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Abstract: In time to event data analysis, it is often of interest to predict quantities such as t-year
survival rate or the survival function over a continuum of time. A commonly used approach is to relate
the survival time to the covariates by a semiparametric regression model and then use the fitted model
for prediction, which usually results in direct estimation of the conditional hazard function or the
conditional estimating equation. Its prediction accuracy, however, relies on the correct specification
of the covariate-survival association which is often difficult in practice, especially when patient
populations are heterogeneous or the underlying model is complex. In this paper, from a prediction
perspective, we propose a disease-risk prediction approach by matching an optimal combination of
covariates with the survival time in terms of distribution quantiles. The proposed method is easy to
implement and works flexibly without assuming a priori model. The redistribution-of-mass technique
is adopted to accommodate censoring. We establish theoretical properties of the proposed method.
Simulation studies and a real data example are also provided to further illustrate its practical utilities.
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1. Introduction

In many biomedical applications, the primary interest centers on predicting a survival outcome, for
instance, the t-year survival probability, or the median survival time for future patients. For some
diseases, it may be of much relevance to predict the survival function over a continuum of time for
better treatment and surveillance. The problem of survival prediction is often tackled by first
formulating a regression model that relates the survival time to the covariates and then making the
prediction according to the fitted model. The commonly used approaches to assess the survival rate
(or disease risk) are either based on modeling the association between the baseline covariates and the
failure times (e.g. [1–4]) or through modeling the relationship between the hazard function and
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baseline covariates (e.g. [5–7]). As an alternative, the censored quantile regression [8–10] provides a
valuable complement to the aforementioned methods. The censored quantile regression method has
great advantages in the interpretation of regression coefficients which are derived under
distribution-free assumptions. However, the censored quantile regression method focuses on a single
quantile at a time, hence fails to make full use of the quantile information of the target distribution.

The regression-based prediction directly models the conditional hazard function or the conditional
regression function. The information of the covariates is incorporated and the resulting model can
also be used for quantifying the risks for individual patients. However, the prediction accuracy of the
regression approach relies heavily on whether the model is correctly specified. When a misspecified
model is used, the prediction results can be misleading. However, in practice, it is often difficult to
specify a correct model, especially when patients population are heterogeneous, or the data structure
is complex. Furthermore, predicting the conditional survival outcome for individual patients is often
too difficult or unrealistic. For example, Henderson and Keiding [11] convincingly showed that
statistical models and indices can be useful at the group or population level, but may have limited
predictive values for individual survival since human survival is so uncertain. Therefore throughout
the paper, we focus on predicting unconditional survival outcomes. For such purposes, the conditional
approach does not directly target the quantity to predict and is hence less ideal.

So far, to the best of our knowledge, there is very limited research discussing the survival-rate (or
disease-risk) assessment by matching quantiles or survival distributions. For complete data, the idea
of matching quantiles is explored in many contexts (e.g. [12–14]). The matching quantiles estimation
(MQE) method is proved to be an effective approach to assess the target distribution. For regression
models, the MQE method shares certain similarities in form with the ordinary least squares estimation
(OLS) and the quantile regression (QR) method [12, 15]. But the MQE method is quite different from
the classical methods such as the QR method. To be specific, the MQE is proposed to assess the
(unconditional) target distribution, while the QR method is used for estimating regression coefficients
based on conditional quantile functions. The MQE method makes use of both information of the order
and the distance between quantiles of the target distribution and those used for matching.

One advantage of the MQE method is that it can be implemented by matching the local quantiles
between τ1 and τ2 only (0 < τ1 < τ2 < 1). This could be very attractive if we are only interested
in studying a specific part of the target distribution, such as the middle or the lower end of the target
distribution. Another advantage is that it does not require the observations being paired, i.e., the size
of the sample from the target distribution and that of the counterpart are allowed to be unequal. It
makes the MQE method more appealing and practical than traditional methods, especially for missing
data. Sgouropoulos et al. [14] propose a MQE method by matching the sample quantiles of target
distribution with that of a linear combination of covariates, which uses an iterative procedure based
on permutation and OLS in computation. Although the iterative algorithm is fast, it inherits several
disadvantages from OLS such as being sensitive to outliers, inapplicable to unpaired observations as
well as the incomplete data due to censoring.

