
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(1): 1024–1039.
DOI:10.3934/math.2021061
Received: 11 May 2020
Accepted: 14 October 2020
Published: 06 November 2020

Research article

Applications of a certain q-integral operator to the subclasses of analytic
and bi-univalent functions

Bilal Khan1,∗, H. M. Srivastava2,3,4, Muhammad Tahir5, Maslina Darus6,∗, Qazi Zahoor Ahmad7

and Nazar Khan5

1 School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai
200241, People’s Republic of China

2 Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W
3R4, Canada

3 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan, Republic of China

4 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,
AZ1007 Baku, Azerbaijan

5 Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad
22010, Pakistan

6 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, Bangi 43600, Selangor, Malaysia

7 Government Akhtar Nawaz Khan (Shaheed) Degree College KTS, Haripur 22620, Pakistan

* Correspondence: Email: bilalmaths789@gmail.com, maslina@ukm.edu.my.

Abstract: In the present investigation, our aim is to define a generalized subclass of analytic and bi-
univalent functions associated with a certain q-integral operator in the open unit disk U. We estimate
bounds on the initial Taylor-Maclaurin coefficients |a2| and |a3| for normalized analytic functions f in
the open unit disk by considering the function f and its inverse g = f −1. Furthermore, we derive special
consequences of the results presented here, which would apply to several (known or new) subclasses
of analytic and bi-univalent functions.

Keywords: analytic functions; univalent functions; Taylor-Maclaurin series expansions;
Taylor-Maclaurin initial coefficients; bi-univalent functions; q-derivative (or q-difference) operator;
q-integral operator
Mathematics Subject Classification: Primary 05A30, 30C45; Secondary 11B65, 47B38

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021061


1025

1. Introduction and definitions

ByH (U) we denote the analytic function class in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

where C represents the set of complex numbers.
The class A of normalized analytic functions consists of functions f ∈ H (U), which have the

following Taylor-Maclaurin series expansion:

f (z) = z +

∞∑
n=2

anzn (∀ z ∈ U) (1.1)

and satisfy the normalization condition given by

f (0) = f ′ (0) − 1 = 0.

Further, a noteworthy subclass ofA, which contains all univalent functions in the open unit disk U, is
denoted by S.

All functions f ∈ S that satisfy the following condition:

<

(
z f ′ (z)
f (z)

)
> 0 (∀ z ∈ U) (1.2)

are placed in the class S∗ of starlike functions in U.
For regular functions f and g in the unit disk U, we say that the function f is subordinate to the

function g, and write
f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w of the class B, where

B = {w : w ∈ A, w (0) = 0 and |w (z)| < 1 (∀ z ∈ U)} , (1.3)

such that
f (z) = g

(
w (z)

)
.

Specifically, when the given function g is regular in U, then the following equivalence holds true:

f (z) ≺ g(z) (z ∈ U)⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

We next introduce the classPwhich consists of functions p, which are analytic inU and normalized
by

p (z) = 1 +

∞∑
n=1

pnzn, (1.4)

such that
<

(
p (z)

)
> 0.
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In the theory of analytic functions, the vital role of the function class P is obvious from the fact that
there are many subclasses of analytic functions which are related to this class of functions denoted by
P.

In connection with functions in the class S, on the account of the Koebe one-quarter theorem
(see [9]), it is clear that, under every function f ∈ S, the image of U contains a disk of radius 1

4 .
Consequently, every univalent function f ∈ S has an inverse f −1 given by

f −1( f (z)
)

= z = f
(
f −1(z)

)
(z ∈ U)

and

f
(
f −1(w)

)
= w

(
|w| < r0( f ); r0( f ) =

1
4

)
,

where
f −1(w) = w − a2w2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (1.5)

A function f ∈ S such that both f and its inverse function g = f −1 are univalent in U is known as bi-
univalent in U. The class of bi-univalent functions in U is symbolized by Σ. In their pioneering work,
Srivastava et al. [46] basically resuscitated the study of the analytic and bi-univalent function class
Σ in recent years. In fact, as sequels to their investigation in [46], a number of different subclasses
of Σ have since then been presented and studied by many authors (see, for example, [2, 5–8, 11, 25,
26, 35, 38, 40–42, 47, 51–53, 55–57]). However, except for a few of the cited works using the Faber
polynomial expansion method for finding upper bounds for the general Taylor-Maclaurin coefficients,
most of these investigations are devoted to the study of non-sharp estimates on the initial coefficients
|a2| and |a3| of the Taylor-Maclaurin series expansion.

