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Abstract: In a numerical study, we consider the Allen—Cahn equation with a double-obstacle con-
straint. The constraint is a multivalued function that is provided by the subdifferential of the indicator
function on a closed interval. Therefore, performing a numerical simulation of our problem poses
difficulties. We propose a new approximate method for the constraint and demonstrate its validity.
Moreover, we present stability criteria for the standard forward Euler method guaranteeing stable nu-
merical experiments when using the approximating equation.
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1. Introduction

For each € € (0, 1], we consider the following Allen—Cahn equation with double obstacle constraint:

ol_; n(u® u?
- [1,12]( )3

u; — Au 2 inQ:=(0,T)xQ, (1.1)
M0 ons = (0.7)xT, (1.2)
ov

u®(0) = u; a.e.in Q, (1.3)

where 0 < T < o0, Q is a bounded domain in RY (1 < N < +o0) with Lipschitz boundary T := 4Q, v
is an outward normal vector on I' and «j is a given initial value. Also, the double obstacle constraint
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0111 1)(+) is the subdifferential of the indicator function /;_; ;)(-) on the closed interval [—1, 1] defined

by
L O, le € [_1’ 1],
I (@) = { +0o0, otherwise. .
More precisely, 01_; 1)(-) is a set-valued mapping defined by
0, ifz<—-lorz>1,
[Oa OO)’ le = 1’
o1 ~ 1.5
[ 1,1](Z) {0}, if —1<z<1, "

(—00,0], ifz=—1.

The Allen—Cahn equation was proposed to describe the macroscopic motion of phase boundaries.
In this physical context, the function u® = u®(t, x) in (P)®:={(1.1), (1.2), (1.3)} is a non-conserved order
parameter that characterizes the physical structure. Indeed, let v = v(¢, x) be the local ratio of the
volume of a pure liquid relative to that of a pure solid at time ¢ and position x € Q, defined by

volume of pure liquid in B,(x) at time ¢
|B,(x)| ’

v(t, x) := lim
( ) rl0

where B,(x) is the ball in R with center x and radius r and |B,(x)| denotes its volume. Setting u®(t, x) :=
2v(t, x) — 1 for any (¢, x) € Q, we then observe that u®(¢, x) is the non-conserved order parameter that
characterizes the physical structure:

u®(t,x) =1 for the pure liquid region,
ué(t,x) = —1 for the pure solid region,
-1 <u®(t,x) <1 for the mixed region.

Therefore, u® has two threshold values 1 and —1, and hence the constraint d;_; ;)(-) that appears in
(1.1).

There is a vast literature on the Allen—Cahn equation with and without constraint dI;_; ;;(-). For
these studies, we refer to [1, 3, 6,7, 12, 8, 9, 20, 22, 26]. In particular, Bronsard and Kohn [6] studied
the singular limit of (P)® as ¢ — 0 with a bistable potential W having both wells of equal depth and
without constraint 0/j_; ;;(-). Also, Chen and Elliott [7] considered the asymptotic behavior of the
solution to (P)® as & — 0. However, there were no details in [7] about elements of the constraint
0l 11(#®) as € = 0. Recently, Farshbaf-Shaker et al. [8] provided results concerning properties of
elements of 0|_; 1;(u®) for the problem (P)® as & — 0.

Also, there is a vast literature on the numerical analysis of the Allen—Cahn equation without con-
straint 0I;_; ;(-). For these studies, we refer to [10, 11, 24, 27, 28]. However, we observe that it is
hard to perform a numerical experiment of (P)®, because the double obstacle constraint d/j_; j;(-) is
a multivalued function (cf. (1.5)). Recently, Blank et al. [3] proposed as a numerical method the
primal-dual active set algorithm for the local and nonlocal Allen—Cahn variational inequalities with
constraint. Also, Farshbaf-Shaker et al. [8] obtained results for the limit of a solution #* and an el-
ement of dI;_; ;)(u°), called the Lagrange multiplier, to (P)° as € — 0. Moreover, they provided the
numerical experiment to (P)® via the Lagrange multiplier for a one-dimensional space for sufficiently
small £ € (0, 1] in [9].
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The approximate methods are used to obtain a priori estimate of the solutions to (P)® (cf. [18, 21, 22,
23]). Indeed, the Yosida approximation of d/|_; j;(-) is often used: for 6 > 0, the Yosida approximation
((9][_1’1])5(') of 8[[_1’1](') is defined by

[z-11" = [-1-2]"

5 )
where [z]* is the positive part of z. Then, by considering approximate problems of (P)° and letting
0 | 0, we can obtain estimates of solutions to (P)*.

Also, using the Yosida approximation (0/_; 1})s(-) of 8I_; 1)(-), numerical experiments of the ap-
proximate problem of (P)® were often provided. Recently, in [25], the authors clarified the role of
the stability condition in providing stable numerical experiments of the approximate problem of (P)®
via the Yosida approximation in the one-dimensional case. However, we observed that the numerical
solution to the approximate equation takes the value outside [—1, 1] (cf. [25, Table 1]).

In this paper, we propose a new approximate method for d1;_ 1;(+) so that the numerical solutions to
the approximate equation take values in [—1, 1]. Indeed, for each ¢ € (0, 1), we approximate d1;_; ;)(-)
by the following function K;s(-), defined by:

(Of—117)s(2) =

Yz eR, (1.6)

M, ifz>1-0,
5
Ks(z) := 0, ifze[-1+6,1-90], (1.7)
1_
“T‘S, ifz<—1+6.

Then, for each £ € (0, 1] and ¢ € (0, 1), we study the following approximate problem of (P)®, denoted
by (P);:
Ksu$)

inQ=(0,T)xQ,

e ous
(P)(5 M(S :0 OHZZ(O,T)XF,
4

u3(0) = u; a.e. in Q.
The aim is to show the validity of our approximate method defined by (1.7). Moreover, for each
e > 0and 6 > 0, we present criteria for the standard explicit finite difference scheme to ensure stable
numerical experiments of (P)$ in a two-dimensional (2D) space. To this end, we consider the following
ODE problem, denoted by (E):
o Ko(ug) ug
(EB)E (u5), + Q= T2 in R, forr e (0,7),
u3;(0) =y inR.

Note that the unique solution uj(7) to (E); takes the value in (0, 1) (resp. (—1,0)) for all ¢ € [0, T], if
the initial value uj, takes the value in (0, 1) (resp. (=1,0)) (see (i) of Corollary 2.1). Also, note that
ug = 0, %1 is a stationary solution to (E) (see Remark 3.2). We then find the criteria that yields stable
numerical experiments of (E);. Also, we perform some numerical simulations of (E):. Finally, taking
into account the theoretical results of (E)§, we derive the criteria ensuring stable numerical experiments
of the 2D PDE problem (P);. Therefore, the main novelties are the following:
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(a) We show the existence-uniqueness of a solution u to (P)5 on [0, T'] for each & € (0, 1]and 6 € (0, 1).
Also, we prove that u; converges to the solution u” to (P)° on [0, T] as 6 — 0.

