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Abstract

In this paper, we propose a monolithic algorithm for the numerical solution of the
electromechanics model of the left ventricle in the human heart. Our coupled model
integrates the monodomain equation with the Bueno–Orovio minimal model for elec-
trophysiology and the Holzapfel–Ogden constitutive law for the passive mechanics of
the myocardium; a distinguishing feature of our electromechanics model is the use of
the active strain formulation for muscle contraction, which we exploit – for the first
time in this context – by means of a transmurally variable active strain formulation. We
use the Finite Element method for space discretization and Backward Differentiation
Formulas for time discretization, which we consider for both implicit and semi–implicit
schemes. We compare and discuss the two schemes in terms of computational efficiency
as the semi–implicit scheme poses significant restrictions on the timestep size due to
stability considerations, while the implicit scheme yields instead a nonlinear problem,
which we solve by means of the Newton method. Emphasis is laid on preconditioning
strategy of the linear solver, which we perform by factorizing a block Gauss–Seidel pre-
conditioner in combination with combination with parallel preconditioners for each of
the single core models composing the integrated electromechanics model. We carry out
several numerical simulations in the High Performance Computing framework for both
idealized and patient–specific left ventricle geometries and meshes, which we obtain
by segmenting medical MRI images. We produce personalized pressure–volume loops
by means of the computational procedure, which we use to synthetically interpret and
analyze the outputs of the electromechanics model.

Keywords: heart modeling; coupled problem; electromechanics; monolithic algo-
rithm; finite element method; preconditioner.
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1 Introduction

The heart plays the crucial role of pumping blood into the circulatory system by providing
all sort of vital substances to the cells. Moreover, cardiovascular related diseases represent
the leading causes of death in the whole world [60]. While advancements in medical practice
are continuously improving patients conditions and diseases outcomes, recent progresses
in mathematical modeling and computational mechanics allow to perform realistic cardio-
vascular numerical simulations [38, 65, 76, 77, 84, 97, 105, 107], thus potentially providing
medical doctors and clinicians with valuable diagnostic and predictive tools. Moreover,
clinical data and the application of image segmentation techniques to Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT) scans feed, as inputs, the mathematical
models, thus allowing numerical simulations in subject– and patient–specific frameworks
[23, 55]; in addition, uncertainty quantification techniques allow to estimate the models
parameters and data, and to cope with their variability [30, 59].

The mathematical modeling of the heart involves several challenges intrinsically related
to the complexity of its function [17, 20, 33]. A satisfactory model must be able to describe
a wide range of different processes, such as the evolution of the transmembrane potential
in the myocardium, the deformation caused by the muscles contraction, and the dynamics
of the blood in the heart chambers and through the valves [31, 71, 76, 77, 96, 98, 99]. All
these processes feature different temporal and spatial scales, yielding the so–called tyranny
of scales [8]. A satisfactory knowledge of the models for isolated processes – the electro-
physiology, the active and the passive mechanics – which we refer to as “single core models”,
is nowadays quite established; however, further theoretical and numerical studies are still
necessary to better understand their mutual interactions [18, 22, 30, 82]. In this work, we
use state–of–the–art models in passive myocardial tissue modeling – the Holzapfel–Ogden
model [46] – together with the active strain formulation [2, 3] in combination with a re-
cently proposed model for the transmurally heterogeneous thickening of the myocardium
[7]; the latter is for the first time used in this paper for the integrated electromechanics
modeling of the left ventricle (LV). The link between electrophysiology and mechanics is
finally established through a model describing the shortening of the myocardial fibers [88],
which is in turn triggered by a change in the ionic concentrations in the cardiac cells.

From the numerical viewpoint, we discretize in space the continuous single core models
by means of the Finite Element Method (FEM) with both linear and quadratic elements,
while the time discretization is carried on using Backward Differentiation Formulas (BDFs)
of orders 1 and 2 [78]. BDFs are used both within implicit and semi–implicit schemes,
the latter consisting in equal–order extrapolation of the unknowns in the nonlinear terms
[16, 37]; however, the semi–implicit scheme poses strong limitations on the choice of the
timestep size with respect to the implicit scheme, even if the latter yields a nonlinear
problem, which we approximate by means of the Newton method. Integrating the discrete
single core models leads to the formulation of a monolithic algebraic coupled problem. Nu-
merical coupling of cardiac electromechanics is however typically performed by means of
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segregated or staggered approaches, for which the electrophysiology and mechanics solvers
are not applied simultaneously [4, 5, 18, 38, 54, 84, 107]. It is however known that parti-
tioned schemes (segregated or staggered) do not generally guarantee unconditional stability
[15], an issue not concerning instead the monolithic scheme.

Monolithic schemes for cardiac electromechanics of the heart were firstly proposed and
analyzed in [24, 25], where only the contraction phase was simulated and the blood pressure
at the endocardium (the LV inner wall) was neglected. More recently, a monolithic scheme
including a 0D model for the vascular system, heart valve, and atrial chamber model was
proposed in [44]. However, other than being less explored, monolithic schemes have been
used so far only for cardiac electromechanics within the framework of the active stress
formulation and only for idealized or simplified LV geometries. Instead, in this paper we
propose and successfully use a monolithic algorithm for the numerical simulation of cardiac
electromechanics in the framework of the active strain formulation; in addition, we simu-
late full cardiac cycles (one heartbeat) for both idealized and patient–specific geometries.
Essential components of our framework are: modeling FSI at the LV endocardium wall by
means of 0D models for the pressure variable along the heartbeat ([30, 84, 107]) and the
prestress technique, which we apply to the patient–specific LVs to estimate the internal
stresses of the myocardium at the initial time of the simulation [47, 100].

We solve the large, sparse block linear system stemming from the monolithic strategy
by means of the GMRES method and, in order to speed–up the convergence of the linear
solver, we employ a novel (right) preconditioner [89]. Our preconditioning strategy extends
the one proposed in [27] for FSI problems and is based on the factorization of a block Gauss–
Seidel preconditioner which exposes the multiphysics nature of the integrated problem, thus
allowing to adapt its action on each single factor of the preconditioner. This strategy can be
easily extended to a wide range of integrated multiphysics problems: the factors are indeed
independently preconditioned by using algebraic multigrid [11] or domain decomposition
[14, 104] preconditioners tailored by exploiting physics–specific information (such as the
number of equations) for each block; this local information would be instead lost by using
a global monolithic preconditioner.

We use our monolithic electromechanics solver to perform numerical simulations in the
High Performance Computing framework of the whole cardiac cycle, both for idealized and
patient–specific LV geometries, and we analyze the numerical results in terms of clinically
relevant indicators; specifically, we produce the so–called pressure–volume loops in order
to assess the LV function and its properties.

The paper is organized as follows: in Sec. 2 we introduce the mathematical models
for the electrophysiology, the mechanics and the activation of the myocardium; we then
integrate them thus obtaining a continuous integrated model. In Sec. 3 we carry on the
space and time numerical approximations of the single core models; in Sec. 4 we introduce
the preconditioner used to solve the monolithic linear system arising after the time and
space discretizations. In Sec. 5 we report and discuss the numerical results obtained with
the proposed methods, and we finally draw our conclusions in Sec. 6.

3



Figure 1: Fibers and sheets in the myocardium. The fiber orientation f0 varies transmurally,
while the sheets direction s0 (which is oriented as the normal to the collagene sheets) is
orthogonal to the LV walls. The n0 direction is orthogonal to both f0 and s0.

2 Mathematical models

The myocardium is a complex tissue composed of cardiomyocytes, organized in fibers and
laminar collagen sheets [94], characterising the LV orthotropic internal structure. There-
fore, the material properties of the LV are strongly dependent on the direction of fibers and
sheets. First, the electrical conductivity of the cardiomyocytes is much larger in the longi-
tudinal direction than transversally [52, 75]; hence, at the macroscopic level, the transmem-
brane electric potential travels faster along the fibers. Secondly, it has been experimentally
observed in [46] that the response of internal stresses to an external load significantly varies
when measured among different directions since the myocardium is stiffer along the fibers.
Finally, the contraction of the LV is made possible thanks to an active force acting on
the cardiomyocytes lined up along the fibers direction [86]. In order to mathematically
define fibers and sheets, we identify a local frame of reference by defining the mutually
orthonormal vector fields f0 (fibers), s0 (sheets) and n0 (aka normals), where n0 is such
that n0, f0, and n0 are mutually orthogonal, as depicted in Fig. 1.