Some important elementary concept details and definitions of the q-calculus which play vital role
in our presentation will be recalled next.

Definition 1. Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =


1 − qλ

1 − q
(λ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · · + qn−1 (λ = n ∈ N) .

Definition 2. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =


1 (n = 0)

n∏
k=1

[k]q (n ∈ N) .

Definition 3. The generalized q-Pochhammer symbol is defined, for t ∈ R and n ∈ N, by

[t]n,q = [t]q[t + 1]q[t + 2]q · · · [t + (n − 1)]q.

Also, for t > 0, let the q-gamma function be defined as follows:

Γq(t + 1) = [t]qΓq(t) and Γq(1) = 1,
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where

Γq (t) = (1 − q)1−t
∞∏

n=0

(
1 − qn+1

1 − qn+t

)
.

Definition 4. (see [13] and [14]) For a function f in the class A, the q-derivative (or q-difference)
operator Dq is defined, in a given subset of C, by

Dq f (z) =


f (z) − f (qz)

(1 − q) z
(z , 0)

f ′ (0) (z = 0) .

(1.6)

We note from Definition 4 that the q-derivative operator Dq converges to the ordinary derivative
operator as follows:

lim
q−→1−

(
Dq f

)
(z) = lim

q−→1−

f (z) − f (qz)
(1 − q) z

= f ′ (z) ,

for a differentiable function f in a given subset of C. Further, taking (1.1) and (1.6) into account, it is
easy to observe that (

Dq f
)

(z) = 1 +

∞∑
n=2

[n]q anzn−1. (1.7)

Recently, the study of the q-calculus has fascinated the intensive devotion of researchers. The great
concentration is because of its advantages in many areas of mathematics and physics. The
significance of the q-derivative operator Dq is quite obvious by its applications in the study of several
subclasses of analytic functions. Initially, in the year 1990, Ismail et al. [12] gave the idea of
q-starlike functions. Nevertheless, a firm foothold of the usage of the q-calculus in the context of
Geometric Function Theory was effectively established, and the use of the generalized basic (or q-)
hypergeometric functions in Geometric Function Theory was made by Srivastava (see, for
details, [29, pp. 347 et seq.]). After that, notable studies have been made by numerous
mathematicians which offer a momentous part in the advancement of Geometric Function Theory. For
instance, Srivastava et al. [44] examined the family of q-starlike functions associated with conic
region, and in [22] the estimate on the third Hankel determinant was settled. Recently, a set of articles
were published by Srivastava et al. (see, for example, [20, 43, 49, 50]) in which they studied various
families of q-starlike functions related with the Janowski functions from different aspects. For some
more recent investigations about q-calculus, we may refer the reader to [1, 3, 4, 15, 16, 27, 33, 36, 48].

We remark in passing that, in the aforementioned recently-published survey-cum-expository review
article [33], the so-called (p, q)-calculus was exposed to be a rather trivial and inconsequential variation
of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details,
[33, p. 340]). Srivastava [33] also pointed out how the Hurwitz-Lerch Zeta function as well as its multi-
parameter extension, which is popularly known as the λ-generalized Hurwitz-Lerch Zeta function
(see, for details, [30]), have motivated the studies of several other families of extensively- and widely-
investigated linear convolution operators which emerge essentially from the Srivastava-Attiya operator
[37] (see also [31] and [32]).

Definition 5. (see [12]) A function f in the function classA is said to belong to the function class S∗q
if

f (0) = f ′ (0) − 1 = 0 (1.8)
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and ∣∣∣∣∣ z
f (z)

(
Dq f

)
z −

1
1 − q

∣∣∣∣∣ 5 1
1 − q

. (1.9)

Then on the account of last inequality, it is obvious that, in limit case when q→ 1−∣∣∣∣∣w − 1
1 − q

∣∣∣∣∣ 5 1
1 − q

the above closed disk is merely the right-half plane and the class S∗q of q-starlike functions turns into
the familiar class S∗ of starlike functions in U. Analogously, in view of the principle of subordination,
one may express the relations in (1.8) and (1.9) as follows: (see [54]):

z
(
Dq f

)
(z)

f (z)
≺ m̂ (z)

(
m̂(z) =

1 + z
1 − qz

)
.