(b) We present the criteria that ensure stable numerical simulations of the ODE problem (E);. Also,
we provide numerical experiments to (E); for small € € (0, 1] and 6 € (0, 1).

(¢) We consider instances when Q is a bounded domain in R2. Then, we give the criteria yielding stable
numerical simulations of the PDE problem (P)S. Also, we provide the numerical experiments of
(P); for small £ € (0, 1] and 6 € (0, 1).

The plan of this paper is as follows. In Section 2, we discuss the validity of our approximate
method defined by (1.7). Indeed, we prove the main result (Theorem 2.1) concerning the solvability and
convergence result of (P)§ corresponding to item (a) above. In Section 3, we consider (E); numerically.
Then, we prove the main result (Theorem 3.1) corresponding to item (b) above. Also, we provide
several numerical experiments to (E); for small £ € (0,1] and 6 € (0, 1). In the final Section 4, we
consider from the view-point of numerical analysis (P) for a 2D space. Then, we prove the main result
(Theorem 4.1) corresponding to item (c) above and provide numerical experiments of (P); for small
e€(0,1]and 6 € (0, 1).

Notation and basic assumptions

Throughout this paper, we consider the usual real Hilbert space structure denoted by H := L*(Q).
The inner product in H is denoted by (-, ). We also write V := H'(Q).

In Section 2, we use some techniques of proper (that is, not identically equal to infinity), L.s.c. (lower
semi-continuous), convex functions and their subdifferentials, which are useful in the systematic study
of variational inequalities. Therefore, let us outline some notation and definitions. For a proper, l.s.c.,
convex function ¥ : H — R U {+00}, the effective domain D(y) is defined by

D) = {z € H; Y(z) < oo},

The subdifferential of ¢ is a possibly multi-valued operator in H and is defined by z* € dy(z) if and
only if
z€DW) and (Z',y—2)u <Y (y)—y(z) forallye€ H.

Next, we recall the notion of convergence for convex functions developed by Mosco [19].

Definition 1.1 (cf. [19]). Let ¥, ¥, (n € N) be proper, Ls.c., convex functions on H. Then, we say
that W, converges to W on H in the sense of Mosco [19] as n — oo, if the following two conditions are
satisfied:

(M1) for any subsequence {yr, } C {,}, if zx — z weakly in H as k — oo, then
liminf ,, (z) 2 Y(2);
(M2) for any z € DY), there is a sequence {z,} in H such that

w—zinHasn— oo and  lim y,(z,) = ¥(2).

AIMS Mathematics Volume 1, Issue 3, 288-317



292

For various properties and related notions of the proper, 1.s.c., convex function ¢ and its subdiffer-
ential 0y, we refer to the monograph by Brézis [4].
Next we present condition (A), which we shall use throughout the paper and assume applies to data.

(A uge K:={zeV; |7 <lae. inQ}.
2. Solvability and convergence results for (P);

We begin by giving a rigorous definition of solutions to (P); (¢ € (0,1] and 6 € (0, 1)).

Definition 2.1. Let € € (0,1], 6 € (0,1) and u; € H. Then, a function u : [0,T] — H is called a
solution to (P)§ on [0, T, if the following conditions are satisfied:

(i) us € W'2(0,T; H) N L=(0,T; V).
(i1) The following variational identity holds:

Ks(ui(1)) us(1)
(W) (1), 2), + LVug(t) -Vzdx + (68—§,Z)H = ( 22 ,Z)H

forallzeVanda.e. t € (0,T).
(ii1) u5(0) = ug in H.

Also, we give a rigorous definition of solutions to the problem (P)* (e € (0, 1]).

Definition 2.2. Let € € (0, 1] and uf; € H. Then, a function u® : [0,T] — H is called a solution to (P)*
on [0, T], if the following conditions are satisfied:

() u® € W20, T; H)N L=(0,T; V), and |u?| < 1 a.e. on Qr.
(i1) The following variational inequality holds:

(uf(t) - éu‘g(t), ué(t) — z)H + LVM‘E(I) -(Vu®(t) = V2)dx <0
forall z€ K and a.e. t € (0,T).
(iii) u®(0) = ug in H.
Here we mention the result concerning the existence-uniqueness of solutions for (P)® on [0, T'] for
each £ € (0, 1].

Proposition 2.1 (cf. [5, 15]). Assume (A). Then, for each € € (0, 1] and ug; € K, there exists a unique
solution u® to (P)? on [0, T in the sense of Definition 2.2.

Proof. Applying the abstract theory of nonlinear evolution equations (cf. [5, 15]), we can prove this
Proposition 2.1. Indeed, for each € € (0, 1], we define a functional ¢* on H by

2
) otherwise.

b

1 ) 1 ' ‘ 1
¢€(Z);:{_ ‘[Q IVl"dx + =2 LI[—l,l](Z(X))dx, if z € V with I 11(z) € LY(Q), o

AIMS Mathematics Volume 1, Issue 3, 288-317



293

Clearly, ¢ is proper, L.s.c. and convex on H with the effective domain D(¢®) = {z € V ; I|_111(z(*)) €
L'(Q)}. Then, the problem (P)? can be rewritten as an abstract evolution equation of the form:

1
(CP)® %u‘s(t) + 0¢°(u®(t)) — ;ua(t) 50 in H, fort > 0,
u®(0) = ug in H.

Therefore, applying the Lipschitz perturbation theory of abstract evolution equations (cf. [5, 15]), we
demonstrate the existence-uniqueness of a solution u® to (CP)?, hence (P)?, on [0, T'] for each & € (0, 1]
in the sense of Definition 2.2. Thus, the proof of Proposition 2.1 is complete. O

Now, we mention the first main result concerning the solvability and convergence of solutions to
(P); on [0, T].

Theorem 2.1. Assume (A). Then, for each € € (0,1], 6 € (0,1) and u, € K, there exists a unique
solution uf to (P); on [0, T] in the sense of Definition 2.1. Moreover, the following statements hold:

(i) If the initial value ui(x) takes the value in [0, 1] (resp. [-1,0]) for a.e. x € Q, the solution uj(t, x)
also takes the value in [0, 1] (resp. [—1,0]) for a.e. (¢, x) € Q.
(i) ug converges to the unique solution u® of (P)® on [0, T] in the sense that

u; = u® inC(0,T;H) asé — 0. (2.2)

To prove Theorem 2.1, we define a primitive K; by

L, _1-6 (-0

—z7 - , ifz>1-96,
A R
Ks(z) = 0, ifze[-1+6,1-4], (2.3)
1 1-6 (1-6)?
2 +( ) ifz<—1+06.