2.1 Electrophysiology

Electrophysiology models take into account the electrochemical reactions occuring in the
myocardium [21] triggered by an electric impulse originated at the sino-atrial node and
then conveyed through the Purkinje fibers [20]. Such signal causes a quick depolarization
of the LV cardiomyocytes, meaning that the transmembrane potential (i.e. the difference
in electric potential between the interior and the exterior of a cell) changes sign in few
microseconds. The potential drives a change in the concentration of different ionic species
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flowing through the so–called ionic gates located on the cellular membrane; the concen-
tration of these ionic species, in turn, influences the potential thus slowly repolarizing the
cells. The continuous interaction between the ions concentration and the potential causes
a cascade effect for which a fast traveling wave known as action potential propagates in the
whole myocardium [57].

In this work, we consider the monodomain equation for the description of the evolution
of the cellular transmembrane potential V , a nonlinear diffusion-reaction equation obtained
by homogenization of the bidomain equations [20, 48, 75, 92]. The latter is indeed a
richer, but more complicated model than the monodomain equation which is required for
pathological conditions. In physiological conditions, the monodomain model is adequate
and reads:

χ

(
Cm

∂V

∂t
+ Iion(V,w)

)
= ∇ · (JF−1DmF−T∇V ) + Iapp(t) in Ω0 × (0, T ),

(JF−1DmF−T∇V ) ·N = 0 on ∂Ω0 × (0, T ),

V = V0 in Ω0 × {0}.

(1)

Here, Ω0 is the reference computational domain, a smooth and bounded subset of R3

represented e.g. by the configuration of the LV at the end of the diastolic phase, and
T > 0 is the final time. The parameters χ and Cm ∈ R+ are the ratio of membrane surface
with respect to the volume and the membrane capacitance, respectively. In order to take
into account the anisotropic electrical conductance [90], we define the diffusion tensor – a
second order tensor in R3 – as Dm = σt I + (σl − σt) f0 ⊗ f0, where σt, σl ∈ R+ are the
electric conductivities in the directions transversal and longitudinal with respect to the
fibers, respectively. The current geometry displacement d = X − x, with d : Ω0 −→ R3,

also influences the diffusive term since the second order strain tensor F = I +
∂d

∂X
and

J = det(F), where X and x are the reference and deformed coordinates, respectively;
for J > 0, the second order tensor

(
JF−1DmF−T

)
has uniform elliptic properties. The

function Iapp(t) represents an externally applied current, which stands for the electric
stimulus injected at the endocardium by the terminal fibers of the Purkinje network; for
our purposes, we consider it as a source term which triggers the electrophysiological activity.
The nonlinear term Iion(V,w) in Eq. 1 depends on the ionic variable w and is peculiar of
the ionic model at hand. In the Hodgkin-Huxley formalism [45], a ionic model takes the
form: 

dwi
dt

= αi(V )(w∞i (V )− wi) + βi(V )wi in (0, T ),

wi(0) = wi,0, at t = 0,

for i = 1, . . . , NI , (2)

where the unknowns wi ∈ [0, 1] represent the ions concentration and/or the fraction of open
ionic channels on the cellular membrane. Among the manychoices proposed in literature –
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see e.g. [1, 57, 58, 64, 102] – we use the Bueno-Orovio minimal model [12] for its simplicity
(for which NI = 3); nonetheless, this model is capable of capturing the main features of
the electrophysiology in healthy myocardial tissues. The system of differential equations
modeling the electrophysiology hence reads:

∂V

∂t
+
∑

q∈{fi,so,si}

Iq(V,w) = ∇ · (JF−1DmF−T∇V ) + Iapp(t) in Ω0 × (0, T ),

(JF−1DmF−T∇V ) ·N = 0 on ∂Ω0 × (0, T ),

∂w

∂t
= α(V )(w∞(V )−w) + β(V )w in Ω0 × (0, T ),

V = V0, w = (1, 1, 0)T in Ω0 × {0},

(3)

since χ = Cm = 1 as prescribed in [12], where the monodomain equation is presented in

dimensionless form; moreover, Iion(V,w) =
∑

q∈{fi,so,si}

Iq(V,w). Albeit a system of ODEs,

the ionic model is defined in Ω0 × (0, T ) since the dependence on V indirectly intro-
duces a dependence on the space independent variable. The terms of the ionic model are:

α(V ) = diag

(
1−HV1(V )

τ−1 (V )
,
1−HV2(V )

τ−2 (V )
,

1

τ3(V )

)
, β(V ) = diag

(
−HV1(V )

τ+
1

,−HV2(V )

τ+
2

, 0

)
,

w∞(V ) =

(
1−HV −1

(V ), HVo(V )

(
w∞∗ − 1 +

V

τ∞2

)
+ 1− V

τ∞2
, Hk3

V3
(V )

)T
,

Ifi(V,w1) = −HV1(V )(V − V1)(V̂ − V )

τfi
w1, Iso(V ) =

(1−HV2(V ))(V − Vo)
τo(V )

+
HV2(V )

τso(V )
,

and Isi(V,w2, w3) = −HV2(V )

τsi
w2w3; moreover, τ−i (V ) = HV −i

(V )(τ ′′i − τ ′i) + τ ′i for i = 1, 2,

and τη(V ) = Hη(V )(τ ′′η − τ ′η) + τ ′η, with Hη ∈
{
HV2 , HVo , H

kso
Vso

}
for η ∈ {3, o, so}, respec-

tively. HereHa(z) is the Heaviside function centered in a ∈ R and its smooth approximation

is Hε
a(z) =

1 + tanh(ε(z − a))

2
, with ε ∈ R+.

2.2 Tissue passive mechanics

An adequate mechanical model for the description of the myocardium’s displacement must
account for the tissue’s complex behavior. Firstly, the internal stresses induced by a pre-
scribed deformation are highly anisotropic [41] and in our formulation depend on the di-
rections f0, s0, and n0. We model the compressibility of the tissue through a nearly–
incompressible formulation by weakly penalizing large volumetric variations [95] since with
this approach small volumetric changes are allowed. Finally, the contraction of the muscle
due to the electrophysiological activity must be taken into account: with this aim, we
introduce the auxiliary dimensionless variable γf , which represents the relative stretching
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Figure 2: A patient–specific LV geometry with the Γepi0 , Γendo0 , and Γbase0 boundary subsets
highlighted.

(or elongation) of the fibers. The model that we use to describe the evolution of γf will
be detailed in Sec. 2.3 as it constitutes the link between the electrophysiology and the
mechanics.

We recall the momentum conservation equation in the reference configuration Ω0, en-
dowed with boundary and initial conditions, in the unknown displacement variable d [66]:

ρ
∂2d

∂t2
−∇ ·P(d, γf ) = 0 in Ω0 × (0, T ),

q

(
d,
∂d

∂t

)
+ P(d, γf ) N = 0 on Γη0 × (0, T ),

P(d, γf ) N = pendo(t)N on Γendo0 × (0, T ),

d = d0,
∂d

∂t
= ḋ0 in Ω0 × {0}.

(4)

Here Γη0, with η = {epi, base}, represents the subsets of the boundary corresponding to
the epicardium and the base of the myocardium as depicted in Fig. 2. We denote by

q

(
d,
∂d

∂t

)
= (N⊗N)

(
Kη
⊥d + Cη⊥

∂d

∂t

)
+ (I−N⊗N)

(
Kη
‖d + Cη‖

∂d

∂t

)
, a vector in R3,

the zero-th order term of the Robin boundary condition and by Kη
⊥,K

η
‖ , C

η
⊥, C

η
‖ ∈ R+ its

parameters: the symbols ⊥ and ‖ identify either a parameter relative to the normal or
the tangential direction at the corresponding boundary subset γη0 , respectively. pendo(t)
is the external load applied by the fluid at the endocardium wall which, at this stage of
the model description only, we assume to be prescribed. N is the outward directed unit
vector normal to the boundary; d0 and ḋ0 are the initial data. The information related
to the mechanical behaviour is embedded in the nonlinear Piola–Kirchhoff strain tensor
P = P(d, γf ) – a second order tensor in R3 – which also must incorporate the active
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properties of the muscle. In order to characterize P, we first define the right Cauchy–
Green tensor as C = FTF, where F = I +∇0d is the strain tensor, and we introduce the
strain energy function W(C) : R3×3 −→ R which relates the strain energy of the material
to the strain tensor. The tissue mechanical properties are taken into account through the
strain energy function: under the hyperelasticity assumption, the latter is differentiated
with respect to the deformation tensor in order to obtain the Piola-Kirchhoff strain tensor,
i.e.:

P(d) =
∂W(C)

∂F
.