In recent years, many integral and derivative operators were defined and studied from different
viewpoints and different perspectives (see, for example, [10, 19, 23]). Motivated by the ongoing
researches, Srivastava et al. [45] introduced the q-version of the Noor integral operator as follows.

Definition 6. (see [45]) Let a function f ∈ A. Then the q-integral operator is given by

F −1
q,λ+1(z) ∗ Fq,λ+1(z) = zDq f (z)

and

Iλq f (z) = f (z) ∗ F −1
q,λ+1(z)

= z +

∞∑
n=2

Ψn−1anzn (z ∈ U; λ > −1) , (1.10)

where

F −1
q,λ+1(z) = z +

∞∑
n=2

Ψn−1zn

and

Ψn−1 =
[n]q!Γq(1 + λ)

Γq(n + λ)
=

[n]q!
[λ + 1]q,n−1

.

Specifically, we notice that

I0
q f (z) = zDq f (z) and I1

q f (z) = f (z).

Clearly, in limit case when q → 1−, th above q-integral operator simply becomes to the Noor integral
operator (see [24]). It is straightforward to verify the following identity:

zDq

(
Iλ+1

q f (z)
)

=

(
1 +

[λ]q

qλ

)
Iλq f (z) −

[λ]q

qλ
Iλ+1

q f (z). (1.11)

If q→ 1−, the equality (1.11) implies that

z
(
Iλ+1 f (z)

)′
= (1 + λ)Iλ f (z) − λIλ+1 f (z),
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which is the known recurrence formula for the Noor integral operator (see [24]).
Motivated by the works, which we have mentioned above, we now define subfamilies of the

normalized univalent function class S by means of the operator Iλq and the principle of subordination
between analytic functions as follows.

Definition 7. Let a function f ∈ S. Then f belongs to the function class Hq(λ, p̂) if it satisfies the
following conditions:

zDq

(
Iλq f

)
(z)(

Iλq f
)

(z)
≺ p̂ (z) (λ > −1; z ∈ U) (1.12)

and
wDq

(
Iλqg

)
(w)(

Iλqg
)

(w)
≺ p̂ (w) (λ > −1; w ∈ U), (1.13)

where the function p̂ (z) is analytic and has positive real part in U. Moreover, p̂ (0) = 1, p̂′ (0) > 0, and
p̂ (U) is symmetric with respect to the real axis. Consequently, it has a series expansion of the form
given by

p̂ (z) = 1 + p̂1z + p̂2z2 + p̂3z3 + · · · ( p̂1 > 0), (1.14)

noticing that g(w) = f −1(w).

In order to drive the main results in this paper, the following known lemma is needed.

Lemma 1. (see [9]) Let the function p ∈ P and let it have the form (1.4). Then

|pn| 5 2 (n ∈ N)

and the bound is sharp.

2. A set of main results

We begin by estimating the upper bound for the Taylor-Maclaurin coefficients of functions in the
function classHq(λ, p̂).

Theorem 1. If the function f ∈ Hq(λ, p̂) has the power series given by (1.1), then

|a2| 5

√√√ p̂3
1[λ + 1]q∣∣∣∣p̂2

1

(
q(q + 1)2 − [λ + 1]q

)
+ (p̂1 − p̂2)[λ + 1]q

∣∣∣∣ (2.1)

and

|a3| 5 p̂1

(
p̂1 +

[λ + 1]q

q(q + 1)2

)
. (2.2)

Proof. Since f ∈ Hq(λ, p̂) and f −1 = g, by means of Definition 7 and by using the principle of
subordination, there exit functions s(z), r(z) ∈ B such that

zDq

(
Iλq f

)
(z)(

Iλq f
)

(z)
= p̂ (r(z)) and

wDq

(
Iλqg

)
(w)(

Iλqg
)

(w)
= p̂ (s(w)) . (2.3)
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We define the following two functions:

p1(z) =
1 + r(z)
1 − r(z)

= 1 +

∞∑
n=1

rnzn

and

p2(z) =
1 + s(z)
1 − s(z)

= 1 +

∞∑
n=1

snzn.