Motivated by the MQE method, we propose a matching censored quantiles approach for predicting
the survival rates and assessing the target distribution of interest. Particularly, the proposed method not
only bears certain similarities with the classical quantile regression method and the composite quantile
regression method [16], but also maintains major advantages of the aforementioned MQE methods
for complete data. In addition, the proposed method avoids using permutations in the computational
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algorithm and can be easily extended to match a complex transformation of the target distribution. Last
but not the least, the proposed method provides an alternative to assess or predict the target distribution
in the presence of right-censored data.

The rest of the article is organized as follows. In Section 2, we first present some notations, and then
introduce the matching censored quantiles method. In Section 3, we provide the asymptotic properties
of the proposed estimator. Section 4 discusses the matching measurement criteria. Section 5 presents
extensive simulation studies. An illustrative example is provided in Section 6. Finally, Section 7
concludes with some remarks.

2. Estimation procedure

Let Ti be the failure time of the i-th subject, and Ci be the censoring time. Denote the observed
time as Yi = min(Ti,Ci), and the censoring indicator as ∆i = I(Ti ≤ Ci). Let Zi = (1,Zi1, . . . ,Zip)T

be a (p + 1) × 1 vector of covariates for the ith subject. The observations of {(Yi,∆i,Zi), i = 1, . . . , n}
are independent and identically distributed copies of (Y,∆,Z). The censoring mechanism is assumed
to be non-informative, i.e., Ti and Ci are independent of each other, or Ti and Ci are conditionally
independent of each other given Z.

To assess the survival rates of T , we aim to find a transformation G(βT Z) such that its distribution
matches the distribution of T as close as possible, where G(·) is a known, continuous and strictly
increasing function, and β ∈ Rp+1 is a (p + 1)-dimensional coefficient. Denote the cumulative
distribution function of T and βT Z as FT (t) = Pr(T ≤ t) and FG(βT Z)(t) = Pr{G(βT Z) ≤ t}, respectively.
Correspondingly, we write the survival function of T and βT Z as S T (t) = 1 − FT (t) and
S G(βT Z)(t) = 1 − FG(βT Z)(t).

Let H(t) = G−1(t) be the inverse function of G(t), then H(·) is also a known, continuous and strictly
increasing function. Note the fact that

FT (t) = Pr(T ≤ t) = Pr{H(T ) ≤ H(t)} = FH(T ){H(t)},
FG(βT Z)(t) = Pr{G(βT Z) ≤ t} = Pr{βT Z ≤ H(t)} = FβT Z{H(t)},

hence, to search β such that FG(βT Z) matches FT is equivalent to find a linear combination βT Z such that
its distribution matches the distribution of H(T ).

2.1. Matching censored quantiles

With complete data, Sgouropoulos et al. [14] proposed to use the distribution of a linear combination
βT Z to match the target distribution, and β is estimated by minimizing the objective function,

min
β

n∑
i=1

{
T(i) − (βT Z)(i)

}2
, (2.1)

where T(1) ≤ · · · ≤ T(n) are the order statistics of T1, . . . ,Tn, and (βT Z)(1) ≤ · · · ≤ (βT Z)(n) are the
order statistics of βT Z1, . . . , β

T Zn. Here, (βT Z)(i) is also known as the (i/n)th sample quantile of βT Z.
However, T(i) is not fully observed due to right censoring, and naively treating Y(i), the order statistic
of the observed time Y , as T(i) would cause bias.
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Denote Xβ = G(βT Z). Let FXβ(t) = Pr{G(βT Z) ≤ t} be the cumulative distribution function of the
survival time Xβ. Let QT (τ) = inf{y : FT (y) ≥ τ} be the τ-quantile of FT (·), and QXβ(τ) = inf{y :
FXβ(y) ≥ τ} be the τ-quantile of FXβ . Motivated by [14], we define the objective function Mn(β)

Mn(β) =

Kn∑
k=1

δk

{
Q̂T (τk) − Q̂Xβ(τk)

}2
I(αL ≤ τk ≤ αU), (2.2)

where αL ≤ τ1 < · · · < τKn ≤ αU < 1 are Kn quantile points, 0 < δk = τk − τk−1, Kn ≤ n, and Kn ↑ ∞,
max{δk} ↓ 0 as n→ ∞, Q̂T (τ) is the estimated τ-quantile with right-censored observations, and Q̂Xβ(τ)
is the sample τ-quantile of G(βT Z1), . . . ,G(βT Zn). Here we confine the range of study in [0, τU], where
τU ∈ (0, 1) is a deterministic constant subject to certain identifiability constraints due to censoring. By
matching censored quantiles, the estimator defined in Eq (2.2) forces the distribution FXβ to be as close
as possible to the target distribution FT . Define β̂ as a minimizer of minβ Mn(β). We call the proposed
estimator β̂ as the matching censored quantiles (MCQ) estimator.