_ + N
265 T8 T s

Clearly, K;(+) is continuous and convex on R with dKs(-) = K;s(-) in R, where K;(-) is the function
defined by (1.7). Then, we observe from (1.4) and (2.3) that the following lemma holds.

Lemma 2.1 (cf. [2, Section 5], [4, Chapter 2], [17, Section 2]). Let I, 1;(-) and K;(+) be convex func-
tions defined by (1.4) and (2.3), respectively. Then,

K;() — I;_111(-) on R in the sense of Mosco [19] as 6 — 0. 2.4)
Proof. We first check the condition (M1). Let {6} C (0, 1), {zx} € R and z € R so that
0r 1 0 and zx — z weaklyinR as k — +oo.
As R is a one-dimensional space, we observe that
Zt = z inRas k — +o0. (2.5)
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If z € [-1, 1], we easily observe from (1.4) and (2.3) that

likm +inf K. (z) = Ii-1.13(z) = 0

Now we assume that z > 1. Then, there exists a small positive constant u such that
z21+u>1.

Then, from (2.5), there exists a number k, € N satisfying
7
|z — 2l < > for all k > k,.

Therefore, we have

Zk>z—'gzl+'g>l—6f0rallk>k (2.6)
Hence, we infer from (2.3) and (2.6) that

Ry (z0) > f(& (1 + 5)
( y) 1—6k( )+(1—5k)2
25k 2 2 206
2
_E R &
8%, 2 2

— 400 as k — +oo.

Thus, we observe that
likm+inf K5, (zx) = +o0 = I 11(2).

Similarly, if z < —1, we have:

lim inf Ks,(z) = +00 = Ii_1.1)(2).

Thus (M1) holds.
Next we establish (M2). Assume that 6, | 0 as n — +o0 and z € D(I[-11;), namely, z € [-1, 1]. Put
7, = z for all n € N. Then, we easily observe from (2.3) that

Jim R, () = 0 = 1.0,

Therefore (M2) holds.
This completes the proof of Lemma 2.1. O

We observe from Lemma 2.1 and the general result of Mosco convergence (cf. [2, Theorem 3.66],
[17, Theorem 8.1], [14, Proposition.9]) that

IK;s(-) = Ks(+) converges to dj_; 1;(-) in the sense of resolvent convergence as ¢ — 0.

Therefore, K(-) is the approximation of 8/|_; ;)(-) defined by (1.7).
Taking into account Lemma 2.1, we have the following lemma but omit here a detailed proof.
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Lemma 2.2 (cf. [2, Section 5], [4, Chapter 2], [17, Section 2]). Let € € (0,1] and 6 € (0, 1), and let
K;(-) be the convex function defined by (2.3). Define

1 L1, ,
¢2(z) == { ) L |Vzl*dx + = fQKa(Z(x))dx, ifzeV, @7

otherwise.
Then, ¢ is proper, l.s.c. and convex on H with the effective domain D(¢5) = V. Moreover,
@5(-) = ¢°(-) on H in the sense of Mosco [19] as 6 — 0, (2.8)

where ¢° is the proper, l.s.c., convex functional on H defined by (2.1).

Now let us prove Theorem 2.1 considering the solvability and convergence of solutions to (P); on
[0, T].

Proof of Theorem 2.1. By the argument similar to (P)® (cf. Proposition 2.1), we can show the existence-
uniqueness of solutions to (P); on [0, T'] for each € € (0, 1] and 6 € (0, 1). Indeed, we infer from Lemma
2.2 that ¢ is proper, L.s.c. and convex on H with the effective domain D(¢%) = V. Also, we observe
that problem (P); can be rewritten as an abstract evolution equation of the form:

d

d & & E 1 E :
(CP); —tué(t) + 0 (u(t)) — gué(t) =0 in H, fort >0,
u®(0) = uf in H.

Therefore, applying the Lipschitz perturbation theory of abstract evolution equations (cf. [5, 15]), we
can show the existence-uniqueness of a solution u§ to (CP)3, hence (P)3, on [0, T] for each & € (0, 1]
and 6 € (0, 1) in the sense of Definition 2.1.
Now we show (i) by the maximum principle arguments (cf. [13]). We present the proof only for
initial values uj(x) € [0, 1] for a.e. x € Q, because for uj(x) € [-1, 0] the same arguments apply.
Assigning [u5(7) — 1]* to zin (ii) of Definition 2.1, we get

1d, . 2 . 2 (Ks(ug(n) ug(t)
5 77 5@ = 1], + Vo) - 17, + (T [u5(7) - 1J+)H = (7 GO =11) o)
fora.e. 7€ (0, 7).
Adding (—1 /€2, [uf(T) - 1]*)H to the both side in (2.9), we observe that
1d 2 1 1 2
5 72 5@ = 1T, + = (Ko@) = L[5 = 117, < — [l = 117, (2.10)
fora.e. 7€ (0,7).
Because K;(-) is monotone in R with K5(1) = 1, we infer from (2.10) that
d | . 2 2 . 2
@ =11, < S5 - 11", forae. 7€ 0, 7). (2.11)

Therefore, applying the Gronwall lemma to (2.11), we observe from uf(x) € [0, 1] for a.e. x € Q that
2 sy - 1)}, < |1 - 1175, = 0 forall £ € [0, T,
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which implies that
uz(t,x) <1 forae. (t,x) € Q. (2.12)

Next, assigning [0 — u$]"* to zin (ii) of Definition 2.1, we infer from similar arguments as above that
us(t,x) > 0 forae. (¢,x) € Q. (2.13)

Thus, we conclude from (2.12) and (2.13) that (i) of Theorem 2.1 holds.

Now we show (ii). Note from Lemma 2.2 that ¢$(-) — ¢°(-) on H in the sense of Mosco [19] as
0 — 0 (cf. (2.8)). Therefore, from the abstract convergence theory of evolution equations (cf. [2, 16]),
we observe that u§ converges to the unique solution u® of (CP)® on [0, T] as 6 — 0 in the sense of (2.2).
As u® (resp. u;) is the unique solution to (P)* (resp. (P);) on [0, T'], we conclude that the convergence
result (2.2) holds.

Thus, the proof of Theorem 2.1 is complete. O

By arguments similar to the proof of Theorem 2.1, the following result of (E); holds. Hence, its
detailed proof is omitted.

Corollary 2.1 (cf. [5, 15]). Let € € (0,1], 6 € (0,1), and u; € R with |uj| < 1. Then, there exists a
unique solution u? : [0,T] — R to (E); on [0, T such that u% € W'2(0, T) and the following equation

holds: Ks(u)
u)) us
%l —g inR fora.e te(0,7),
&

&
(uﬁ)l‘ + 82

u3;(0) = uj inR.