Then it is clear that p j ∈ P for j = 1, 2. Equivalently, the last relations in terms of r(z) and s(z) can be
restated as follows:

r(z) =
p1(z) − 1
p1(z) + 1

=
1
2

[
r1z +

(
r2 −

r2
1

2

)
z
]

+ · · · (2.4)

and

s(z) =
p2(z) − 1
p2(z) + 1

=
1
2

[
s1z +

(
s2 −

s2
1

2

)
z
]

+ · · · . (2.5)

Therefore, by means of (2.4), (2.5) and (2.3), if we take (1.14) into account, we have

p̂ (r(z)) = p̂
(

p1(z) − 1
p1(z) + 1

)
= 1 +

1
2

p̂1r1z +

[
1
2

p̂1

(
r2 −

r2
1

2

)
+

1
4

p̂2r2
1

]
z2 + · · · (2.6)

and

p̂
(
s(z)

)
= p̂

(
p2(z) − 1
p2(z) + 1

)
= 1 +

1
2

p̂1s1w +

[
1
2

p̂1

(
s2 −

s2
1

2

)
+

1
4

p̂2s2
1

]
w2 + · · · . (2.7)

Now, upon expanding the right-hand sides of both equations in (2.3), we find that

zDq

(
Iλq f

)
(z)(

Iλq f
)

(z)
= 1 + a2z +

(
q(q + 1)2

[λ + 1]q
a3 − a2

2

)
z2 + · · · (2.8)

and
wDq

(
Iλqg

)
(w)(

Iλqg
)

(w)
= 1 − a2w +

(
q(q + 1)2

[λ + 1]q
(2a2

2 − a3) − a2
2

)
w2 + · · · . (2.9)

Substituting from (2.6), (2.7), (2.8) and (2.9) into (2.3) and then by equating the corresponding
coefficients of z, z2, w and w2, we get

a2 =
1
2

p̂1r1, (2.10)

q(q + 1)2

[λ + 1]q
a3 − a2

2 =
1
2

p̂1

(
r2 −

r2
1

2

)
+

1
4

p̂2r2
1, (2.11)

a2 = −
1
2

p̂1s1 (2.12)
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and
q(q + 1)2

[λ + 1]q
(2a2

2 − a3) − a2
2 =

1
2

p̂1

(
s2 −

s2
1

2

)
+

1
4

p̂2s2
1.

From (2.10) and (2.12), it immediately follows that

r1 = −s1 (2.13)

and
a2

2 =
1
8

p̂2
1(r2

1 + s2
1). (2.14)

Addition of (2.11) and (2.14) yields

2
[
q(q + 1)2

[λ + 1]q
− 1

]
a2

2 =
1
2

p̂1

[
r2 + s2 −

1
2

(
r2

1 + s2
1

)]
+

1
4

p̂2

(
r2

1 + s2
1

)
.

Also, by using (2.14) in the last equation, we get

a2
2 =

p̂3
1 [λ + 1]q (r2 + s2)

4p̂2
1

[
q(q + 1)2 − [λ + 1]q

]
+ ( p̂1 − p̂2)[λ + 1]q

, (2.15)

which, in view of Lemma 1, yields the required bound on |a2| as asserted in (2.1).
Further, in order to find the estimate on |a3|, we subtract (2.14) from (2.11). Further computations

by using (2.13) lead us to

a3 = a2
2 +

1
4

[λ + 1]q

q(q + 1)2 p̂1(r2 − s2). (2.16)

Finally, by using (2.14) in conjunction with Lemma 1 on the coefficients of r2 and s2, we are led to
the assertion given in (2.2). This completes our proof of Theorem 1. �

In the next result, we solve the Fekete-Szegö problem for the function classHq(λ, p̂) by making use
of the coefficients a2, a3 and a complex parameter ν.

Theorem 2. Let the function f belong to the classHq(λ, p̂) and let ν ∈ C. Then

∣∣∣a3 − νa2
2

∣∣∣ 5


p̂1[λ + 1]q

q(1 + q)2

(
0 5 Θ(ν) < 1

4q(1+q)2

)
4p̂1[λ + 1]qΘ(ν)

(
Θ(ν) = 1

4q(1+q)2

)
,

(2.17)

where

Θ(ν) =
p̂2

1(1 − ν)

4p̂2
1

[
q(q + 1)2 − [λ + 1]q

]
+ ( p̂1 − p̂2)[λ + 1]q

. (2.18)

Proof. On the account of (2.15) and (2.16), we have

a3 − νa2
2 =

[λ + 1]q

4q(1 + q)2 p̂1(r2 − s2) + (1 − ν)a2
2,
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which can be written in the following equivalent form:

a3 − νa2
2 =

[λ + 1]q

4q(1 + q)2 p̂1(r2 − s2)

+
p̂3

1 [λ + 1]q (r2 + s2)

4p̂2
1

[
q(q + 1)2 − [λ + 1]q

]
+ ( p̂1 − p̂2)[λ + 1]q

.