Remark 1. The proposed MCQ method has certain similarity with the idea of maximum rank
correlation (MRC) estimator [17, 18] which is given by minimizing∑

i, j

I(Ti > T j)I(βT Zi > β
T Z j).

The MRC approach also matches the orders of event times and covariate effects. However, there are
essential differences between MCR and MCQ. The MRC method aims to match only the order of
event times and covariate effects, not the quantiles, leading to a clear difference with MCQ in the form
of objective functions. The objective function of MRC is a U-statistics, while the objective function
of MCQ is a simple square summation. The MCQ method focus on minimizing the distance of the
quantiles, so it allows the occurence of mismatch at some orders while the MRC method does not
allow any mismatch. When there exist missing observations in Z, the MCQ method works normally
but the MRC fails. Khan and Tamer [19] proposed a partial rank estimation (PRE) procedure which
was a generalization of [17, 18] for censored data. In Section 4, we compare the performance of the
proposed method with that of the PRE method. �

The key to construct Eq (2.2) is to estimate the quantiles {QT (τk) : k = 1, . . . ,Kn}, for which
the redistribution-of-mass technique (e.g., [8,10,20]) is adopted. This method redistributes the mass of
each censored observation to Y+∞, where Y+∞ is a sufficiently large constant. We start with constructing
an augmented data set {(Yi,∆i,Zi), i = 1, . . . , n + nc}, where {(Yi,∆i,Zi), i = 1, . . . , n} represent the
original data, and {(Yi = Y+∞,∆i = 0,Zi), i = n + 1, . . . , n + nc} are nc pseudo paired observations
corresponding to the censored data.

For the case of conditional independent censoring, given a fixed quantile τ, we define the local
weight function as

wi(FT ; Zi, τ) =


1, if ∆i = 1 or FT (Yi|Zi) > τ,
τ − FT (Yi|Zi)
1 − FT (Yi|Zi)

, if ∆i = 0 and FT (Yi|Zi) < τ,
(2.3)

for i = 1, . . . , n. Here, FT (t|Z) is the cumulative distribution function of T given Z. Let
{w1(FT ; Zi, τ), . . . ,wn(FT ; Zi, τ), 1 − wc1(FT ; Zi, τ), . . . , 1 − wcnc

(FT ; Zi, τ)} be the weights assigned to
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the augmented data, where {c1, . . . , cnc} are subscripts of the nc censored observations. Using these
weights, we can estimate QT (τ) by

Q̂T (τ) = inf

t :
1
n

n∑
i=1

[
wi(FT ; Zi, τ)I(Yi ≤ t) + {1 − wi(FT ; Zi, τ)}I(Y∞ ≤ t)

]
≥ τ

 . (2.4)

In practice, FT (t|Z) is unknown, and thus need to be estimated. Using the method in [21], we can
estimate FT (t|Z) nonparametrically by F̂T (t|Z = z) = 1 − Ŝ T (t|Z = z) with Ŝ T (t|Z = z) being the local
Kaplan-Meier estimator,

Ŝ T (t|Z = z) =

n∏
i=1

{
1 −

Bni(z)∑n
k=1 I(Yk ≥ Yi)Bnk(z)

}I(Yi≤t,∆i=1)

, (2.5)

where Bni(z) = Kp {(z − Zi)/hn} /
∑n

i=1 Kp {(z − Zi)/hn} is the Nadaraya-Watson type of weight, Kp(zi) =∏p
j=1 K(zi j), K(·) is a univariate density kernel function, and hn is the bandwidth that converges to zero

as n→ ∞.
For the case of independent censoring, we can still use the above framework for conditional

independent censoring, and we only need to change the Bni(z) in Eq (2.5) as Bni(z) = 1/n, for all i. In
this case, Ŝ T (t|Z = z) = Ŝ T (t) exactly reduces to the Kaplan-Meier estimator, and the τ-quantile
estimator by Eq (2.4) is equivalent to Q̂KM(τ) = inf{y : F̂KM(y) ≥ τ}, where F̂KM equals to 1 minus the
Kaplan-Meier estimator.

