤ Crγ+%, for every x ∈ B+
r .

In particular,
|w(x) − βFk0(x)| ≤ C|x|γ+%, for every x ∈ B+

R

which finishes the proof of Theorem 1.1.
Let us now prove Claim 2. Writing Fw

k0,r
(x) =

∑k0
j=1 a j(r)F j(x), by (7.3) we have that

|β − ak0(r)| → 0, as r → 0+. (7.5)

Moreover by taking the L2(B+
r )-norms in (7.3), we find that

(ak0(r) − β)2r2γ+2 +

k0−1∑
j=1

a2
j(r)r2γ j+2 ≤ Cr2γ+2, for every R > r > 0,

with γ j =
2 j−1

2 . This yields, for j = 1, . . . , k0 − 1,

|a j(r)| ≤ Crγ−γ j → 0 as r → 0. (7.6)

From (7.2), we get, for every x ∈ B+
r and R > r > 0,∣∣∣∣∣w(x) −

k0∑
j=1

a j(r)F j(x)
∣∣∣∣∣ ≤ Cr%+γ.

Hence, for every x ∈ B+
r/2, we have that∣∣∣∣∣ k0∑

j=1

(a j(r) − a j(2−1r))F j(x)
∣∣∣∣∣ ≤ |Fw

k0,r(x) − w(x)| + |Fw
k0,2−1r(x) − w(x)| ≤ Cr%+γ.
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Taking the L2(B+
r/2)-norms in the previous inequality, we find that, for every r ∈ (0,R)

k0∑
j=1

|a j(r) − a j(2−1r)|rγ j ≤ Crγ+%.

This implies that

|a j(r) − a j(2−1r)| ≤ Cr%+γ−γ j for all 1 ≤ j ≤ k0 and r ∈ (0,R).

From this, (7.5) and (7.6), we obtain

|β − ak0(r)|r−% +

k0−1∑
j=1

|a j(r)|r−%−γ+γ j ≤

k0∑
j=1

∞∑
i=0

|a j(r2−i−1) − a j(r2−i)|r−%−γ+γ j ≤ C
∞∑

i=0

2−i%.

This implies that, for every x ∈ B+
r ,

|βFk0(x) − Fw
k0,r(x)| ≤ |β − ak0(r)|rγ +

k0−1∑
j=1

|a j(r)|rγ j ≤ Crγ+%.

That is (7.4) as claimed. �

Remark 7.1. (i) Since ϕ is conformal, we have that F̃ := Fk0 ◦ ϕ satisfies F̃ ∈ H1(UR) and solves
the homogeneous equation 

∆F̃ = 0, inUR,

F̃ = 0, on Γd ∩ ∂UR

∂νF̃ = 0, on Γn ∩ ∂UR.

(7.7)

(ii) Let Υ : U+ := B ∩ U → B+
ρ define a C2 parametrization (e.g. given by a system of Fermi

coordinates), for some open neighborhood U of 0, with Υ(0) = 0, DΥ(0) = Id, Υ(Γn ∩ U) ⊂ Γ
ρ
n

and Υ(Γd ∩ U) ⊂ Γ
ρ
d. By Theorem 1.1, for every % ∈ (0, 1/2), there exist C, ρ0 > 0 such that

|u(Υ−1(y)) − βα
2k0−1

2 Fk0(y)| ≤ C|y|
2k0−1

2 +%, for every y ∈ B+
ρ0

, (7.8)

with α > 0 as in (2.3). Indeed, to see this, we first observe that (7.8) is equivalent to

|u(x) − βFk0(αΥ(x))| ≤ c|x|
2k0−1

2 +%, for every x ∈ Υ−1(B+
ρ0

), (7.9)

for some constant c > 0. We then further note that

|DFk0(x)| ≤ c|x|
2k0−1

2 −1

and thus

|Fk0(αΥ(x)) − Fk0(ϕ(x))| ≤ c|x|
2k0−1

2 −1|αΥ(x) − ϕ(x)|

≤ c|x|
2k0−1

2 −1|x|2

≤ c|x|
2k0−1

2 +1,

in a neighborhood of 0, where c > 0 is a positive constant independent of x possibly varying from
line to line. This, together with (1.4) and the triangular inequality, gives (7.9).
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Proof of Corollary 1.3. From Theorem 1.1 and (7.8) it follows that, if u ∈ H1(Ω) is a non-trivial
solution to (1.1), then there exist k0 ∈ N \ {0} and β ∈ R \ {0} such that, for every t ∈ [0, π),

lim
r→0

r−
2k0−1

2 u(r cos t, r sin t) = βα
2k0−1

2 cos
(

2k0−1
2 t

)
. (7.10)

Therefore, if u ≥ 0, we have that necessarily k0 = 1 so that statement (i) follows. Moreover, (7.8)
implies that

u(r cos t, r sin t) ≥ βα1/2r1/2 cos
(

t
2

)
−Cr1/2+%,

which easily provides statement (ii). �

Proof of Corollary 1.4. Let us assume by contradiction that u . 0. Then, Theorem 1.1 and (7.8) imply
that (7.10) holds for every t ∈ [0, π) and for some k0 ∈ N \ {0} and β ∈ R \ {0}. Taking n > 2k0−1

2 , (7.10)
contradicts the assumption that u(x) = O(|x|n) as |x| → 0. �

8. An example

In this section we show that the presence of a logarithmic term in the asymptotic expansion cannot
be excluded without assuming enough regularity of the boundary.