(B)s

Moreover, the following statements hold:

(i) If the initial value ufj takes the value in (0, 1) (resp. (=1, 0)), the solution ui(t) also takes the value
in (0,1) (resp. (—1,0)) forall t € [0,T].
(ii) There exists a unique function u® € W'->(0, T) such that

u; = u® inC(0,T]) as 6 -0

and u?® is the unique solution of the following problem (E)? on [0, T]:

e 51[—1,1](M8) u
(E)s{ u; + — 2 > 2 inR fora.e. t€(0,T),

u?(0) = u; inR.
3. Stable criteria and numerical experiments for (E)§

Note from (1.5) that 81|, ;;(-) is a multivalued function and therefore very hard to investigate (E)°
numerically. However, we observe from Corollary 2.1 that (E); is the approximate problem of (E)®.
Hence, in this section, we consider (E); from the view-point of numerical analysis.

We present results concerning numerical experiments of (E);. There is a vast method on numerical
simulations of the ODE problem (e.g., backward Euler scheme, Runge—Kutta method and so on). The
authors provided the numerical experiment to (E)® via the Yosida approximation using the standard
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forward Euler method in [25]. To clarify the advantage of our new approximate method (1.7), we
also provide numerical experiments of (E); using the standard forward Euler method. To this end, we
consider the following explicit finite difference scheme to (E)S, denoted by (DE);:

un+1 _ un K(;(u”) u'l
+ =— inR,forn=0,1,2,---,N,,
(DE)% At g2 g t
u’ = u; inR,

where N, € N is a given positive integer and At := T /N, is the mesh size for time.

Note that " is the approximate solution of (E); at the time ¢ = nAt. Also, note that the explicit finite
difference scheme (DE); converges to (E); as Ar — 0 because (DE); is the standard time discretization
scheme for (E)S.

Here, we present the result for an unstable numerical experiment of (DE); for 7 = 0.002, £ = 0.003,
0 = 0.01, the initial data uf; = 0.1, and the mesh size for time Az = 0.000001:

1.2

0.8

0.6

Solution

0.4

0.2+

! ! !
0 0.0005 0.001 0.0015 0.002
TIME

Figure 1. Behavior of a solution «" to (DE); with £ = 0.003, Az = 0.000001, and 6 = 0.01.

We observe from Figure 1 that we have to choose suitable values for constants &, ¢, and mesh size
of time-step Az to generate stable numerical results for (DE)S.
Our second main result of this paper concerns criteria for stable numerical simulations of (DE)S.

Theorem 3.1 (cf. [25, Theorem 7]). Let € € (0,1], 6 € (0, 1) and At € (0, 1]. Assume ug € (0, 1) (resp.
uy € (—1,0)) and T = oo. Let {u";n > 0} be the solution to (DE);. Then, we have:

(1) Assume At € (O, og%/(1 - 6)). Then, u* € (0,1) (resp. u"* € (—1,0)) for all n > 0. Moreover, u"
converges to 1 (resp. —1) monotonically as n — +co.

(i1) Assume At € (682 /(1 =8),26e%/(1 — 6)). Then, there is a positive number ny € N such that u"
oscillates for all n > ny. Moreover, u" converges to 1 (resp. —1) as n — +oo.

Proof. We prove this theorem by arguments similar to those for the proof of [25, Theorem 7].
We present the proof only for initial values u, € (0, 1), because for uj € (-1, 0) the same arguments

apply.
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Assuming ug € (0, 1), we set for simplicity
f5(2) == Ks(z) -z forzeR.

Then, we easily observe that

1-96

1-96
T(Z+ 1), ifz<-1+6

and z = —1,0, 1 are zero points of fs(-).
Note that the difference equation (DE)S is reformulated to give

At
u"t! =u' - < fsw") inR,forn=0,1,2,---.
£

ifze[-1+6,1-946],

3.1

(3.2)

(3.3)

Now, we prove (i). To this end, we assume that Af € (O, 5e%/(1 — 6)). By mathematical induction,

we show:
u' €(0,1) foralli> 0.

Clearly (3.4) holds for i = 0 because u’ = ug € (0, 1).

(3.4)

We now assume that (3.4) holds forall i = 0,1,--- ,n. If u" € (0,1 — 6], we observe from (3.2),

(3.3), and At € (0, 6&2/(1 — 5)) that

At
u' < Mn+1 = - _zfé(”n)
&
At
=u"+ —u"
&
At
<1-6+=(1-90)
g2

1)
1-6+—(0-6) =1,
< +1_5( )

which implies that
e (0,1), ifu" €(0,1-4].

(3.5)

Next, if u" € (1 - 6, 1), we observe from (3.2), (3.3), and 4t € (0,8&%/(1 - 6)) that

At
u' < un+l =u' - _ZﬁS(un)
&

. A 1-6
st b
6 1-9¢
. 1) =1,
<u -5 5 (u )

which implies that

AIMS Mathematics

e (,1), ifu" e -61).

(3.6)
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From (3.5) and (3.6) we infer that (3.4) holds for i = n + 1. Therefore, we conclude by mathematical
induction that (3.4) holds, which is the result similar to (i) of Corollary 2.1.
Also, by (3.2) and (3.4), we observe that fs(u") < 0 for all n > 0. Therefore, we have from (3.3)

At
Wt =y — gfé(u”) >u" foralln>0. (3.7)

Therefore, we infer from (3.4) and (3.7) that {&"*;n > 0} is a bounded and increasing sequence with
respect to n. Hence, there exists a point #™ € R such that

u" - u” inRasn — +oo. (3.8)

By taking the limit in (3.3) as n — 400, we easily observe from the continuity of fs(-) that u™ = 1,
which is the zero point of f;(-). Hence, the proof of (i) is complete.
Next, we show (ii). To this end, we put

B o0&’
T 1-6

We assume that the initial value uj € (0,1 — 6]. We can then find the minimal number ny € N such
that

JAVAM

7 for some 7 € (1,2).

Wwe(l—-61+6)andu’ € (0,1 -0]foralli=0,1,---,ny— 1. (3.9)
Indeed, if u' € (0,1 —¢] foralli =0,1,--- , k, we observe from (3.3) that

AL AL
kel _ ok AL g ALY
W = 82ﬁ;(u)—(1+82)u

AL\?
= (1 + —) uk!

k+1
- (1 n —) . (3.10)
Taking into account (3.10), u® = uf € (0,1 — 6], and

A
1+ af >1+ L > 1,
g2 1-6
we can then find the minimal number ny € N such that
w*>1-6andu' € (0,1 -45]foralli=0,1,---,ny— 1.