A very popular model for the myocardial tissue is the Holzapfel–Ogden [46] one. This is
obtained by considering different contributions and by taking into account the anisotropic
nature of the muscle:

W̃(C) =W1(I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs)

=
a

2b
eb(I1−3) +

∑
i∈{f,s}

ai
2bi

[
eb〈I4i−1〉2 − 1

]
+

afs
2bfs

[
ebI

2
8fs − 1

]
,

where I1 = tr C, I4f = C : f0⊗f0 = f ·f , I4s = C : s0⊗s0 = s·s, and I8fs = C : f0⊗s0 = f ·s
are the invariants of the tensor C; the parameters ak, bk are fitted from experimental data
[46]. The function 〈y〉 = y H0(y) indicates the positive part of y and its role consists in

switching off the contributions of the fibers and sheets to W̃ when the material is under
compression along these directions.

The mechanical model should also account for the volumetric change to which the
myocardium undergoes during the cardiac cycle. It has been observed in [19, 113] that
albeit this change is moderate, still it significantly ranges from 2% to 15%. For these rea-
sons we use a nearly-incompressible formulation, which allows for small volume variations
[28]. We multiplicatively decompose the deformation gradient F into the isochoric and the
volumetric parts as:

F = FvF, Fv = J
1
3 I, (5)

where J = det(Fv) = det(F), being det(F) = 1, and we weakly enforce the incompressibil-

ity constraint by adding to the strain energy function W̃ a convex term Wvol(J) such that
J = 1 is its global minimum; in this manner, large variations in volume are penalized. We
choose:

Wvol(J) =
B

2
(J − 1) log(J), (6)

such that the larger is the bulk modulus B ∈ R+, the “stronger” is the enforcement of
the incompressibility constraint. Following [93], we evaluate the isotropic term W1 in

I1 = tr(F
T
F) = J−

2
3I1 (instead of I1). The energy function hence reads:

W = W̃ +Wvol =W1(J−
2
3I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs) +Wvol(J).
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Figure 3: The active strain decomposition of the strain tensor F.

We now proceed by modeling the active behavior of the myocardium driven by the stretch-
ing of the fibers by means of the active strain approach [2, 3, 63, 86]. A virtual intermediate
state Ω̂, representing the active part of the deformation between the reference domain Ω0

and the deformed one Ω (see Fig. 3), is introduced. The domain Ω̂ is reached from Ω0 by
applying a prescribed active transformation (which we will specify later) represented by the
tensor FA. On the other hand, the material’s elastic response to the prescribed active trans-
formation is embedded in the tensor FE and finally transforms Ω̂ into Ω. Mathematically,
this approach requires a decomposition in the form F = FEFA = FvFEFA = J

1
3 FEFA,

where we also take into account the factorization (5) for the term FE . Finally, we define
P in Ω0 with respect to the total displacement d of the tissue by applying a pull-back to
the stress computed in the intermediate state Ω̂, i.e.:

P = det(FA)PEF−TA , with PE =
∂W(CE , J)

∂FE
.

In Sec. 2.3, we will provide the explicit form of the tensor FA under the requirement of
symmetry and identity of its determinant. Under these assumptions, the final form of the
tensor P reads:

P(d,FA) = ae
b
(
J−

2
3 IE1 −3

)
J−

2
3

(
FEF−1

A −
IE1
3

(FEFA)−T
)

+ 2afe
bf〈IE4f−1〉2 〈IE4f − 1

〉
(fE ⊗ fA) + 2ase

bs〈IE4s−1〉2 〈IE4s − 1
〉

(sE ⊗ sA)

+ afse
bfs(IE8fs)

2

IE8fs (fE ⊗ sA + sE ⊗ fA) +
B

2
(J + J log(J)− 1) (FEFA)−T ,

(7)
where fE = FEf0, fA = F−1

A f0, sE = FEs0, and sA = F−1
A s0.
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2.3 Mechanical activation

The activation model of the myocardium represents the link between the electrophysiology
and the tissue (passive) mechanics. Instead of cellular models describing the complex
dynamic taking place inside the sarcomeres [81], we exploit a phenomenological model for
the local shortening of the fibers γf at the macroscopic level. This model has been proposed
in [88] and further developed in [84], and assumes that the evolution of γf is due to the
concentration of calcium ions [Ca2+] and by a feedback from the mechanics (through the
variable d): 

g(c)
∂γf
∂t
− ε∆γf = Φ(c, γf ,d) in Ω0 × (0, T ),

∇γf ·N = 0 on ∂Ω0 × (0, T ),

γf = 0 in Ω0 × {0}.

(8)

Here, g(c) = µ̂Ac
2, while the active force Φ(c, γf ,d) reads Φ(c, γf ,d) = αHc0(c) (c −

c0)2RFL(I4f ) +
5∑
j=1

(−1)j(j+ 1)(j+ 2)I4fγ
j
f . With respect to the formulation [84] we added

the diffusive term ε∆γf in (8) to yield a model in the form of a PDE. While this is not
strictly motivated by physical considerations, it can be interpreted as the upscaling of the
microscopic activation at the macroscopic continuum level of the tissue. Moreover, this
choice yields a more regular solution γf in terms of the space variable X, from which the
numerical approximation will also benefit.

The contraction of the tissue is triggered by the calcium concentration exceeding
a threshold value c0. The parameters α and µ̂A represent quantities to be properly
tuned for the case under consideration, while RFL is the sarcomere force-length rela-
tionship [39] of cardiac cells which we represent as truncated Fourier series RFL(z) =(
d0
2 +

3∑
n=1

[
dnsin(nl0z

1/2) + encos(nl0z
1/2)

])
χ[SLmin,SLmax](z

1/2). The calcium concentra-

tion is not explicitly represented in the set of variables w in the Bueno-Orovio model;
however, the variable w3 acts as a generic ion concentration, for which it can be inter-
preted as c = [Ca2+]; this choice has been already made in literature e.g. in [84, 85].

Being γf the solution of (8), we choose the following orthotropic form for the tensor
FA [3, 6, 73, 84, 85]:

FA = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0,

which is symmetric and we set γn = γn(γf ), γs = γs(γf , γn). In analogy with γf , these
functions represent the local shortening (or elongation) of the tissue in the directions s0

and n0, respectively. Following [7], we define γn such that, according to experimental
observations [67], the thickening of the ventricle’s walls is transversely non-homogeneous:

γn = k′(λ)

(
1√

1 + γf
− 1

)
.
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Indeed, the latter depends on an independent variable λ which represents the transmural
coordinate, taking the value λendo at the endocardium and the value λepi at the epicardium.
As detailed in [7] – where the results of numerical simulations are compared and validated
against experimental data for strains in the canine LV provided in [67] – this model is able
to capture the transmural heterogeneity of the thickening of the LV. The function k′(λ) is
defined as:

k′(λ) = k
′
(
kendo

λ− λepi
λendo − λepi

+ kepi
λ− λendo
λepi − λendo

)
. (9)

Finally, in order to have det (FA) = 1, we set γs =
1

(1 + γf )(1 + γn)
− 1.

2.4 The coupled model: electromechanics

Writing together Eqs.(3), (4), and (8), the coupled electromechanics problem finally reads:



∂V

∂t
+
∑

q∈{fi,so,si}

Iq(V,w) = ∇ · (JF−1DmF−T∇V )− Iapp(t) in Ω0 × (0, T ),

∂w

∂t
= α(V )(w∞(V )−w) + β(V )w in Ω0 × (0, T ),

ρ
∂2d

∂t2
−∇0 ·P(d, γf ) = 0 in Ω0 × (0, T ),

g(w3)
∂γf
∂t
− ε∆γf = Φ(w3, γf ,d) in Ω0 × (0, T ),

(JF−1DmF−T∇V ) ·N = 0 on ∂Ω0 × (0, T ),

q

(
d,
∂d

∂t

)
+ P(d) N = 0 on Γη0 × (0, T ),

P(d) N = pendo(t)N on Γendo0 × (0, T ),

∇γf ·N = 0 on ∂Ω0 × (0, T ),

V = V0, w = (1, 1, 0)T , γf = 0 in Ω0 × {0},

d = d0,
∂d

∂t
= ḋ0 in Ω0 × {0}.