2.2. Computational algorithm

Since H(·) is a known and strictly monotonic function, in practical computation, people commonly
assume H is from the class of Box-Cox transformation functions with a parameter λ as follows

Hλ(t) =


tλ − 1
λ

, λ > 0,

log(t), λ = 0,
(2.6)

or other class of transformation functions such as logarithmic transformation function (Cheng et
al. [3]). If there is no specific claim in the sequel, we assume Hλ = G−1

λ is from the Box-Cox
transformations class in default.

Let Xβ,λ = Gλ(βT Z), then, correspondingly, Eq (2.2) can be rewritten as

Mn(β|λ) =

Kn∑
k=1

δk

{
Q̂T (τk) − Q̂Xβ,λ(τk)

}2
I(αL ≤ τk ≤ αU), (2.7)

where QXβ,λ(τ) = inf{y : FXβ,λ(y) ≥ τ} and FXβ,λ(t) = Pr{Gλ(βT Z) ≤ t}. Let U(·) be the probability
distribution function of the random variable FT (Xβ,λ). If T and Xβ,λ have the same distribution, FT (Xβ,λ)
is a random variable uniformly distributed on the interval [0, 1], hence U(x) = x, for x ∈ [0, 1]. We
define a measurement for the goodness of match as

ρ = 1 −
1
2

∫ 1

0

∣∣∣dU(x) − dx
∣∣∣. (2.8)
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It is obvious that ρ ∈ [0, 1], and ρ = 1 if and only if the matching is perfect in the sense that T and Xβ,λ

have exactly the same distribution. When the difference between dU(x) and 1 increases, ρ decreases.
Hence the larger the difference between the distributions of T and Xβ,λ, the smaller the value of ρ.

Let F̂T (t) = n−1 ∑n
i=1 I (Ti ≤ t) if there is no censoring, otherwise F̂T (t) = F̂KM(t), where F̂KM(t) =

1 − Ŝ KM(t) and Ŝ KM is the Kaplan-Meier estimator. Denote Vi = F̂T (Xβ̂,̂λ), and define

ρ̂
(̂
β; λ̂, k

)
= 1 −

1
2

bn/kc∑
s=1

∣∣∣Ds − k/n
∣∣∣, 1 ≤ k ≤ n, (2.9)

where Ds = n−1 ∑n
i=1 I {(s − 1)k/n < Vi ≤ sk/n}, and bn/kc represents the largest integer smaller than

or equal to n/k.
Considering that ρ̂ can be used to measure the goodness of match between the distribution of Xβ̂,̂λ

and that of T , we shall use ρ̂ as a criterion to choose the optimal value of λ for the transformation link
functions in the sequel. We present the details of the proposed algorithm are as follows.

Step 1. Given λ(1) = 0, we update β by

β̂(1) = arg min
β

Mn(β|λ(1))

using the coordinate descent algorithm.

Step 2. Calculate the value of goodness measurement of match, ρ̂(1), based on λ(1) and the obtained
β̂(1).

Step 3. Repeat Step 1 and Step 2 rest on the λ grid-searched in [0, L] with 0.1 as footstep, where L
is a positive constant. At the same time, record all the values of {(λ(m), β̂(m), ρ̂(m)) : m = 1, . . . , ]},
where ] stands for the number of the grid points of λ in [0, L].

Step 4. Finally, take (λ(m), β̂(m)) with m corresponding to the maximum ρ̂(m) among all as the estimate
(̂λ, β̂).

With the estimators (̂λ, β̂), we then estimate the survival probability of T using

Ŝ Xβ,λ(t) = 1 −
1
n

n∑
i=1

I
{
Gλ̂(̂β

T Zi) ≤ t
}
.