Also, by (3.3), we observe that
At At 20
W=y - ) =T =y < -+ —— - (1-6) =1+,
g2 g2 1-6
hence (3.9) holds.
Now we show (ii) given the initial value uj € (0, 1 — 6]. We find from (3.2), (3.3) and (3.9) that

At
un0+l — uno _ _2f§(l/ln0)
&
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W At 1-=06
:uo—g- 5 W™ -1)
=1 -7u™ +r1, (3.11)

which implies that
Wt 4 (7 = Du
T
Therefore, we see from (3.12) and 7 € (1, 2) that the zero point 1 of f;(-) is in the interval between ™
and u™*'. Also, we observe from (3.9) and (3.11) that

=1. (3.12)

W= -tw+r>A0 -1 +8)+7>1-6

and
W == +7<(1 -1 =8 +1<1+56,

which implies that
ut e (1-6,1+90).

By (3.11), (3.12), and repeating the above procedure, we obtain
u'e€(1-6,1+06) foralln> ny (3.13)

and u" oscillates around the zero point 1 of f;(-) for all n > ny. Also, we observe from (3.11) and (3.13)
that

W =1 =1 -~ 1] foralln > n. (3.14)

Therefore, by 7 € (1,2) and (3.12)—(3.14), there exists a subsequence {n;} of {n} such that ™ oscillates
and converges to 1 as k — oo. Hence, taking into account the uniqueness of the limit point, we find
that (ii) holds for the initial value uj € (0,1 - ¢].

From similar arguments as above, we find that (ii) holds for ny = 0 if uf; € (1 — 6, 1]. Therefore, the
proof of (ii) is complete.

This completes the proof of Theorem 3.1. O

Remark 3.1. Assume At € [2582/(1 —9), 00) and put At = 6&*t/(1 — 0) for some T > 2. Then, we

observe that 0s
At
l+—=>14+——>1 and |1-7>1.
g2 1-96

Therefore, we infer from Theorem 3.1 (cf. (3.10), (3.11), (3.14)) that the solution u" to (DE); oscillates
as n — oo, in general.
Remark 3.2. We infer from (3.2) and (3.3) that

u'=1 foralln>0, ifu; =1,

u' =0 foralln>0, ifug=0

and
u'=-1 foralln >0, ifu; = —1.

In comparison with this, the stationary solutions of the difference equation studied by [25] depend on
o without u" = 0 (see [25, Remark 9]).
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From (i1) of Theorem 3.1, we observe that «" oscillates for sufficiently large n and converges to the
zero point of f5(-) for ar € (882/(1 - 6),26*/(1 - 6)). However, for At = 256%/(1 — 6), we have the
following special case that the solution to (DE)$ does not oscillate and coincides with the zero point of
fs(+) after some finite number of iterations.

Corollary 3.1 (cf. [25, Corollary 10]). Let & € (0,1], 6 € (0, 1), at = 26?/(1 — 6) and n € N. Assume
ug = (1-20)"/(1 +06)". Then, the solution to (DE)] is given by

1-6\""
T < ) ] ‘:O,l"“’ _1’
ui: (1+6) lfl "

1, ifi >n.

(3.15)

Similarly, if ug := —(1 = 6)"/(1 + 6)", then the solution to (DE); is given by

1—6 n—i
. T < > ..:0,1"”, _17
Wi = (1+5) i "

-1, ifi > n.

Proof. We present only the proof of (3.15) as similar arguments hold for uf := —(1 — 6)"/(1 + 6)".
Note that uj, := (1 —6)"/(1 +6)" € (0, 1 - 6). Therefore we infer from (3.2), (3.3), and u’ = ug that

At 146 1-6\"
ulzuo—gﬁ;(uo)zug— ° ( ) .

500 = 7540 = (T35

1 -

Similarly, we observe from u' € (0,1 - 9) that

n-2
e e )

Repeating this procedure, we note that from Remark 3.2 the solution to (DE); is given by (3.15). O

Taking into account Theorem 3.1, we present results of numerical experiments of (DE)S. To this
end, we take

T =0.002, e = 0.01, 6 = 0.01 and the initial data uf, = 0.1
as numerical data. Then, we observe that:

1 —_—
1-6 1-0.01

= 1.010101010- - -

and

6 2
& = 0.0000010101010-- - .
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3.1. The case when At = 0.000001

Setting At = 0.000001, we have:

o 2
c 5= 0.0000010101010 - - - > At = 0.000001,

which complies with (i) of Theorem 3.1. Hence, we have the following stable numerical result of (DE);.
Indeed, we observe from Figure 2 and Table 1 in Remark 3.3 that the solution to (DE); converges to

the stationary solution 1 monotonically.

Solution

! ! !
0 0.0005 0.001 0.0015 0.002
TIME

2

Figure 2. 168 5= 0.0000010101010- - - > At = 0.000001.

Remark 3.3 (cf. [25, TaBLE 1]). In [25], the authors provided numerical results of the following dif-

ference equation:

utt —u" N Ol117)s(u")

u
YDE)* . =— inR forn=0,1,2,--- N,
( )5{ At & 0 5,

u =u; inR.

Then, we obtained the following Table 1 of numerical result of solutions to (YDE); (cf. [25, TaBLE 1]).
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Table 1. Numerical results of (DE); and (YDE); for At = 0.000001.

number of iterations i  the value of u' to (DE);  the value of u' to (YDE);

0 0.100000 0.100000
1 0.101000 0.101000
2 0.102010 0.102010
3 0.103030 0.103030
4 0.104060 0.104060
5 0.105101 0.105101
224 0.928940 0.928940
225 0.938230 0.938230
226 0.947612 0.947612
227 0.957088 0.957088
228 0.966659 0.966659
229 0.976325 0.976325
230 0.986089 0.986089
231 0.995950 0.995950
232 0.999959 1.005909
233 1.000000 1.010059
234 1.000000 1.010101
235 1.000000 1.010101
236 1.000000 1.010101

237 1.000000 1.010101

3.2. The case when At = 0.000002

Next we set At = 0.000002 where we have

2 2 2
léf 5= 0.0000010101010- - - < At = 0.000002 < %,

which complies with (i1) of Theorem 3.1. Hence, we observe from Figure 3 and Table 2 that the

solution to (DE)§ oscillates and converges to the stationary solution 1.