(10)

We remark that at this stage the pressure pendo(t) is still prescribed: however, later in
Sec. 4.1, we will consider pendo(t) as an additional unknown of the coupled problem, being
the solution of 0D fluid problems for each of the phases of the cardiac cycle.
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2.5 Prestress

A common problem which has to be considered in biological modeling involving a fluid–
structure interface is that the reference geometry Ω0, acquired from medical images at the
telediastole (the phase immediately before the systole), does not necessarily correspond to
a stress–free configuration. This because the blood exerts a pressure on the endocardium
walls pendo(t) which, at each time instant of the heartbeat, is larger than zero, taking
values ranging approximately from a minimum of 5 mmHg to a maximum of 120 mmHg
in healthy individuals. In turn, this implies that solving problem (4) with a physiological
endocardial pressure pendo > 0 would give rise to non-physiological displacements as the
internal stresses are not in equilibrium with the intraventricular blood’s pressure of LV.
This issue is particularly evident in the case of patient–specific settings since, unlike the
case of idealized geometries, the actual computational geometry is obtained from medical
images and hence the reference domain Ω0 cannot be arbitrarily chosen. Typically, the LV
geometry is acquired at the so–called telediastole and the electromechanics (or mechanics)
model initiated at this stage. The corresponding pressure is indicated with pendo and the
stressed LV configuration is determined in these conditions. To our knowledge, two strate-
gies have been proposed in literature to address this issue.

Pressure preload ([30, 84, 101, 103]): the reference geometry Ω0 is loaded with the pre-
scribed pressure pendo. This is done by solving the steady variant of the mechanics problem
(4) while gradually increasing the pressure until the desired value pendo. The displacement
field so obtained is then used as an initial datum d0 for the unsteady problem.

Pressure prestress ([47, 100]): we compute internal stresses distribution such that the refer-
ence geometry is in equilibrium with the blood pressure pendo. An additive decomposition
of the stress tensor P̃ = P(d)+P0 is operated, where the prestress tensor P0 is determined
to ensure a null displacement d0 in correspondance of the assigned pressure pendo.

We adopt the pressure prestress approach since in the preload one the procedure returns
a configuration which might be significantly different with respect to the initial geometry
as shown in [47]. Indeed, we already know the loaded configuration from medical images.
In order to compute P0 according to this approach, we proceed by adapting the method
proposed in [47] to our model by first defining the following mechanical problem:

∇0 ·P(d) = −∇0 ·P0 in Ω0,

(N⊗N)Kη
⊥d + (I−N⊗N)Kη

‖d + P(d) N = 0 on Γη0,

P(d) N = pendo(0)N on Γendo0 .

(11)

Eq. (11) is the steady, passive version of problem (4) with the additive decomposition of
the strain tensor. Moreover, we set:

pk =
k

S
pendo, k = 1, . . . , S,

12



where S ∈ N is the number of steps of the continuation method that we exploit to gradually
increase the pressure value. Then, the fixed point Algorithm 1 is applied to compute P0.
First, we compute the approximation P̃0 =Prestress(100, 10−2, pendo,0) and finally we
set P0 =Prestress(1, 10−5, pendo, P̃0). The additional step is performed to require a
smaller tolerance when the pressure has already reached a closer value of the tensor P̃0 to

the target. We observe that, while
‖P(dmk ,I)‖∞
‖Pm0,k‖∞

−→ 0 for m −→ +∞ in Algorithm 1, the

displacement dm+1
k does not converge to 0 but to a vector which we denote by d̂. However,

we observe that the quantity ‖d̂‖∞ is negligible with respect to the endocardial walls
thickness, and that this initial displacement ensures that the prestress is in equilibrium
with the pressure at the epicardium. Therefore, we decide to set d0 = d̂ in (10).

Algorithm 1 Prestress computation

function Prestress(S, tol, p, P0,0)

for k = 1, . . . , S do

set m = 1, Pm
0,k = P0,k−1;

repeat

obtain dm+1
k by solving problem (11) with p = pk = k

Sp and P0 = Pm
0,k;

update Pm+1
0,k = Pm

0,k + P
(
dm+1
k , I

)
by means of Eq. (7);

set m = m+ 1;

until
‖P(dmk ,I)‖∞
‖Pm0,k‖∞

< tol

set P0,k = Pm
0,k;

end for

return P0,S

end function

3 Numerical discretization

In this section we describe the numerical approximation of the electromechanics prob-
lem (10). The FEM [78] is used for the space discretization of the PDEs, while BDF [78]
are used for the time discretization.
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3.1 Space discretization

We consider a mesh composed of tetrahedrons Th, with h representing the maximum size
of the elements K ∈ Th, such that ∪K∈ThK = Ω0; the mesh elements are pairwise disjoint
and their union Ω0 ⊂ R3 is the region of the space identified by the myocardium in the
telediastolic phase of the heartbeat. In this work, we consider two LV geometries, that
is an idealized prolate ellipsoid (as is often done in literature [30, 40, 84]) and a patient–
specific geometry extracted through a segmentation procedure from 3D MRI images1, as
we will describe in Sec. 5.1. We will approximate each of the single core models in the
computational domain with a space discretization based on the FEM. We will denote
by Ndof

V , Ndof
w , Ndof

d , and Ndof
γf

the number of Degrees of Freedom (DoF) (i.e. the size
of the discretized single core model) for the potential, ionic variables, displacement, and
fiber shortening, respectively. The underlying number of nodes determined by the mesh
Th and the degree r is indicated as Nh. Hence, we have that, for scalar PDEs as the
electrophysiology, Ndof

V = Nh.

3.1.1 Monodomain equation

We use the FEM for the spatial approximation of the monodomain equation (1). We
first introduce the finite dimensional space X rh =

{
v ∈ C0(Ω0) : v|K ∈ Pr(K) ∀K ∈ Th

}
,

where Pr(K) is the set of polynomials of degree smaller than or equal to r in the element

K. Moreover, we denote by {ψi}
Ndof
V

i=1 a basis of X rh with Ndof
V = dim (X rh). The projection

of the solution V (t) on X rh can hence be written as Vh(t) =
∑Ndof

V
j=1 Vj(t)ψj and the weak

semidiscrete formulation of the problem reads: given wh(t) and dh(t), find, for all t ∈ (0, T ),
Vh(t) ∈ X rh such that∫

Ω0

V̇hψi dΩ0 +

∫
Ω0

(JF−1
h DmF−Th ∇Vh) · ∇ψi dΩ0 +

∑
q∈{fi,so,si}

∫
Ω0

Iq(Vh,wh)ψi dΩ0

=

∫
Ω0

Iapp(t)ψi dΩ0, ∀ i = 1, . . . , Ndof
V ,

(12)

with Vh(0) =
∑Ndof

V
j=1 (V0, ψj)L2(Ω0) ψj .

By setting Vh(t) = {Vj(t)}
Ndof
V

j=1 and V0,h =
{

(V0, ψj)H
}Ndof

V

j=1
, we rewrite Eq. (12) as a

system of nonlinear ODEs:{
MV̇h(t) + K(dh(t))Vh(t) + Iion(Vh(t),wh(t)) = Iapp(t) t ∈ (0, T ],

Vh(0) = V0,h,
(13)

1The MRI images are provided by Prof. J. Schwitter (Chief physician at the Centre Hospitalier Univer-
sitaire Vaudois CHUV, Lausanne) and Dr. P. Masci in the framework of the collaboration CMCS@EPFL–
CHUV hospital.
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where Mij =
∫

Ω0
ψjψi dΩ0, Kij(dh) =

∫
Ω0

(JF−1
h DmF−Th ∇ψj) · ∇ψi dΩ0, and

(Iion(Vh,wh))i =
∑

q∈{fi,so,si}

∫
Ω0

Iq (Vh,wh)ψi dΩ0, (Iapp(t))i =

∫
Ω0

Iapp(t)ψi dΩ0. (14)

We will discuss in Sec. 3.1.3 two different strategies for the approximation of the nonlinear
term Iion(Vh,wh). Moreover, we will use a lumped mass matrix ML in place of M in
Eq. (13) in order to avoid numerical instabilities, a known numerical issue that may occur
in the case of problems with “traveling waves” due to the dominance of zero order terms
over the second order ones [13].

3.1.2 Ionic model

The ionic model (2) is a system of ODEs that indirectly depends on the space variable

through the transmembrane potential V . By denoting with {xj}N
dof
w

j=1 the set of the degrees
of freedom, we write the equations of the model evaluated at each of these points and
we denote the value of the l-th ionic variable in xj by wlj(t). Similarly, we write Vj(t) =
Vh(xj , t), and finally rearrange the unknowns in the vector wh(t) in the following fashion:

wh(t) =
{

wl
h(t)

}NI
l=1

and wl
h(t) =

{
wlj(t)

}Ndof
w

j=1
. (15)

The problem thus obtained reads: given Vh(t), find, for all t ∈ (0, T ), wh(t) such that

ẇlj + (αl(Vj)− βl(Vj))wlj = αl(Vj)w
∞
l (Vj), (16)

with wlj(0) = wl0, for l = 1, . . . , NI , j = 1, . . . , Ndof
w . Following Eq. (15), system (16) can

be conveniently rewritten in algebraic form as{
ẇh(t) + U(Vh(t))wh(t) = Q(Vh(t)), t ∈ (0, T ],

wh(0) = w0,h,

where the block matrix U and the block vector Q are defined as (U(Vh))mm = αl(Vj)−βl(Vj)
and (Q(Vh))m = αl(Vj)w

∞
l (Vj), respectively, where m = l Ndof

w + j, for l = 1, . . . , NI , j =
1, . . . , Ndof

w .