Let us define in the Gauss plane the set

A := C \ {x1 ∈ R ⊂ C : x1 ≤ 0}

and the holomorphic function η : A→ C defined as follows:

η(z) := log r + iθ for any z = reiθ ∈ A, r > 0, θ ∈ (−π, π).

Let us consider the holomorphic function

v(z) := e2η(−iz)η(−iz) for any z ∈ C \ {ix2 : x2 ≤ 0}

and the set
Z := {z ∈ C \ {ix2 : x2 ≤ 0} : =(v(z)) = 0}. (8.1)

If z = reiθ with r > 0, θ ∈
(
−π2 ,

3π
2

)
\ {−π4 , 0,

π
4 ,

π
2 ,

3π
4 , π,

5π
4 }, then z ∈ Z if and only

r = ρ(θ) := exp
[
−

(
θ −

π

2

)
cot(2θ)

]
. (8.2)

For some fixed σ ∈
(
0, π2

)
, we define the curve Γ+ ⊂ Z parametrized by

Γ+ :

x1(θ) = ρ(θ) cos θ
x2(θ) = ρ(θ) sin θ

θ ∈ (−σ, 0) . (8.3)

If we choose σ > 0 sufficiently small then Γ+ is the graph of a function h+ defined in a open right
neighborhood U+ of 0. Moreover h+ is a Lipschitz function in U+, h+ ∈ C2(U+) and

lim
x1→0+

h+(x1)
x1

= 0 , lim
x1→0+

h′+(x1) = 0 . (8.4)
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Then we define the harmonic function

u(x1, x2) := −=(v(z)) for any z = x1 + ix2 ∈ C \ {iy : y ≤ 0} . (8.5)

In polar coordinates the function u reads

u(r, θ) = r2
[
(log r) sin(2θ) +

(
θ −

π

2

)
cos(2θ)

]
. (8.6)

From (8.1–8.2) and (8.6) we deduce that u vanishes on Γ+.
The next step is to find a curve Γ− on which ∂u

∂ν
= 0 where ν = (ν1, ν2) is the unit normal to Γ−

satisfying ν2 ≤ 0. We observe that

u(x1, x2) = x1x2 log(x2
1 + x2

2) +

[
arctan

(
x2

x1

)
+
π

2

]
(x2

1 − x2
2) for any x1 < 0, x2 ∈ R .

From direct computation we obtain

∂u
∂x1

(x1, x2) = x2 log(x2
1 + x2

2) + x2 + 2
[
arctan

(
x2

x1

)
+
π

2

]
x1 ,

∂u
∂x2

(x1, x2) = x1 log(x2
1 + x2

2) + x1 − 2
[
arctan

(
x2

x1

)
+
π

2

]
x2 .

We now define

H1(x1, x2) =
2
[
arctan

(
x2
x1

)
+ π

2

]
x1

log(x2
1 + x2

2)
and H2(x1, x2) =

2
[
arctan

(
x2
x1

)
+ π

2

]
x2

log(x2
1 + x2

2)

on the set B1 ∩ Π− where Π− := {(x1, x2) ∈ R2 : x1 < 0}. One can easily check that H1,H2 admit
continuous extensions defined on B1 ∩ Π− which we still denote by H1 and H2 respectively. We also
observe that H1,H2 ∈ C1(B1 ∩ Π−). Therefore H1,H2 may be extended also on the right of the x2-axis
up to restrict them to a disk of smaller radius. For example one may define

H1(x1, x2) := 3H1(−x1, x2) − 2H1(−2x1, x2) and H2(x1, x2) := 3H2(−x1, x2) − 2H2(−2x1, x2)

for any (x1, x2) ∈ B1/2 ∩ Π+ where we put Π+ := {(x1, x2) ∈ R2 : x1 > 0}. One may check that the new
functions H1,H2 belong to C1(B1/2).

We can now define the functions V1,V2 : B1/2 → R by

V1(x1, x2) :=

x2 + x2
log(x2

1+x2
2) + H1(x1, x2), if (x1, x2) , (0, 0),

0, if (x1, x2) = (0, 0) ,

V2(x1, x2) :=

x1 + x1
log(x2

1+x2
2) − H2(x1, x2), if (x1, x2) , (0, 0),

0, if (x1, x2) = (0, 0) .