AIMS Mathematics Volume 1, Issue 3, 288-317



304

Solution

L L L
0 0.0005 0.001 0.0015 0.002
TIME

2 2 2
Figure 3. 16‘9 = = 0.0000010101010-- - < a7 = 0.000002 < 15‘9

Table 2. Numerical result of (DE); for A7 = 0.000002.

number of iterations i the value of u'

0 0.100000

1 0.102000

2 0.104040
120 0.994959
121 1.004940
122 0.995159
123 1.004745
124 0.995350
125 1.004557
126 0.995534
127 1.004376
128 0.995711
129 1.004203
574 0.999999
575 1.000001
576 0.999999
577 1.000000
578 1.000000
579 1.000000

580 1.000000
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oe?
1-6
Setting At = 26€%/(1 — §) = 0.0000020202020 - - -, we note Remark 3.1. Indeed, we observe from
Figure 4 and Table 3 that the solution to (DE); oscillates.

3.3. The case when At =2

1.1

1+

0.9

0.8

0.7

0.6

Solution

0.5

0.4

0.3

0.2

0.1

! ! !
0 0.0005 0.001 0.0015 0.002
TIME

2

Figure 4. At =2 158 5= 0.0000020202020 - - - .

2

5= 0.0000020202020 - - -

1)
Table 3. Numerical result of (DE); for A7 = 21 i

number of iterations i the value of '

0 0.100000
1 0.102020
2 0.104081
3 0.106184
4 0.108329
5 0.110517
111 0.920801
112 0.939403
113 0.958381
114 0.977742
115 0.997495
116 1.002505
117 0.997495
118 1.002505
119 0.997495

120 1.002505
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3.4. The case when At = 0.000005
Setting At = 0.000005, we have:

o&?

2
1-6

= 0.0000020202020 - - - < At = 0.000005.

Therefore, noting Remark 3.1, we indeed observe from Figure 5 that the solution to (DE); oscillates.

1.1

14

0.9+

0.8

0.7+

0.6

Solution

0.5+

04+t

0.3+

0.2+

0.1+

0

L L L
0 0.0005 0.001 0.0015 0.002
TIME

2
Figure 5. 2 168 5= 0.0000020202020 - - - < At = 0.000005.

o5&’
1-6
Now we consider At = 156&?/(1 — 6). Recalling Remark 3.1, we indeed observe from Figure 6 that
the solution to (DE)S oscillates between three zero points of fs(-).

3.5. The case when At = 15

1.4+

Solution

0.2+

-0.41

-0.61
-0.81

-1.24

1.4+

! ! !
0 0.0005 0.001 0.0015 0.002
TIME

o&?
1-6

Figure 6. At =15
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3.6. Numerical result establishing Corollary 3.1

Next, we consider a numerical example of Corollary 3.1. To this end, we use the following initial
data:
_(1-8° (1-001)°
T (140 (1+0.01)°

We observe from Table 4, Figure 7, and Corollary 3.1 that (3.15) holds with n = 6:

U =0.88691688--- .

2

08 ~ = 0.0000020202020-- .

Table 4. Numerical result of (DE) for A7 = 2 7

number of iterations i the value of '

0 0.886917
1 0.904834
2 0.923114
3 0.941763
4 0.960788
5 0.980198
6 1.000000
7 1.000000
8 1.000000
9 1.000000

L=
)

1.000000

1.1

1
0.91[

0.8

0.7+

0.6

Solution

0.5+

0.4+

0.3+

0.2+

0.1

n n n
0 0.0005 0.001 0.0015 0.002
TIME

2

Figure 7. At =2 158 = 0.0000020202020 - - - .

3.7. Conclusion for the ODE problem (DE);

From Theorem 3.1, Remark 3.3 and numerical experiments as above, we conclude that
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(i) the mesh size for the time step At needs to be smaller than §&%/(1—4) to provide a stable numerical
solution for (DE);
(i1) our new approximate method (1.7) is better than the Yosida approximation (1.6) because the
solutions to (DE); take values in [—1, 1] (cf. Table 1);
(iii) we provide a stable numerical examples of (DE)§ with the initial data uf, := (1 —-6)"/(1 +6)", even
if the mesh size At is equal to 26&/(1 — 6).

4. Stable criteria for the explicit finite difference scheme applied to (P); in 2D space

Although a numerical study of (P)? is hard as d1;_; ;;(-) is multivalued (cf. (1.5)), we observe from
Theorem 2.1 nevertheless that (P){ is an approximation to the problem (P)®. Therefore, in this section,
we shall consider (P); in a 2D space from a numerical analysis view-point.

To extend the result obtained in [25, Theorem 16] and avoid the complicated arguments, we perform
numerical experiments using the standard forward Euler method, although there is a vast method on
numerical simulations of the PDE problem (e.g., backward Euler scheme, finite element method and
SO on).

For simplicity, assume that Q := (0, 1) x (0, 1) is a square domain in R?. We consider the following
difference equation to the Allen—-Cahn equation in (P)S:

n+l _

u;

i,j i-1,j i+1,j i,j i,j+1 i,j

At (Ax)? (Ay)? g2 g2 4.1)
forn=0,1,--- ,N,-1,i=1,2,--- ,Ne—1,and j=1,2,--- ,N, — 1,

Wy, owly = 2u) + wlioy = 2ui; + uy Ks(ui)  u}

where N;, N,, N, € N are given integers, At := T/N, is the mesh size for the time steps, and in the 2-D
space Ax := 1/N, and Ay := 1/N, are the mesh sizes along the x- and y-axes.

Also, for the homogeneous Neumann boundary and initial conditions, we consider the following
explicit situations:

n _ .n n _n
Upo = U1, Uy = Uy 115
n _.n n o
uO,Ny - ul,Ny—l’ uNX,Ny - uNx—l,Ny_]’
(1<n<N) 4.2)
o= t 1t = n = e —
Wig = Wpy> Uiy, = Uiy fori=1,2,--- ,N, -1,
0 = " " = n | = o e —_
Uy =y Uy, ;= Uy gy forj=1,2,--- Ny—1
and
0 _ & . .
u;; = ug(x;,y;) fori=0,1,--- Ny, and j=0,1,--- ,N,, (4.3)

where x; := iax and y; := jAy.

In considering the explicit finite difference system (DP)S := {(4.1), (4.2), (4.3)}, we observe that u; ;
is the approximate solution of (P)$ at time #, := nAt and position (x;, y;). Also, we observe that (DP);
converges to (P); as At — 0, Ax — 0, and Ay — 0, because (DP); is the standard time and space
discretized form of (P) in the 2D space.