The computation in Step 1 involves bandwidth selection, which is critical for the local Kaplan-
Meier estimator. In our numerical study, we use the leave-q-out cross-validation method on quantiles
to choose hn. Specifically, we take Kn − q quantiles as the training set and the remaining q quantiles as
the validation set (denoted asV−q). Given λ, we minimize Eq (2.7) using the Kn − q training quantiles,
and then use the resulting coefficients β̂Training to predict the matching error at the validation quantiles by
calculating the loss, ∑

τk∈V−q

δk

{
Q̂T (τk) − Q̂Xβ̂Training

|λ(τk)
}2

I(αL ≤ τk ≤ αU).

Repeat the above procedure and calculate the averaged prediction error until all the quantiles are
scanned through. The bandwidth hn that yields the smallest averaged prediction error is selected. We
set q = 1 for the sequel numerical examples.
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2.3. Prediction of disease risk

Given the value of covariate Znew of a new patient and the obtained estimates β̂ and λ̂, we can predict
the disease risk of a patient using the proposed method with following procedure:
(i) Calculate the value of β̂T Znew and denote it as tnew, calculate the empirical quantile τnew of tnew among
the values of {̂βT Zi : i = 1, · · · , n}.
(ii) Calculate Ŝ (t) = P̂(T > t) = 1 − n−1 ∑n

i=1 I
{
Gλ̂(̂β

T Zi) ≤ t
}
.

Then, we predict the disease time for the patient by the value of Q̂T (τnew) and the disease risk by Ŝ (tnew).
In the sequel, we mainly interested in predicting the disease risk.

3. Asymptotic properties

In a general setting, suppose we are interested in matching a part of the target distribution, such as
the segment between the αLth quantile and the αU th quantile, where αL and αU are prefixed and
satisfy 0 ≤ αL < αU < 1. Let M(β) =

∫ αU

αL

{
QT (τ) − QXβ(τ)

}2dτ. Define β0 = arg minβ M(β), then β0

can be regarded as the theoretical true value to be estimated, although β0 may not be unique. Similar
to the theoretical counterpart β0, the estimator β̂ may not be unique either. We show below that Mn(β)
converges to M(β) which is equivalent to show that the distribution of Xβ̂ provides an optimal
approximation to the distribution of T . Denote B = {β : M(β) = M(β0)}, where ‖ · ‖ is the Euclidean
norm.

Denote FC(t) = P(C ≤ t) as the cumulative distribution function of censoring time C. Denote fξ(·)
and f ′ξ (·) as the density function and its first derivative function of a random variable ξ conditional on
Z, respectively, where ξ could be T , C or Z. We impose the following regularity conditions.

(C1) Assume B is a compact subsets of Rp+1, and T has a bounded support.
(C2) The density functions fT (·), fC(·), fXβ(·), fT (·|Z) and fC(·|Z) are uniformly bounded away from 0

and infinity, and FT (t) and FC(t) have uniformly bounded second-order partial derivatives with
respect to Z.

(C3) For any fixed β, it holds that

sup
αL≤α≤αU

∣∣∣ f ′T {QT (α)}
∣∣∣ < ∞, inf

αL≤α≤αU
fT {QT (α)} > 0,

and sup
αL≤α≤αU

∣∣∣∣ f ′Xβ {QXβ(α)
}∣∣∣∣ < ∞, inf

αL≤α≤αU
fXβ

{
QXβ(α)

}
> 0.

(C4) The kernel function K(·) ≥ 0 has a compact support, K(·) is Lipschitz continuous of order 1 and
satisfies

∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
K2(u)du < ∞, and

∫
|u|2K(u)du < ∞.

(C5) The bandwidth satisfies hn = O(n−v), where 0 < v < 1/p.
(C6) G is a thrice continuously differentiable and strictly increasing function.

The first part of condition (C1) imposes a regular assumption on the true parameter space.
Considering that the follow-up study is typically restricted to some limited time, the second part of
condition (C1) which assumes T has a bounded support is also reasonable. Condition (C2) is
necessary for the Kaplan-Meier estimator, and it shall be used to derive the consistency of the
proposed estimators. Condition (C3) is the Kiefer condition [22] that ensures the uniform
Bahadur–Kiefer bounds for empirical quantile processes with independent and identically distributed
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samples. Conditions (C4) and (C5) are regular assumptions for kernel-based smoothing estimators in
terms of the bandwidth and the kernel function. Condition (C6) is satisfied by G(x) = (λx + 1)1/λ − 1
with λ > 0, which corresponds to H(x) being the Box-Cox transformation function. Under the
conditions above, we have the following two theorems.