One may verify that V1,V2 ∈ C1(B1/2). Moreover we have

∂V1

∂x1
(0, 0) = 0 ,

∂V1

∂x2
(0, 0) = 1 ,

∂V2

∂x1
(0, 0) = 1 ,

∂V2

∂x2
(0, 0) = 0 .
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Then we consider the dynamical systemx′1(t) = V1(x1(t), x2(t))

x′2(t) = V2(x1(t), x2(t)) .
(8.7)

After linearization at (0, 0), by [15, Theorem IX.6.2] we deduce that the stable and unstable manifolds
corresponding to the stationary point (0, 0) of (8.7), are respectively tangent to the eigenvectors (1,−1)
and (1, 1) of the matrix DV(0, 0) where V is the vector field (V1,V2).

We define the curve Γ− as the stable manifold of (8.7) at (0, 0) intersected with Bε ∩ Π− where
ε ∈ (0, 1

2 ) can be chosen sufficiently small in such a way that Γ− becomes the graph of a function h−
defined in a open left neighborhood U− of 0. Combining the definitions of h+ and h− we can introduce
a function h : U+ ∪ U− ∪ {0} → R such that h ≡ h+ on U+, h ≡ h− on U− and h(0) = 0.

Then we introduce a positive number R sufficiently small and a domain Ω ⊆ BR such that

Ω = {(x1, x2) ∈ BR : x2 > h(x1)}.

One can easily check that the function u defined in (8.5) belongs to H1(Ω). From the above
construction, we deduce that u = 0 on Γ+ ∩ ∂Ω and ∂u

∂ν
= 0 on Γ− ∩ ∂Ω. We observe that ∂Ω admits a

corner at 0 of amplitude 3π
4 .

The presence of a logarithmic term in u can be explained since the C2,δ-regularity assumption is not
satisfied from the right, i.e. h|U+∪{0} < C2,δ(U+ ∪ {0}) for any δ ∈ (0, 1). To see this, it is sufficient to
study the behavior of h(x1) − x1h′(x1) in a right neighborhood of zero.

By (8.3) we know that θ ∈
(
− π

2 , 0
)

and hence, if x1 belongs to a sufficiently small right neighborhood
of 0, by (8.2) we have

1
2

log
(
x2

1 + (h+(x1))2) tan
[
2 arctan

(
h+(x1)

x1

)]
+ arctan

(
h+(x1)

x1

)
−
π

2
= 0. (8.8)

By (8.4) and (8.8) we have that, as x1 → 0+,

tan
[
2 arctan

(
h+(x1)

x1

)]
= −

2 arctan
(h+(x1)

x1

)
− π

log
(
x2

1 + (h+(x1))2) =
π

2
1

log x1
+ o

(
1

log x1

)
. (8.9)

Differentiating both sides of (8.8) and multiplying by x2
1 + (h+(x1))2 we obtain the identity

(
x1 + h+(x1)h′+(x1)

)
tan

[
2 arctan

(
h+(x1)

x1

)]

+

1 +
log

(
x2

1 + (h+(x1))2)
cos2

[
2 arctan

(
h+(x1)

x1

)]
 (

x1h′+(x1) − h+(x1)
)

= 0 (8.10)

and hence (8.4) and (8.9) yield

x1h′+(x1) − h+(x1) ∼ −
π

4
x1

log2 x1
as x1 → 0+. (8.11)

This shows that h+ < C2(U+ ∪ {0}) (and a fortiori cannot be extended to be of class C2,δ).
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We observe that the reason of the appearance of a logarithmic term is not due to the presence
of a corner at 0; indeed we are going to construct a domain with C1-boundary for which the same
phenomenon occurs. In order to do this, it is sufficient to take the domain Ω and the function u defined
above and to apply a suitable deformation in order to remove the angle. We recall that Ω exhibits a
corner at 0 whose amplitude is 3π

4 .
For this reason, we define F : C \ {ix2 : x2 ≤ 0} → C by

F(z) := r
4
3 ei 4

3 θ for any z = reiθ , r > 0 , θ ∈
(
−
π

2
,

3π
2

)
.

We observe that, up to shrink R if necessary, the map F : Ω→ F(Ω) is invertible so that we may define
Ω̃ := F(Ω) and ũ : Ω̃→ R, ũ(y1, y2) := u(F−1(y1, y2)) for any (y1, y2) ∈ Ω̃.

We also define the curves Γ̃+ := F(Γ+) and Γ̃− := F(Γ−). Up to shrink R if necessary, we may
assume that Γ̃+ and Γ̃− are respectively the graphs of two functions h̃+ and h̃−.