3.1.3 Ionic currents

As anticipated in Sec. 3.1.1, different choices can be made for the approximation of the

term Iion(Vh,wh) in Eq. (12). By denoting with
{
xKs
}Nq
s=1

and
{
ωKs
}Nq
s=1

the quadrature
nodes and the corresponding weights in a generic mesh element K ∈ Th, we consider two
approaches which are investigated, for instance, in [53, 68, 69, 70].
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State Variable Interpolation (SVI): the variables Vh and wh in Eq. (14) are evaluated at
the quadrature nodes

∫
Ω0

Iq(Vh,wh)ψi dΩ0 =
∑
K∈Th

 Nq∑
s=1

Iq

Ndof
V∑
j=1

Vj(t)ψj(x
K
s ),

Ndof
V∑
j=1

wj(t)ψj(x
K
s )

ψi(x
K
s )ωKs

 .

This approach corresponds to the standard FEM approximation.

Ionic Currents Interpolation (ICI): for each element, Iq is evaluated at the degrees of
freedom of V and its value at the quadrature nodes is obtained by interpolation through
the same Lagrangian polynomial basis of degree r used for the FE space.

∫
Ω0

Iq(Vh,wh)ψi dΩ0 ≈
∑
K∈Th

 Nq∑
s=1

Ndof
V∑
j=1

Iq (Vj(t),wj(t))ψj(x
K
s )ψi(x

K
s )ωKs

 .

The two approaches are equivalent if Iq is linear in Vh and wh. Both the approaches tend
to overestimate the conduction velocities if the computational mesh is not “sufficiently”
fine [62], but yield convergent results under h–refinement. The SVI approach corresponds
to a standard FE approximation, while the ICI one yields a faster assembly of the ionic
currents term [53, 68, 84] but introduces an error in the evaluation of Iion(Vh,wh). In our
case, as we will describe in Sec. 5, the overall time required for the assembly of the terms
of the system arising from the ful discretization of Eq. (10) is mostly determined by the
construction of the mechanics terms, while the assembly of the ionic currents term does not
represent a computational bottleneck; we hence use the SVI method since the advantage
of using ICI here is negligible.

3.1.4 Active and passive mechanics

As previously done for the monodomain equation, we use the FEM to approximate the
momentum equation (4). We denote by [X rh ]3 the finite dimensional subspace of vector

valued functions and by {ψi}
Ndof

d
i=1 its basis. The Galerkin formulation of Eq. (4) reads:

given γf,h(t), find, for all t ∈ (0, T ), dh(t) ∈ [X rh ]3 such that∫
Ω0

ρs
∂2dh
∂t2

·ψi dΩ0 +

∫
Ω0

P(dh, γf,h) : ∇0ψi dΩ0 +
∑

η∈{epi,base}

∫
Γη0

q

(
dh,

∂dh

∂t

)
·ψi dΓ0

=

∫
Γendo0

pendo(t)N ·ψi dΓ0, ∀i = 1, . . . , Ndof
d ,

with dh(0) =
∑Ndof

d
η=1

(
d0,ψj

)
[L2(Ω0)]3

ψj and ḋh(0) =
∑Ndof

ḋ
η=1

(
ḋ0,ψj

)
[L2(Ω0)]3

ψj .
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We rewrite it in algebraic form as:{
ρsMd̈h(t) + Fḋh(t) + Gdh(t) + S(dh(t),γf,h(t)) = pendo(t) t ∈ (0, T ],

dh(0) = d0,h, ḋh(0) = ḋ0,h,

where Fij =
∑

η∈{epi,base}
∫

Γη0

(
Cη⊥(N⊗N) + Cη‖ (I−N⊗N)

)
ψj ·ψi dΓ0 and

Gij =
∑

η∈{epi,base}
∫

Γη0

(
Kη
⊥(N⊗N) +Kη

‖ (I−N⊗N)
)
ψj · ψi dΓ0; moreover, we have

Si(dh(t), γf,h(t)) =
∫

Ω0
P(dh, γf,h) : ∇0ψi dΩ0.

Finally, we once again use FEM to discretize in space the equation for the unknown
γf : given ch(t) and dh(t), find, for all t ∈ (0, T ), γf,h(t) ∈ Xh such that∫

Ω0

∂γf,h
∂t

ψi dΩ0 + ε

∫
Ω0

1

g(ch)
∇γf,h · ∇ψi dΩ0

−
∫

Ω0

1

g(ch)
Φ(ch, γf,h,dh)ψi dΩ0 = 0, ∀i = 1, . . . , Ndof

γf
,

with γf,h(0) = 0. We highlight that, with respect to Eq. (8), we divided each term by
g(ch). Thus, we obtain the following system of ODEs:{

Mγ̇f,h(t) + εK(c(t))γf,h(t) + Φ(c(t),γf,h(t),dh(t)) = 0 t ∈ (0, T ],

γf,h(0) = 0.

3.2 Time discretization

After having applied the space discretization to the single core models, we obtain the
semi–discretized formulation of problem (10) in the form of a nonlinear system of ODEs.
We denote by z = (zw, zV , zγf , zd)T the block vector containing the unknowns of each
semi–discrete single core problem, where the ordering of the unknowns will be motivated
in Sec. 3.2.2, and we write:

Mz(t) + T(z(t)) = h(t) t ∈ (0, T ],

z(0) = z0,

żd(0) = ḋ0,h,

(17)

whereM = diag

(
d

dt
,

d

dt
,

d

dt
,

d2

dt2

)
is a differential operator which applies a first order time

derivative to the ionic variables, the transmembrane potential and the fibers shortening
(motivating the division by g(ch) of the corresponding equation), while a second order
time derivative to the displacement. In order to obtain a fully discretized formulation, we
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use the BDF for the time approximation of Eq. (17). Hence, we write:

żi(t
n+1) ≈ 1

∆t

(
ϑ

(I)
0 zn+1

i − zRHSi

)
, zRHSi =

σ∑
k=1

ϑ
(I)
k z

n−k+1
i ,

z̈i(t
n+1) ≈ 1

(∆t)2

(
ϑ

(II)
0 zn+1

i − zRHSi

)
, zRHSi =

σ+1∑
k=1

ϑ
(II)
k zn−k+1

i ,

where ∆t = T
NT

is the timestep, NT being the number of timesteps, while the parameters

ϑ
(I)
k , ϑ

(II)
k , k = 0, . . . , σ depend on the order σ of the BDF scheme. We will in particular

use BDF of order σ = 1 and 2, and will consider two schemes for the time discretization
of the monolithic problem: a fully implicit and a semi–implicit one.

In the implicit case, we obtain the following nonlinear system:

A(zn+1) = bn+1 n = σ, . . . , NT − 1, (18)

with zk assigned for k = 0, . . . , σ and we set for simplicity ḋ0,h = 0. Problem (18) is solved
by exploiting the Newton method [78] at each timestep.

In the semi–implicit case, on the other hand, we extrapolate the variables in the non-
linear term A(zn+1) by means of the Newton–Gregory backward polynomials [16] – as is
done, e.g., for the Navier–Stokes equations in [37] – thus yielding a linear system at each
timestep. The extrapolated variables are evaluated as a linear combination of the variables
at previous timesteps, with an approximation of the same order σ of the BDF scheme:

zi(t
n+1) ≈ z∗i =

σ∑
k=1

βkz
n−k+1
i .

We then avoid the nonlinear terms by partially evaluating A in the extrapolated variable
z∗, i.e. we approximate the nonlinear term as

A(zn+1) ≈ A(z∗)zn+1 + gn+1 for n = σ, . . . , NT − 1.

By recalling Eq.(18), we hence obtain a system in the form:

A(z∗)zn+1 = b̃n+1 n = σ, . . . , NT − 1, (19)

with zk assigned for k = 0, . . . , σ and b̃n+1 = hn+1 − gn+1.