Some suitable computations would yield

a3 − νa2
2 = p̂1[λ + 1]q

[(
Θ(ν) +

1
4q(1 + q)2

)
r2 +

(
Θ(ν) −

1
4q(1 + q)2

)
s2

]
,

where Θ(ν) is defined in (2.18). Since all p̂ j ( j = 1, 2) are real and p̂1 > 0, we obtain∣∣∣a3 − νa2
2

∣∣∣ = 2p̂1[λ + 1]q

∣∣∣∣∣∣
(
Θ(ν) +

1
4q(1 + q)2

)
+

(
Θ(ν) −

1
4q(1 + q)2

)∣∣∣∣∣∣
The proof of Theorem 2 is thus completed. �

Remark 1. It follows from Theorem 2 when ν = 1 that, if f ∈ Hq(λ, p̂), then∣∣∣a3 − a2
2

∣∣∣ 5 p̂1[λ + 1]q

q(1 + q)2 .

If we first set λ = 1 and then apply limit as q → 1−, then we have following consequence of
Theorem 2.

Corollary 1. (see [57]) Let a function f belong to the class given by

lim
q→1−
Hq(1, p̂) =: ST σ(φ)

and ν ∈ C. Then

∣∣∣a3 − νa2
2

∣∣∣ 5


p̂1

2

(
0 5 Θ1(ν) < 1

8

)
4 p̂1Θ1(ν)

(
Θ1(ν) = 1

8

)
,

where

Θ1(ν) =
p̂2

1(1 − ν)
4[ p̂2

1 + ( p̂1 − p̂2)]
.

3. Applications of the main results

For the class of q-starlike functions of order α with 0 < α 5 1, the function p̂ is given by

p̂(z) =
1 + (1 − (1 + q)α)z

1 − qz
= 1 + (1 + q)(1 − α)z + q(1 + q)(1 − α)z2 + · · · .

Then Definition 7 of the bi-univalent function class Hq(λ, p̂) yields a presumably new class H1
q (λ, α),

which is given below.
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Definition 8. A function f ∈ A is said to be in the classH1
q (λ, α) if it satisfies the following conditions:∣∣∣∣∣∣∣∣

zDq

(
Iλq f

)
(z)(

Iλq f
)

(z)
−

1 − αq
1 − q

∣∣∣∣∣∣∣∣ 5 1 − α
1 − q

(z ∈ U)

and ∣∣∣∣∣∣∣∣
wDq

(
Iλqg

)
(w)(

Iλqg
)

(w)
−

1 − αq
1 − q

∣∣∣∣∣∣∣∣ 5 1 − α
1 − q

,

where g(w) − f −1(w).

Hence, upon setting

p̂1 = (1 + q)(1 − α) and p̂2 = q(1 + q)(1 − α)

in Definition 8, we are led to the following corollaries of Theorem 1 stated below.

Corollary 2. Let the function f ∈ H1
q (λ, α) have the form (1.1). Then

|a2| 5
(1 + q)(1 − α)

√
[λ + 1]q√∣∣∣∣(1 + q)(1 − α)

(
q(q + 1)2 − [λ + 1]q

)
+ (1 − q)[λ + 1]q

∣∣∣∣
and

|a3| 5
(1 − α)

[
q(q + 1)2(1 − α) + [λ + 1]q

]
q(q + 1)

.

Corollary 3. Let the function f ∈ H1
q (λ, α) have the form (1.1). Then

∣∣∣a3 − a2
2

∣∣∣ 5 (1 − α)[λ + 1]q

q(1 + q)
.

In Corollary 2, we set λ = 1. Then we arrive at the following result.

Corollary 4. Let the function f be in the class given by

H2
q (λ, α) := H1

q (1, α)

and have the form (1.1). Then

|a2| 5
(1 − α)

√
(q + 1)√∣∣∣(1 − α)

[
q(q + 1) − 1

]
+ q − 1

∣∣∣
and

|a3| 5
1
q

(1 − α)
[
q(q + 1)(1 − α) + 1

]
.
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On the other hand, for 0 < α 5 1, if we set

p̂(z) =

(
1 + z

1 − qz

)α
= 1 + (1 + q)αz +

(1 + q)((1 + q)α + q − 1)α
2

z2 + · · · ,

then Definition 7 of the bi-univalent function classHq(λ, p̂) gives a new classH3
q (λ, α), which is given

below.