Theorem 1. Under conditions (C1)–(C6), Mn(̂β) → M(β0) in probability, and d(̂β,B) → 0 in
probability.

The consistency shown in Theorem 1 indicates that the distribution of G(̂βT Z) shall provides an
optimal approximation to the distribution of T when the sample size is sufficiently large, although both
of them may not converge exactly to the true distribution FT . Proof of Theorem 1 is sketched in the
Supplementary.

4. Simulation study

To illustrate the finite sample performance of the proposed methods, we conduct the following two
simulation studies.

Example 1. Consider a normal error transformation model

Hλ(Ti) = βT Zi + εi,

where Hλ(·) is a Box-Cox transformation function with parameter λ = 0, 0.5 or 1, Zi = (Zi1,Zi2)T ,
β = (

√
2, 1)T , Zi1 and Zi2 are independent and follow the normal distribution with mean 5 and standard

deviation 1, and εi independently follows the standard normal distribution. The right censoring time
Ci is generated independently from uniform distributions to yield the censoring rates of 20 and 40%,
correspondingly.

Example 2. We compare the proposed method with a regression method using Cox proportional
hazard model under the samples generated from three different models:

Model I: log(Ti) = βT Zi + εi,

Model II, III: Λ(t|Zi) = Hλ{Λ0(t) exp(βT Zi)} with λ = 0 and 1, respectively,

where Hλ(·) is a logarithmic transformation function,

Hλ(t) =


log(1 + λt)

λ
, λ > 0,

t, λ = 0,

Λ0(t) = t, Zi = (Zi1,Zi2)T , β = (
√

2, 1)T , Zi1, Zi2 and εi are independent and follow the standard normal
distribution. The right censoring time Ci is generated independently from exponential distributions to
yield the censoring rates of 20 and 40%, correspondingly. Specifically, Model I corresponds to the
log-normal AFT model, Model II with λ = 0 corresponds to the Cox’s proportional hazards model,
and Model III corresponds to the proportional odds model.

Example 3. Consider the same model and parameter settings as in Example 1 except that the
censoring time Ci is generated independently from exponential distributions to yield the censoring
rates of 20 and 40%, respectively. Besides, we let the values of Zis be missing completely at random
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Table 1. The empirical median of the estimated values P̂r{Xβ̂,̂λ ≤ QT (τ)} and the estimated
λ in Example 1 with different sample sizes and censoring rates (the values in the parentheses
are standard deviations).

Censoring rate = 0% Censoring rate = 20% Censoring rate = 40%

True n = 400 n = 800 n = 400 n = 800 n = 400 n = 800

τ = 0.25 0.252 (0.022) 0.250 (0.015) 0.248 (0.022) 0.250 (0.017) 0.235 (0.030) 0.240 (0.026)

τ = 0.50 0.500 (0.026) 0.502 (0.019) 0.505 (0.030) 0.506 (0.020) 0.495 (0.041) 0.496 (0.033)

τ = 0.75 0.750 (0.022) 0.750 (0.015) 0.760 (0.026) 0.758 (0.020) 0.780 (0.037) 0.765 (0.030)

λ = 0.00 0.007 (0.037) 0.000 (0.006) 0.029 (0.071) 0.006 (0.035) 0.067 (0.108) 0.034 (0.095)

τ = 0.25 0.252 (0.023) 0.250 (0.016) 0.250 (0.028) 0.251 (0.022) 0.248 (0.040) 0.249 (0.029)

τ = 0.50 0.502 (0.029) 0.502 (0.021) 0.502 (0.038) 0.502 (0.029) 0.512 (0.058) 0.509 (0.042)

τ = 0.75 0.750 (0.022) 0.750 (0.015) 0.758 (0.031) 0.754 (0.022) 0.780 (0.049) 0.770 (0.034)

λ = 0.50 0.600 (0.364) 0.495 (0.259) 0.600 (0.446) 0.520 (0.352) 0.600 (0.638) 0.550 (0.485)

τ = 0.25 0.252 (0.023) 0.250 (0.016) 0.252 (0.025) 0.251 (0.017) 0.252 (0.026) 0.252 (0.019)

τ = 0.50 0.502 (0.028) 0.502 (0.021) 0.500 (0.030) 0.502 (0.023) 0.500 (0.033) 0.501 (0.025)

τ = 0.75 0.750 (0.021) 0.750 (0.015) 0.750 (0.023) 0.750 (0.017) 0.751 (0.026) 0.751 (0.018)

λ = 1.00 1.000 (0.629) 1.000 (0.471) 1.150 (0.679) 1.000 (0.507) 1.200 (0.712) 1.000 (0.543)

with a missing rates of 20 and 40%, respectively, thus the simulated observations in Example 3 are
unpaired.