3.2.1 The implicit scheme

By applying the Newton method [78] to (18), we iteratively solve for n = σ, . . . , NT −1 the
linear problem {

Jn+1
k δzn+1

k+1 = −rn+1
k ,

zn+1
k+1 = zn+1

k + δzn+1
k+1 ,

(20)
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for k = 0, . . . , until some convergence criterion is met. Jn+1
k is the Jacobian matrix of A

evaluated in the zn+1
k and is endowed with the following block structure:

Jn+1
k =



Jw(Vn+1
k ) JwV(wn+1

k ,Vn+1
k ) 0 0

JVw(wn+1
k ,Vn+1

k ) JV(dn+1
k ) 0 JVd(Vn+1

k ,dn+1
k )

Jγfw(wn+1
k ,γf

n+1

k
,dn+1

k ) 0 Jγf
(wn+1

k ,γf
n+1

k
,dn+1

k ) Jγfd(wn+1
k ,γf

n+1

k
,dn+1

k )

0 0 Jdγf
(γf

n+1

k
,dn+1

k ) Jd(γf
n+1

k
,dn+1

k )


,

while the residual is defined as rn+1
k = bn+1 −A(zn+1

k ).

3.2.2 The semi–implicit scheme

In this case, the block structure of the matrix associated to linear system (19) to be solved
is sparser with respect to the implicit one, as A is a block lower triangular matrix endowed
with only one extra diagonal block for each n = σ, . . . , NT − 1:

A(z∗) =



Aw(V∗) 0 0 0

AVw(w∗,V∗) AV(d∗) 0 0

0 0 Aγf (w∗,γf
∗,d∗) 0

0 0 0 Ad(γf
∗,d∗)


. (21)

The matrix (21) is block lower triangular thanks to the ordering of the variables in the elec-
trophysiology model (17): indeed, by swapping the ionic and the electric blocks we would
have obtained a block upper triangular matrix. The semi-implicit scheme has the clear
advantage of avoiding, at each timestep, the solution of a nonlinear problem. Moreover,
both the assembly of the system matrix A(z∗) and the solution of the linear system (19)
require smaller computational time than in the implicit case.

On the other hand, semi–implicit schemes may impose strong limitations on the timestep
size ∆t to ensure stability. This is indeed what we observe from our numerical tests: the
maximum timestep size that we used in order to ensure stability for the semi–implicit
scheme is at least one order of magnitude smaller than the one that used for the implicit
one, for which accuracy is the main factor driving the choice of ∆t. This, in turn, makes
the computational cost of the semi–implicit scheme much larger than the implicit one, es-
pecially when considering the simulation of a full heartbeat. By analyzing the behavior of
the linear solver (which we will detail in Sec. 4) and the residual of the system (19), we ob-
serve that numerical instabilities are driven by the mechanics block: we conclude that the
strong nonlinearity of the Piola–Kirchhoff tensor (7) and the presence of the exponential
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terms in particular yield evaluations of the stress tensor P(d∗h, γ
∗
f,h) in the extrapolated

variables that are not “sufficiently” close to P(dn+1
h , γn+1

f,h ), unless the timestep is signifi-
cantly “small”. Indeed, instability does not appear in numerical simulations of the isolated
electrophysiology problem, even using a larger timestep with respect to the one used for
the monolithic problem, thusconfirming that the bottleneck in the choice of ∆t is due to
the mechanics core model.

We will further investigate this issue in the future; however, for the next numerical
simulations of this paper we will consider only the implicit scheme.

4 Linear solver: the preconditioning strategy

We rewrite, for the sake of simplicity, the linear system associated to a single Newton
iteration for the implicit scheme (20) in the following form:

J δz = −r, with J =


J11 J12 0 0

J21 J22 0 J24

J31 0 J33 J34

0 0 J43 J44

 . (22)

We use the GMRES method [89] for the solution of the linear problem (22) as J is non-
symmetric and the distribution of the eigenvalues of its spectrum is not known a priori.

The choice of the preconditioner is critical in order to ensure the convergence of the
linear solver; while this is true in general, it is even more relevant in the case of monolithic
multiphysics problems [51]. Indeed, using a black–box algebraic preconditioner for prob-
lem (22) the information related to each differential problem associated to a single core
model would be neglected; we instead consider a strategy exploiting such information at
the block level, that is we create a preconditioner that exploits the “physics” of the coupled
problem at the level of the block structure. Following [26, 27, 35] for FSI problems, we
propose a block Gauss-Seidel preconditioner P obtained by dropping the upper triangular
blocks of matrix J, i.e. the off–diagonal blocks, thus obtaining:

P =


J11 0 0 0

J21 J22 0 0

J31 0 J33 0

J 0 J43 J44

 .
P can then be factorized into four model–specific nonsingular matrices, namely Pion, Ppot,
Pact, and Pmec corresponding to the ionic, the potential, the activation, and the mechanics
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single core models, respectively:

P =


J11 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

P1=Pion


I 0 0 0

J21 J22 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

P2=Ppot


I 0 0 0

0 I 0 0

J31 0 J33 0

0 0 0 I


︸ ︷︷ ︸

P3=Pact


I 0 0 0

0 I 0 0

0 0 I 0

0 0 J43 J44

 .
︸ ︷︷ ︸

P4=Pmec

This decomposition can also be interpreted as an inexact factorization of matrix J. The
preconditioned version of problem (22) then reads:{

JP−1y = −r

Pδz = y.
(23)

Since each diagonal block Jii appears in a distinct factor Pi, for i = 1, . . . , 4, then physics–
specific ad–hoc preconditioners can be efficiently used to approximate its inverse. Indeed,
we define the symbolic operation δz = P−1y in (23) as the application of the following
sequential steps 

δzw = J−1
11 yw,

δzV = J−1
22 (yV − J21δzw),

δzd = J−1
33 (yd − J31δzw),

δzγf = J−1
44 (yγf − J43δzd);

(24)

the solution of each linear system in (24) is carried out by using again the GMRES method
and by exploiting Algebraic Multigrid (AMG) preconditioners [11]. This new precondi-
tioner P can be regarded as a generalization of the FaCSI preconditioner for FSI problems
proposed in [27] (see also [26, 35]).

4.1 Cardiac cycle

For our simulations we will consider a full heartbeat, by taking the conventional duration of
T = 0.8 s. With this aim, we take into account for the interaction of the endocardium with
the blood by modeling the pressure pendo as in Eq. (10). Before introducing the models
used to describe such pressure, we first recall that the heartbeat is conventionally split into
four phases (see Fig. 4):

1. an isovolumic contraction phase in which the endocardial pressure pendo(t) increases
from the End Diastolic Pressure (EDP) to the value measured in the aorta (about
95 mmHg). This increment is driven by the early stages of the LV contraction;

2. an ejection phase characterized by a decrement in the ventricular volume V endo(t)
due to the contraction of the LV forcing the blood to flow through the aortic valve;
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Figure 4: The Wiggers diagram [50] of the left heart depicting the aortic, ventricular, and
atrial pressures and the ventricular volume, as well as the four phases of the cardiac cycle.

3. an isovolumic relaxation phase during which pendo(t) decreases as a consequence of
the LV early relaxation;

4. a filling phase starting with the opening of the mitral valve causing an increment of
V endo(t) until pendo(t) reaches the EDP value.

When necessary, we compute the volume V endo(t) at time n by exploiting the formula
V endo,n =

∫
Γendo0

J(dnh)ξ ·F−T (dnh)N dΓ0, which is rigorously derived in [84] and where ξ is

a vector directed as the centerline of the LV.
We then model the endocardial pressure pendo(t) with different 0D models, following

[30, 84, 107], for each of the aforementioned phases (in the following, we drop the “endo”
superscript for simplicity):

1. Isovolumic phase I: At each timestep, we iteratively solve problem (10) by updating
at each subiteration the pressure in the following manner:

pn+1
k+1 = pn+1

k +
V n+1
k − V n

Cp
k = 0, . . . (25)

with pn+1
0 = pn, V n+1

0 = V n, until the condition
|V n+1
k −V n|
V n < ε is satisfied. The

parameter Cp < 0 has to be “sufficiently” large in order for the fixed point algorithm
to converge. This phase ends when the pressure pn+1

k+1 reaches the value p = 95 mmHg.
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2. Ejection phase: A two-element Windkessel model [110] of the form:C
dp

dt
= − p

R
− dV

dt
t ∈ (T ′, T ′′]

p(T ′) = p

(26)

is solved in the pressure variable with a BDF scheme of order σ = 1 while the term
dV
dt is approximated at time n+1 as V n−V n−1

∆t , for simplicity. T ′ and T ′′ are the initial
and final time of this phase, respectively, while the parameters C,R > 0 represent the
capacitance and resistance of the equivalent electric circuit. This phase ends when
the (initially negative) term dV

dt changes sign.

3. Isovolumic phase II: Modeled as the first isovolumic phase. This phase ends when
the pressure reaches the minimal value of p = 5 mmHg.