Using Theorem 3.1, we observe that we also have to choose suitable values for the constants &, 6,
and the mesh sizes for time Ar and space Ax and Ay to establish stable numerical results for (DP). We
now announce our final main result concerning the stability of (DP)3.
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Theorem 4.1. Let £ € (0,1], 6 € (0,1), T > 0, Q := (0,1) X (0, 1) and uj € K N C(ﬁ), where K is
the set of initial data defined in (A). Also, let Ny, N, Ny be the integers so that At € (0,1], ax € (0, 1]
and Ay € (0,1], where At := T|N,, Ax := 1/N, and Ay := 1/N,. Let {uzj;n =0,1,---,N,, I =
0,1,---,N,, j=0,1,---,N,} be the solution to (DP);. Also, let ¢y € (0, 1) and assume that

CoOE? At At 1-co
0<at< d 0< + < 4.4
S1-s MU Ty T 2 44)
Then, the solution to (DP); is bounded in the following sense:
max |uj;| <1 foralln=0. 4.5)
0<i<Ny ?
0<j<N,

In particular, if the initial value uj(x) takes the value in [0, 1] (resp. [-1,0]) for a.e. x € Q, the
following boundedness holds:

”Zj € [0,1] (resp. u:’] € [-1,0]) foralln>0,i=0,1,--- ,Nyand j=0,1,--- ,N,. (4.6)
Proof. We demonstrate (4.5) by mathematical induction. Clearly (4.5) holds for n = 0 because u’ =

u; € K. We next assume that

max |uf |<1 forall¢=0,1,---,n. 4.7)
0<i<Ny ’
0<j<N

Then, we observe that the explicit finite difference equation (4.1) in (DP); can be reformulated giving

n+1

u; ; 4 T

_ n
=iy

e T Uy U
At
(1= 2r = 20U = — folui) (4.8)

foralln=0,1,--- ,N,-1,i=1,2,--- ,Ny—1,and j=1,2,--- ,N, - 1,

where we put r, := Ar/(ax)*, r, 1= at/(ay)*, and f5(-) is the function defined in (3.2). Note that
z=-1,0, 1 are the zero points of f;(z).
We observe from (4.4), (4.7), and (4.8) that

1- uf‘;l = rx(l - ”?—1,]') + rx(l - u?ﬂ,j)
+ry(1 —uzj_1)+ry(l _”Zjn)
r(-2r-2r)(1-u )+ gﬁ;(uzj)
> (1=2r = 2r) (1 - ) + i—f ) 4.9)
foralli=1,2,--- ,N,—1,and j=1,2,--- ,N, - 1.

Note from (3.2) that the function [-1,1] 3 z —» (1 = 2r, — 2r,)(1 — 2) + At/&% f5(z) is continuous.
Also, we infer from (3.2), (4.4) and (4.7) that

(1=2r=20)(1 =2+ /02 0 forall z€ [-1, 1] (4.10)
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Indeed, we observe from (4.4) that
1 =2r,=2r,>cy>0. “4.11)

Therefore, it follows from (3.2) that the function [-1,1 -6] 3z = (1 = 2r, = 2ry,)(1 — 2) + At]& f5(2)
attains a minimum value at z = 1 — 6. Therefore we obtain from (3.2) and (4.4) that

(1=2r=2n)(1- 9 + 5 £,
>(1-2r,— 2ry)(1 —(1-9))+ gf(;(l —-0)
=(1 = 2r, = 21,)6 — —=(1 - 6)

E

At
>c6 — (1 - 6)
&

>0 forallz e [-1,1 - 6]. (4.12)

Also, for any z € [1 — 6, 1], we observe from (3.2) that

(1= 2r = 2r)(1 = 2) + =2 £5(2)
&

At 1-6
=1-2r,-2r)( -2+ —=-—(z -1
( ry = 2ry)(1 = 2) 2 s (z—-1)
1-0 1-06
= At—(1=2r,=2r)|z+ (1 =2r,—2r,) - At. 4.13)

| 6e2 02
Here we note from (4.4) that

1-6
0g?

1-6
A[—(l—zl"x—zry)ﬁEAI—C()SO,

which implies from (4.13) that the function [1 — 6,1] 3 z — (1 = 2r, = 2r,)(1 — 2) + At/ f5(2) is
non-increasing and attains a minimum value at z = 1. Therefore, we have:

(1=2r, = 21)(1 =)+ 2 fs(2) = =2 f5(1) = 0 forall z € [1 =6, 1]. (4.14)
& &

Hence, from (4.12) and (4.14), (4.10) holds. Therefore we find from (4.7), (4.9) and (4.10) that
1-ut' >0
4.15)
foralli=1,2,--- ,N,—1,and j=1,2,--- ,N, - 1.
Similarly, we observe from (4.4), (4.7), and (4.8) that

n+1 _ n n
ui; + 1=r, (”i—l,j + 1) +7r, (”i+1,j + 1)
n n
+ry (ui,j—l + 1) + 7y (u,.J.+l + 1)

At
+ (1= 2r, = 2ry) (uf; + 1) - ity
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At
>(1 = 2r = 21) (] + 1) = 5 £301) (4.16)
foralli=1,2,--- ,Ny—land j=1,2,--- ,N, - 1.

Clearly, we have from (3.2) that the function [-1,1] 3 z —» (1 = 2r, = 2r,)(z + 1) - At/ f5(2) is
continuous. Also, using similar arguments as above (cf. (4.10)), we infer that the function [-1,1] 3
2= 0 =2r=2r)z+1) - At/&° f5(z) is non-negative. Indeed, we observe from (3.2), (4.4), and
(4.11) that the function [-1 + 6,11 2z = (1 = 2r, = 2r))(z + 1) - At/& f5(z) attains a minimum value
at z = —1 + 9. Therefore, it follows from (3.2) and (4.4) (cf. (4.12)) that
At
(1=2r,=2r) @+ 1) - gfa(z)
At
2(1=2r,=2r)(-1+06)+ 1) = = fo(=1 + )
>
At
=(1 = 2r, = 2r)6 + (-1 +9)
e
At
2co0 — — (1 -9)
>

>0 forallze[-1+6,1]. (4.17)

Also, for any z € [-1, -1 + ], we observe from (3.2) that

(1-2r —2r)(z+ 1)~ i—;ﬁs(z)

At 1-96
=(1 =21 =2r) G+ D= - ——@+1D)

= (1—2rx—2ry)—?At z+(1—2rx—2ry)—gmf. (418)

Here we note from (4.4) that

At > 0.

1-9¢
(1—2rx—2ry)—EAl2C()_ 52 =

Therefore, we infer from (4.18) that the function [-1,-1+6] 3z — (1 = 2r, = 2r))(z+ 1) — At]& f5(2)
is non-decreasing and attains a minimum value at z = —1. Hence, we have:

At At
(I =2r,=2r)(z+1) - ;f(;(z) > —;fé(—l) =0 forallz € [-1,-1+6]. 4.19)
From (4.17) and (4.19), we obtain
At
(1 =2r,=2r)(z+1)— gﬁ;(z) >0 forallz € [-1,1],

which from (4.7) and (4.16) implies that

Wi +120

foralli=1,2,--- ,N,—1,and j=1,2,--- ,N,— L. (4.20)
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Taking into account the Neumann boundary condition, specifically (4.2), we observe from (4.15)
and (4.20) that
max

0<i<N
0<j<N,

n+1
wi' <1,

which implies that (4.7) holds for € = n + 1. Therefore, we conclude by mathematical induction that
(4.5) holds.