Example 4. To assess the robustness of the proposed method, we compare the proposed method
with three alternative methods in this example. For convenience, we consider a same model
log(Ti) = βT Zi + εi, i = 1, · · · , n, used in Example 2. Consider two scenarios with εi ∼ N(0, 1) and
εi ∼ t(3), respectively. We compare the proposed method with the PRE method, rank-based estimation
(AFT.rank) [23], and the regular least squares estimation of AFT for censored data [24]. The last one
is a non-robust method, so we choose it as a benchmark. To evaluate the accuracy of prediction of the
proposed method, we independently generate 20%n testing samples from the model, and then predict
the potential risk at each testing observation using the well established predictor using training data.

In the simulation, we choose a quadratic (biweight) kernel function, K(x) = 15/16(1−x2)2I(|x| ≤ 1),
for the MCQ method. Other kernel functions, such as the Epanechnikov kernel, can also be used, while
our experience shows that the numerical results by different kernel functions have little difference. We
adopt a product kernel for the multivariate scenario. For example, we use K(x1, x2) = K(x1)K(x2) for
bivariate cases, where K(·) is a univariate quadratic kernel function. We set αL = 0 and αU = 0.90. We
take L = 2 for searching the optimal transformation function. The simulation results are based on 1000
replications with sample sizes of 200, 400 and 800.

Table 1 presents the simulation results of Example 1, from which we can observe that the proposed
MCQ method performs well overall on assessing the target distribution in terms of the estimated values
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Figure 1. Curves of the estimated ρ along with λ under Example 1 with n = 800 and the
true values of λ equal to 0, 0.5 and 1.0, respectively.

at the prefixed τ-quantiles. Although the bias of the estimated survival rates tends to be increasing as
the censoring rate increases under small sample sizes, the estimation accuracy is improved significantly
as the sample size increases. On the other hand, from the estimated values of λ, the method used for
searching the parameter λ in the function G based on the criterion ρ̂ also works considerably well.
Figure 1 shows the curves of the estimated ρ along with λ with the true values of λ equal to 0, 0.5 and
1.0, respectively. The plots show the clear modes of the maximum points around the true values.

In Example 2, we compare the proposed method with the other two methods of estimating survival
rates under three models. The results are summarized in Table 2. To be specific, ‘Pro’ is the prediction
by the proposed matching censored quantiles method; ‘Cox’ stands of the survival predictor based on
the maximum partial likelihood estimation method for proportional hazards model; ‘K-M’ is survival
prediction using the Kaplan-Meier estimator. The K-M values can be regarded as the benchmark
estimator, which are considerably accurate under all the scenarios. Naturally, the Cox method performs
well under the true model while show underperforms with misspecified models. Compared to the
Cox method, the proposed method performs relatively stable. In Example 3, we demonstrate that
the proposed method can handle the unpaired observations caused by missing data. The simulation
results in Table 3 show that MCQ performs well in assessing the values of FT at the 0.25-quantile,
0.50-quantile and 0.75-quantile, which demonstrates their special advantages in dealing with unpaired
observations over the traditional methods.

In Example 4, we compare the robustness and efficiency of the proposed method with three
alternative approaches in terms of estimation and prediction. The simulation results are summarized
in Table 4. From the estimation results, we see that the proposed method and the AFT.rank method
perform almost equally well in terms of robustness and better than the other two methods under the
heavy-tail scenario of t(3) model errors. Khan’s method provides larger bias estimation than the
proposed method, which shows that the proposed method could gain more flexibility by allowing
certain mismatch of orders at some quantiles and hence can improve both the estimation and
prediction of the disease risk. Moreover, we also see that the proposed method has a clear advantage
in efficiency compared to the traditional robust method based on rank estimation. From the prediction
results in Table 4, we know the prediction accuracy of proposed method is better than that of Khan’s
method.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 4544–4562.