4. Filling phase: The pressure is linearly increased at each timestep so that it reaches
the EDP value at the final time T . We are aware that this is not fully coherent with
the real behavior of the diastolic phase, but a model for the muscle and the function
of the left atrium are not taken into account in this work. Future work should better
address this points to represent the full heartbeat in a detailed fashion.

Even if (26) is strongly coupled with (10) during the ejection phase, for simplicity we solve
the two problems in a segregated fashion.

5 Numerical simulations

We now describe the geometries used for the numerical simulation of the integrated elec-
tromechanics problem. As anticipated in Sec. 3, we use both an idealized prolate geometry
and a patient–specific geometry segmented from MRI images as detailed in Sec. 5.1. More-
over, in Sec. 5.2, we outline the procedure that is exploited to define the fibers and the
sheets fields on the different meshes. We conclude this section by showing and analyzing
the results of the simulations.

5.1 Patient–specific geometry segmentation

Image segmentation is the process of locating regions of interest (ROI) in the form of a
subset of pixels [42]. In biomedical applications, this accounts to assign different flags
to regions containing different types of tissues and/or fluids. This result, depending on
the properties of the biological material which is to be segmented, can often be achieved
through semi–automatic or automatic procedures (see e.g. [32, 49, 106] for arteries and
blood vessels and [10, 109] for the Purkinje network), exploiting a large set of different
techniques. However, since the development of algorithms for the segmentation of the
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Figure 5: The patient–specific mesh and its projection on three slices of the 3D MRI image
from which it was segmented.

chambers of the heart [72, 114, 115] is beyond the scope of this work, we used a manual
procedure based on the brightness of the pixels of the aforementioned 3D MRI images.
We first apply a threshold filter to select the smallest set of pixels containing the whole
myocardium; then, we manually remove artifacts and features that we decide to neglect
such as the papillary muscles and the upper part of the LV. Finally, a Gaussian smoothing
procedure [111] was performed to improve the quality of the mesh. See Fig. 5.

The image was taken at the end of the diastolic phase, that is when the LV reaches its
maximum enlargement. The internal volume of the patient–specific myocardium at this
stage of the heartbeat measures approximately 95 ml.

5.2 Fibers and sheets distribution

Unlike the geometry, the fibers and sheets field distribution in the myocardium may not
be extracted from medical images such as MRIs unless special procedures are applied [80].
For this reason, several mathematically rule–based definition of the fields have been used
in literature [38, 56, 61, 86], which try to approximate their orientation. At the epicardium
and at the endocardium, the fiber direction is tangential to the boundary, while the sheet
direction belongs to the plane identified by the normal and the ventricle centerline. Then,
in the most general case, angles αendo, αepi, βendo, and βepi, representing the inclination
of the fibers and the sheets with respect to the base plane, are assigned. Finally, the
direction of fibers and sheets inside the myocardium is determined by a transmurally linear
mapping. A first study of the influence of the angles on both the conductivity and the
deformation was carried out in [30]. Since this kind of analysis goes beyond the scope of
this work, we will consider for both the idealized and the patient–specific geometries the
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Figure 6: Meshes of the ideal prolate LV geometry (left), together with the fibers (center)
and the sheets (right) fields. The finer meshes (b) and (c) are obtained by hierarchical
refinement of the coarsest mesh (a).

algorithm proposed in [112] and further developed in [84], thereforse setting αendo = −60◦,
αepi = +60◦, βendo = βepi = 0◦. In Fig. 6, we show the fields obtained by applying the
algorithm to a set of subsequently refined ideal meshes, while in Fig. 7 the same is done
for the patient–specific mesh.

5.3 Numerical results

We setup a total of five numerical simulations, each for a single heartbeat, using the four
meshes shown in Figs. 6–7. The monodomain, the activation, and the mechanics equations
are approximated with Pr elements; the ionic model equations, on the other hand, are solved
in the degrees of freedom determined by the discretization of the monodomain equations
(e.g. the vertices of the tetrahedrons if r = 1). We set r = 1 for each mesh in order to
limit the size of the monolithic system and, additionally, r = 2 for the coarse mesh only.
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Figure 7: Mesh of the patient–specific mesh (left), together with the fibers (center) and
the sheets (right) fields.

Geometry Mesh h # Vertices # Elements

Idealized
(Fig. 6)

(a) 4.6 mm 1’827 3’010
(b) 2.3 mm 11’658 12’040
(c) 1.2 mm 81’335 416’000

Patient–specific
(Fig. 7)

(d) 0.8 mm 126’031 637’379

Table 1: Information about the three idealized meshes and the patient–specific mesh:
average edge length h, number of vertices and number of elements for each mesh.

This yields a linear system of size M = 8 × Nh. A second order BDF scheme (σ = 2) is
considered for the time discretization in all cases to ensure A-stability while maximizing the
convergence order [78]. The information on the meshes and on the numerical simulations
is summarized in Tabs. 1 and 2, respectively.

We use LifeV2, an open–source finite element library for the solution of problems de-
scribed by PDEs in a High Performance Computing framework, to implement the numer-
ical methods. All the computations were carried out using Piz Daint, a Cray XC50/XC40
supercomputer installed at the Swiss National Supercomputing Center (CSCS)3.

As detailed in Sec. 4 we exploit the Newton method for the solution of the nonlinear
system (18) by setting a maximum number of 5 iterations per timestep. Moreover we use
the relative residual as stopping criterion, with a tolerance equal to 10−7. At each Newton
iteration (20), as detailed in Sec. 4, we use the GMRES method for the inversion of the
blocks Jii, i = 1, . . . , 4 together with AMG preconditioners by taking into account the
number of underlying PDEs of each block; we exploit the ML package [36] of the Trilinos

2https://cmcsforge.epfl.ch
3http://www.cscs.ch
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Geometry Mesh r M # CPUs

Idealized

(a) 1 14’616 1
(b) 1 93’264 6
(c) 1 650’680 45
(a) 2 93’264 6

Patient–specific (d) 1 1’008’248 72

Table 2: The meshes, the polynomial degree r of the FEM approximation, the size M of
the monolithic linear system, and the number of threads used for each simulation.

σt σl λepi λendo kepi kendo k
′

α c0 µ̂1
A µ̂2

A µ̂3
A µ̂4

A ρ

17.61 120.4 0.8 0.5 0.75 1.0 −7.0 −6.0 0.05 2.1 7.0 12 500 10−3

B Kepi
⊥ Kbase

⊥ Kepi
‖ Kbase

‖ Cepi⊥ Cbase⊥ Cepi‖ Cbase‖ CIp CIIp C R

50 10 1500 0 10−4 5 1 0 0 −0.5 −0.09 4.5 0.035

Table 3: Parameters used in the electromechanical model: transversal and longitudinal
conductivities (mm

2

s ) in Eq. (1); transmurally heterogeneous wall thickening model pa-
rameters in Eq. (9); activation model coefficients α (µM−2), c0, and µ̂A (µM2 · s) in the
four cardiac phases in Eq. (8); density ρ ( g

mm3 ), bulk modulus B (kPa), Robin boundary

condition coefficients (kPamm and kPa·s
mm ) in Eqs. (4) - (6); relaxation parameter for the two

isochoric phases CIp and CIIp ( kPa
mm3 ) in Eq. (25); Windkessel model parameters C and R

(mm
3

kPa and kPa·s
mm ) in Eq. (26).

library [43] by performing three sweeps of the Gauss–Seidel algorithm for pre– and post–
smoothing, while the solution on the coarsest level is obtained through an LU factorization.
We consider the relative residual as stopping criterion for the GMRES method, with a
tolerance equal to 10−8.

For simplicity, we initiate the electric signal propagation by applying at the same time
2–milliseconds long stimuli at three distinct points on the endocardium; we remark that,
even if this pacing strategy is not fully realistic since the electrical signal delivered by the
Purkinje network activates asynchronously hundreds of cells [83, 108], it provides physically
meaningful results. The other parameters used for the simulations are reported in Tab. 3.
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Figure 8: The transmembrane potential at different times for the idealized geometry with
r = 1. First row: mesh (a); second row: mesh (b); third row: mesh (c).

We compare in Fig. 8 the transmembrane potential obtained using r = 1 elements on
the three idealized meshes at different times. As expected, the conduction velocities are
overestimated when the mesh size is not sufficiently fine [9, 29]. The same conclusion can be
drawn by observing the plots in Fig. 9, where the transmembrane potential sampled at the
apex is represented against time: the delay of the action potential (the quick depolarization
of the tissue followed by a slow repolarization [21]) in the finer meshes is due to the longer
time needed for the wave to reach the apex. We display in Fig. 10 the transmembrane
potential for the patient–specific case at the same instants.