Finally, we show (4.6). We present the proof only for initial values uj(x) € [0, 1] for a.e. x € Q,
because for ug(x) € [-1, 0] the same arguments apply.

We demonstrate (4.6) by arguments similar to the proof of (4.5), namely, by mathematical induction.
Clearly (4.6) holds for n = 0 because u’(x) = ug(x) € [0, 1] for a.e. x € Q. We next assume that

ufj €[0,1] forall¢=0,1,---,n,i=0,1,--- ,Nyand j=0,1,--- ,N,. (4.21)
Note from (3.2) and (4.21) that
f(g(uzj) <0 foralli=0,1,--- ,Nyand j=0,1,--- , N,.

Therefore, we observe from (4.8), (4.11) and (4.21) that

At
u:f;rl = rxu?—l,j + rxu;ﬁrl’j + ryul’.fj_1 + ryuzj+1 +(1-2r, - 2ry)uffj - ;ﬁ;(uzj) 4.22)
>0 foralli=1,2,--- ,Ny—1land j=1,2,--- ,N,— 1.
By arguments similar to the proof of (4.15), we also observe that
ul”}rl <1 foralli=1,2,--- ,Ny=land j=1,2,--- ,N, - 1. (4.23)

Hence, from (4.22), (4.23) and the Neumann boundary condition, specifically (4.2), we observe that

it €[0,1] foralli=0,1,--- ,Nyand j=0,1,--- ,N,,

which implies that (4.21) holds for £ = n + 1. Therefore, we conclude by mathematical induction that
(4.6) holds, which is the result similar to (i) of Theorem 2.1.
This completes the proof of Theorem 4.1. O

Remark 4.1. We can set ¢y = 0 in (4.4) for the explicit finite difference scheme to the following usual
2D heat equation applying a homogeneous Neumann boundary condition:

u,—Au=0inQ=(0,T)xQ,
a—u:O onX=(0,T)xT,
ov
u(0, x) = up(x), x€Q,

where Q := (0, 1) x (0, 1) is a square domain in R* and T := 0Q is the boundary of Q.
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Remark 4.2. We note that Theorem 4.1 holds for the homogeneous Dirichlet boundary condition.
Also, we can establish stability criteria for a 3D space. Indeed, assume for simplicity that Q :=
(0,1) x (0,1) x (0, 1). Let Az denote the mesh size along the z-axis in 3-D space. Also, let ¢y € (0,1)
and assume that

CoOE? At At At 1-co

and 0<

0<ar< + + <
1-6 (Ax)?  (Ay)? (A2)? 2

Then, a boundedness result similar to (4.5) holds for Q := (0,1) x (0,1) x (0, 1) c R3.
From Theorem 4.1, we determine the stable numerical experiments of (DP); as follows. We set
Q:=(0,1)x(0,1),T =0.01,6 = 0.01 and Ax = Ay = 0.005
as numerical data. Also, we consider the following initial data uj(x, y) defined by

0.2, if (x,y)€[0.25,0.75] x [0.25,0.75],

Ho(x.y) = { ~0.7, if (x,y) € Q\ [0.25,0.75] x [0.25,0.75]. (4:24)

The graph of the initial data u{(x, y) is as follows (Figure 8):

R Uiy

TU

Figure 8. Graph of initial data u;(x, y) defined by (4.24).

4.1. The case when € = 0.08 and At = 0.000005
Now, setting € = 0.08 and At = 0.000005, we take ¢y = 0.1. Then, we observe that:

At At 0.000005 1—co
= 2=04<045=
a2 (ay? . (0.005)2 < 2
and 5 )
coo0E 0.1 x0.01 x (0.08)
= = 0.0000064646464 - - - .
1-6 1-0.01
Therefore, we have
CoOE?

5" 0.0000064646464 - - - > At,
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which implies that the criteria condition (4.4) holds. Thus, we obtain a stable numerical experiment of
(DP); yielding Figure 9:

ux.y)

Figure 9. £ = 0.08, At = 0.000005, Ax = Ay = 0.005, 6 = 0.01, and ¢ = 0.002

4.2. The case when € = 0.01 and At = 0.000005
Next, we set € = 0.01, At = 0.000005, and consider ¢y = 0.1. Then, we find that:

At ar 0.000005 1 - ¢
_ 2= 04 <045 = ,
a0 Ay (0,005 < 2

and

coo? _ 0.1x0.01 x (0.01)?

1-6 1-0.01
Therefore, the criteria (4.4) does not hold and hence yields an unstable numerical experiment of (DP);.
Indeed, we obtain Figure 10:

= 0.00000010101010- - - < At.

ufxy)

Figure 10. £ = 0.01, Ar = 0.000005, Ax = Ay = 0.005, 6 = 0.01, and 7 = 0.002

4.3. The case when € = 0.01 and At = 0.0000005
Finally, we consider the case € = 0.01, At = 0.0000005, and set ¢y = 0.5. We then observe that:

At At 0.0000005 1 -co
o) + o2 - (00057 x2=0.04<0.25= 5
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and
2 2
cwoe_ 03X 001X OOV _  60000050505050- - - > o,
1-¢6 1-0.01
which implies that the inequalities (4.4) hold. Therefore, we obtain a stable numerical experiment of

(DP); that yields Figure 11:

u(xy)

Figure 11. £ = 0.01, Ar = 0.0000005, Ax = Ay = 0.005, 6 = 0.01, and ¢t = 0.002

Remark 4.3. From Theorem 4.1, stable numerical results for (DP); are produced if we choose suitable
values for the constants &, 6, and mesh sizes for time At and space Ax and Ay. Therefore, if we perform
a numerical experiment of (P)? for sufficiently small g, we found it imperative to consider the original
problem (P)? using the primal-dual active set method of [3], the Lagrange multiplier method of [9]
and so on.

4.4. Conclusion of PDE problem (DP);
From Theorem 4.1 and the numerical experiments presented above, we conclude that
(1) the mesh sizes for time-step At and spatial-steps Ax, Ay must satisfy constraints

2 A A 1 -
0<At< &, 0B A 7%
1-6 (ax)?  (ay)? 2

for some constant ¢y € (0, 1),

to generate stable numerical simulations of (DP);

(i) the value 6&%/(1 — §) is very important in providing numerical experiments of (DE); and (DP);
(cf. Theorems 3.1 and 4.1);

(ii1) our new approximate method (1.7) is better than the Yosida approximation (1.6), because the
solutions to (DP)S also take values in [-1, 1] (cf. (DE)).
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