Definition 9. A function f ∈ A is said to belong to the class H3
q (λ, α) if the following inequalities

hold true: ∣∣∣∣∣∣∣∣arg

zDq

(
Iλq f

)
(z)(

Iλq f
)

(z)


∣∣∣∣∣∣∣∣ 5 απ2 (z ∈ U)

and ∣∣∣∣∣∣∣∣arg

wDq

(
Iλqg

)
(w)(

Iλqg
)

(w)


∣∣∣∣∣∣∣∣ 5 απ2 ,

where the inverse function is given by f −1(w) = g(w).

Using the parameter setting given by

p̂1 = (1 + q)α and p̂2 =
[(1 + q)α + q − 1](1 + q)α

2

in Definition 9, it leads to the following consequences of Theorem 1.

Corollary 5. Let the function f ∈ H3
q (λ, α) be given by (1.1). Then

|a2| 5
(q + 1)α

√
2[λ + 1]q√∣∣∣∣2(q + 1)α

[
q(q + 1)2 − [λ + 1]q

]
+ [3 − q − (1 + α)][λ + 1]q

∣∣∣∣
and

|a3| 5

[
q(q + 1)3α + [λ + 1]q

]
α

q(q + 1)
.

Corollary 6. Let the function f ∈ H3
q (λ, α) be given by (1.1). Then∣∣∣a3 − a2

2

∣∣∣ 5 [λ + 1]q

q(1 + q)
α.

Next, if we take

p̂(z) =
1 + T 2z

1 − T z − T 2z2 , (3.1)

where

T =
1 −
√

5
2

≈ −0.618.

The function given in (3.1) is not univalent in U. However, it is univalent in

|z| 5
3 −
√

5
2

≈ 0.38.
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It is noteworthy that

1
|T |

=
|T |

1 − |T |
,

which ensures the division of the interval [0, 1] by the above-mentioned number |T | such that it fulfills
the golden section. Since the equation:

T 2 = 1 + T

holds true for T , in order to attain higher powers T n as a linear function of the lower powers, this
relation can be used. In fact, it can be decomposed all the way down to a linear combination of T
and 1. The resulting recurrence relations yield the Fibonacci numbers un:

T n = unT + un−1.

For the function p̂ represented in (3.1), Definition 7 of the bi-univalent function classHq(λ, p̂) gives a
new classH4

q (λ, p̂), which (by using the principle of subordination) gives the following definition.

Definition 10. A function f ∈ A is said to be in the class H4
q (λ, α) if it satisfies the following

subordination conditions:

zDq

(
Iλq f

)
(z)(

Iλq f
)

(z)
≺

1 + T 2z
1 − T z − T 2z2 (z ∈ U)

and
wDq

(
Iλqg

)
(w)(

Iλqg
)

(w)
≺

1 + T 2w
1 − Tw − T 2w2

where g(w) = f −1(w).

Using similar arguments as in proof of Theorem 1, we can obtain the the upper bounds on the
Taylor-Maclaurin coefficients a2 and a3 given in Corollary 7.

Corollary 7. Let the function f ∈ H4
q (λ, α) have the form (1.1). Then

|a2| 5
T

√
[λ + 1]q√∣∣∣∣T [

q(q + 1)2 − [λ + 1]q

]
+ [1 + 3T ][λ + 1]q

∣∣∣∣
and

|a3| 5
T

[
T q(q + 1)2 + [λ + 1]q

]
q(q + 1)2 .

4. Concluding remarks and observations

Here, in our present investigation, we have successfully examined the applications of a certain q-
integral operator to define several new subclasses of analytic and bi-univalent functions in the open
unit disk U. For each of these newly-defined analytic and bi-univalent function classes, we have settled
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the problem of finding the upper bounds on the coefficients |a2| and |a3| in the Taylor-Maclaurin series
expansion subject to a gap series condition. By means of corollaries of our main theorems, we have
also highlighted some known consequences and some applications of our main results.

Studies of the coefficient problems (including the Fekete-Szegö problems and the Hankel
determinant problems) continue to motivate researchers in Geometric Function Theory of Complex
Analysis. With a view to providing incentive and motivation to the interested readers, we have chosen
to include several recent works (see, for example, [17, 18, 21, 28, 33, 34, 39]), on various bi-univalent
function classes as well as the ongoing usages of the q-calculus in the study of other analytic or
meromorphic univalent and multivalent function classes.
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