We observe from Fig. 9 a difference of several milliseconds in the complete activation
of the myocardium, which is significant in the electrophysiology characteristic time scales.
However, because of the multiscale nature of the integrated problem, the mechanics is not
affected by such delay as can be observed in Fig. 11. Here, the only remarkable difference
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Figure 9: The transmembrane potential at the apex of the myocardium over time for the
three ideal meshes, using P1 elements.

Figure 10: The transmembrane potential at different times for the patient–specific geome-
try.

between the three results is the underestimation of the displacement magnitude in the
simulation with the coarsest mesh (a). In this case, the number of degrees of freedom is
not sufficient to either fullfill the nearly–incompressible constraint nor to represent the large
deformations observable in the other two cases. The deformation of the patient–specific
mesh (d) at the same times is shown in Fig. 12.
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Figure 11: Myocardium displacement magnitude at different times for the simulations with
the idealized geometry and P1 elements. First row: mesh (a); second row: mesh (b); third
row: mesh (c).

30



Figure 12: Myocardium displacement at different times for the patient–specific mesh.

Figure 13: The deformed idealized geometry (mesh (a)) at different times, for increasing
values of the bulk modulus B. Larger values of B correspond to a more accentuated torsion.
First row: B = 5× 10 kPa; second row: B = 5× 103 kPa; third row: B = 5× 104 kPa.
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Figure 14: Ventricular volume and endocardial pressure over time and combined in pV–
loops for the simulations with the prolate meshes.

In both the idealized and the patient–specific cases, a significant thickening of the my-
ocardium walls takes place, which is in accordance with experimental observations [79].
The model, with the set of parameters in Tab. 3, produces however a significant rotation
of the LV: a recent work [74] suggests that this behavior is related to the choice of the in-
compressibility constraint, the bulk modulus B magnitude, and the boundary conditions.
As a first step towards the investigation of this aspect, we report in Fig. 13 the muscle
obtained with different values of the bulk modulus B, while all the other parameters are
kept unchanged with respect to Tab. 3 Larger values of B correspond to a larger torsion,
more accentuated and uniform along the ventricle’s walls; moreover, the thickening of the
myocardium is larger when the bulk modulus is smaller as expected, since the incom-
pressibility condition becomes weaker. However, the imposition of a stronger volumetric
constraint through B negatively affects the conditioning of the system matrix J in (22),
and forces the linear solver to perform more iterations in order to reach convergence. We
will further focus on this issue in future works.

In order to better evaluate the ability to describe the LV activity of the integrated
numerical model for a full cardiac cycle, pressure–volume (pV) loops are also represented. A
comparison with in–vivo measurements would be pointless in the case of the ideal geometry,
however we stress the fact that the pV–loops reported in Fig. 14 are in both qualitative and
quantitative agreement with those observed experimentally as e.g. in [87]; moreover, the
maximal endocardial pressure, which is reached during the ejection phase, is approximately
110 mmHg and hence lays well within the physiological range of average individuals [91].
The difference between the four cases in Fig. 14 accounts to a maximum variation of about
2 % in the minimal ventricle volume during the second isochoric phase.
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Figure 15: Ventricular volume and endocardial pressure over time and combined in a pV–
loop for the simulation with the patient–specific mesh.

Geometry Mesh r ∆t N
N

N
iso
I N

iso
II N

G
T
sol

T
prec

T tot

Idealized

(a) 1 2.5× 10−4 3.02 2.31 2.55 2.15 0.023 0.006 5h 41m
(b) 1 2.0× 10−4 3.37 2.14 3.44 6.67 0.163 0.019 18h 21m
(c) 1 2.0× 10−4 4.23 2.49 3.26 9.19 0.632 0.040 46h 42m
(a) 2 1.0× 10−4 3.29 1.68 2.11 6.47 0.178 0.025 30h 18m

Patient–
specific

(d) 1 2.5× 10−4 4.44 1.96 4.51 22.33 1.692 0.076 68h 37m

Table 4: Computational setting: i) polynomial degree of the FEM approximation; ii)
timestep (in seconds); iii) average number of Newton iterations per timestep; iv-v) average
number of subiterations for each of the two isochoric phases; vi) average number of GMRES
iterations; vii-viii) average time spent (in seconds) for the resolution of the linear system,
and for the application of the preconditioner, respectively; ix) wall time for the simulation
of one heartbeat.

The pV–loop for the patient–specific case is reported in Fig. 15. Experimental measure-
ments of the pressure and of the volume for the patient under study were not available,
therefore we did not carry on a quantitative comparison of our results against patient–
specific data. However, we once again observe that the values of the pV–loop are in line
with real data [87].

We then report in Tab. 4, the timestep used for each simulation, the average number of
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Figure 16: The average numer of Newton iterations N
N

(top left) and GMRES iterations

N
G

(top right), the total wall time TW (bottom left), and the average time spent for the

assembly and application of the preconditioner T
P

(bottom right).

Newton iterations, the average number of fixed point iterations for each of the two isochoric
phases, and the average time spent for different operations during a single timestep. The
overall time required for the complete simulations is also reported. Tab. 4 clearly shows
that finer meshes require larger computational resources for a full heartbeat simulation
(T tot), and this is mostly due to the longer time required for the solution of a single linear
system. On the other hand, we notice that the proposed preconditioner ensures that the
convergence of the GMRES method is obtained with a relatively small number of iterations

N
G

even with large linear system sizes.
Finally, we test the strong scalability of the proposed monolithic solver for cardiac

electromechanics. With this aim, we further refine the ideal mesh of Fig. 6, thus obtaining
a finer one featuring 4’629’817 vertices and 26’624’000 tetrahedra, which is more adequate
for the strong scalability test. We then set ∆t = 2× 10−4 s and solve the electromechanics
problem with the implicit scheme up to the final time T = 10−2 s. As preconditioner
for the GMRES linear solver, we use the block Gauss–Seidel one P outlined in Sec. 4.
However, for this test we use an Additive Schwarz preconditioner for preconditioning of
the mechanics core block as, in our experience, it shows better scalability properties that
the Algebraic Multigrid one [34]. For our test, we use 800, 1’600, and 3’200 CPUs. Since
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with this mesh the total number of unknowns of the monolithic discrete problem (20)
amounts to 37’038’536, the number of unknowns attributed to each CPU is about 46’298,
23’149, and 11’574, respectively4. We remark however that our preconditioning strategy
applies sequentially to each core model according to Eq. (24); hence, the true number of
unknowns per CPU is smaller and amounts, e.g., to about 5’787, 2’894, and 1’447 for the

monodomain model, respectively. We report in Fig. 16 the mean number of Newton N
N

and N
G

GMRES iterations, the average time T
P

spent in assembling and applying the
preconditioner, and the total wall time TW of the simulation. We observe that, while

N
N

and N
G

are kept almost constant with the number of CPUs, the total wall time
TW first decreases but then increases when the largest number of unknowns per CPU is
achieved. This is due to the fact that communications among CPUs becomes dominating,

the application of the preconditioner being the main responsible as highlighted by T
P

.

6 Conclusions

In this work we proposed a novel monolithic solver for the simulation of the integrated
electromechanics problem for the LV of the human heart. We coupled the monodomain
equation, the ionic minimal model, the activation model for the fibers contraction, and
the myocardial mechanics in the active strain framework with a transmurally variable
activation. The interaction of the myocardium with the blood inside the ventricle was
taken into account by prestressing and by solving additional 0D problems for the fluid.

We considered both implicit and semi–implicit BDF schemes for our monolithic solver
together with a preconditioning strategy based on block Gauss-Seidel preconditioner which
exploits the multiphysics structure of the coupled problem. The strong limitations on the
timestep size in the semi–implicit case are such that the implicit scheme is by far the
most efficient for numerical simulations lasting for one or multiple heartbeats. We solve
the coupled problem in the High Performance Computing framework and we performed a
scalability analysis for a benchmark test involving more than 37’000’000 unknowns.

The results obtained by simulating a complete heartbeat with both ideal and patient–
specific geometries are qualitatively in agreement with physiological values measured in
healthy patients. Moreover, the comparison of the simulations on the idealized geometry
with different mesh sizes shows that the proposed numerical model is able to capture the
physical solution with satisfactory accuracy even in the case of relatively coarse meshes.
From our simulations we observe that choosing a mesh with maximum size h of about 2 mm
is sufficient to correctly reproduce the contraction of the LV, while negligible differences to
the corresponding pV–loops are observable when using finer meshes.

4Performing the strong scalability test with a number of CPUs smaller than 800 was not feasible with
this mesh; indeed, memory limitations occurred due the excessive number of unknowns per single CPU.
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