It is immediate to verify that ũ = 0 on Γ̃+. We also prove that ∂ũ
∂ν

= 0 on Γ̃−. To avoid confusion with
the notion of normal unit vectors to Γ− and Γ̃− we denote them respectively with νΓ− and νΓ̃−

. Since ũ
is still harmonic, ∂u

∂νΓ−
= 0 on Γ− and F is a conformal mapping, for any ϕ̃ ∈ C∞c (Ω̃ ∪ Γ̃−), we have∫

Γ̃−

∂ũ
∂νΓ̃−

ϕ̃ ds =

∫
Ω̃

∇ũ(y)∇ϕ̃(y) dy =

∫
Ω̃

[∇u(F−1(y))(DF(F−1(y)))−1]∇ϕ̃(y) dy

=

∫
Ω

[
∇u(x)(DF(x))−1]∇ϕ̃(F(x)) | det(DF(x))| dx

=

∫
Ω

[
∇u(x)(DF(x))−1][∇ϕ(x)(DF(x))−1] | det(DF(x))| dx

=

∫
Ω

∇u(x)∇ϕ(x) dx =

∫
Γ−

∂u
∂νΓ−

ϕ ds = 0

where we put ϕ(x) = ϕ̃(F(x)). This proves that ∂ũ
∂ν

Γ̃−

= 0 on Γ̃−.

Finally we prove for h̃+ an estimate similar to (8.11).
From the definition of F it follows that Γ̃+ admits a representation in polar coordinates of the type

r = ρ̃(θ) := exp
[
−

(
θ −

2π
3

)
cot

(
3θ
2

)]
. (8.12)

Proceeding exactly as for (8.8)-(8.9) one can prove that

1
2

log
(
x2

1 + (̃h+(x1))2) tan
3
2

arctan
 h̃+(x1)

x1

 + arctan
 h̃+(x1)

x1

 − 2π
3

= 0 . (8.13)

As we did for h+, also for the function h̃+ one can prove that

lim
x1→0

h̃+(x1)
x1

= 0 , lim
x1→0+

h̃′+(x1) = 0 . (8.14)
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By (8.14) we have

tan
3
2

arctan
 h̃+(x1)

x1

 = −
2 arctan

( h̃+(x1)
x1

)
− 4π

3

log
(
x2

1 + (̃h+(x1))2) =
2π
3

1
log x1

+ o
(

1
log x1

)
as x1 → 0+ . (8.15)

Differentiating both sides of (8.13) and multiplying by x2
1 + (̃h+(x1))2 we obtain the identity

(
x1 + h̃+(x1)̃h′+(x1)

)
tan

3
2

arctan
 h̃+(x1)

x1


+

1 +
3 log

(
x2

1 + (̃h+(x1))2)
4 cos2

[
3
2 arctan

(
h̃+(x1)

x1

)]

(
x1̃h′+(x1) − h̃+(x1)

)
= 0. (8.16)

By (8.14), (8.15) and (8.16), we obtain

x1̃h′+(x1) − h̃+(x1) ∼ −
4π
9

x1

log2 x1
as x1 → 0+. (8.17)

The above arguments show that ∂Ω̃ is of class C1 but not of class C1,δ (and a fortiori not of class C2,δ).

Acknowledgments

M.M. Fall is supported by the Alexander von Humboldt foundation. V. Felli is partially supported
by the PRIN2015 grant “Variational methods, with applications to problems in mathematical physics
and geometry”. A. Ferrero is partially supported by the PRIN2012 grant “Equazioni alle derivate
parziali di tipo ellittico e parabolico: aspetti geometrici, disuguaglianze collegate, e applicazioni” and
by the Progetto di Ateneo 2016 of the University of Piemonte Orientale “Metodi analitici, numerici e
di simulazione per lo studio di equazioni differenziali a derivate parziali e applicazioni”. A. Ferrero
and V. Felli are partially supported by the INDAM-GNAMPA 2017 grant “Stabilità e analisi spettrale
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25. Savaré G (1997) Regularity and perturbation results for mixed second order elliptic problems.
Commun Part Diff Eq 22: 869––899.

26. Tao X, Zhang S (2005) Boundary unique continuation theorems under zero Neumann boundary
conditions. B Aust Math Soc 72: 67––85.

27. Tao X, Zhang S (2008) Weighted doubling properties and unique continuation theorems for the
degenerate Schrödinger equations with singular potentials. J Math Anal Appl 339: 70––84.

28. Wolff TH (1992) A property of measures in RN and an application to unique continuation. Geom
Funct Anal 2: 225––284.

c© 2018 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 1, Issue 1, 84–117

http://creativecommons.org/licenses/by/4.0

	Introduction
	The auxiliary problem
	Hardy-Poincaré type inequalities
	The monotonicity formula
	Blow-up analysis for the auxiliary problem
	Some regularity estimates
	Asymptotics for u
	An example