4554

Table 2. The empirical median of the estimated values P̂r{T ≤ QT (τ)} with different models
in Example 2 (the values in the parentheses are standard deviations).

Censoring rate = 0% Censoring rate = 20% Censoring rate = 40%

model τ n = 400 n = 800 n = 400 n = 800 n = 400 n = 800

I 0.25 Pro. 0.252 (0.022) 0.250 (0.015) 0.248 (0.022) 0.250 (0.017) 0.235 (0.030) 0.240 (0.026)

Cox 0.284 (0.031) 0.281 (0.021) 0.281 (0.032) 0.278 (0.022) 0.273 (0.032) 0.274 (0.022)

K-M 0.252 (0.021) 0.251 (0.016) 0.254 (0.021) 0.252 (0.016) 0.252 (0.021) 0.253 (0.017)

0.50 Pro. 0.500 (0.026) 0.502 (0.019) 0.505 (0.030) 0.506 (0.020) 0.495 (0.041) 0.496 (0.033)

Cox 0.539 (0.037) 0.541 (0.026) 0.525 (0.037) 0.527 (0.026) 0.514 (0.040) 0.516 (0.028)

K-M 0.501 (0.028) 0.501 (0.021) 0.503 (0.029) 0.501 (0.022) 0.500 (0.029) 0.501 (0.023)

0.75 Pro. 0.750 (0.022) 0.750 (0.015) 0.760 (0.026) 0.756 (0.020) 0.780 (0.037) 0.765 (0.030)

Cox 0.771 (0.029) 0.769 (0.022) 0.752 (0.031) 0.751 (0.023) 0.739 (0.039) 0.736 (0.029)

K-M 0.750 (0.023) 0.750 (0.016) 0.751 (0.025) 0.751 (0.019) 0.751 (0.030) 0.753 (0.023)

II 0.25 Pro. 0.260 (0.023) 0.263 (0.015) 0.259 (0.024) 0.262 (0.017) 0.260 (0.030) 0.264 (0.022)

Cox 0.248 (0.033) 0.246 (0.020) 0.248 (0.033) 0.246 (0.020) 0.249 (0.034) 0.247 (0.020)

K-M 0.250 (0.023) 0.249 (0.014) 0.251 (0.023) 0.249 (0.015) 0.250 (0.023) 0.250 (0.014)

0.50 Pro. 0.510 (0.025) 0.514 (0.016) 0.525 (0.029) 0.519 (0.018) 0.524 (0.046) 0.515 (0.032)

Cox 0.506 (0.040) 0.502 (0.028) 0.504 (0.040) 0.501 (0.029) 0.497 (0.041) 0.500 (0.029)

K-M 0.501 (0.026) 0.499 (0.019) 0.501 (0.026) 0.499 (0.020) 0.501 (0.028) 0.501 (0.021)

0.75 Pro. 0.750 (0.022) 0.751 (0.013) 0.764 (0.032) 0.757 (0.024) 0.765 (0.042) 0.756 (0.031)

Cox 0.746 (0.034) 0.750 (0.025) 0.749 (0.035) 0.748 (0.025) 0.744 (0.037) 0.747 (0.027)

K-M 0.747 (0.022) 0.748 (0.017) 0.750 (0.023) 0.749 (0.018) 0.751 (0.028) 0.745 (0.022)

III 0.25 Pro. 0.260 (0.022) 0.259 (0.015) 0.255 (0.023) 0.258 (0.015) 0.255 (0.028) 0.259 (0.018)

Cox 0.260 (0.032) 0.263 (0.019) 0.258 (0.033) 0.260 (0.020) 0.255 (0.033) 0.258 (0.020)

K-M 0.249 (0.023) 0.250 (0.015) 0.249 (0.023) 0.251 (0.015) 0.246 (0.023) 0.251 (0.015)

0.50 Pro. 0.505 (0.024) 0.503 (0.017) 0.512 (0.028) 0.510 (0.019) 0.519 (0.050) 0.509 (0.036)

Cox 0.526 (0.036) 0.526 (0.023) 0.521 (0.036) 0.517 (0.024) 0.513 (0.037) 0.509 (0.025)

K-M 0.506 (0.025) 0.499 (0.018) 0.504 (0.025) 0.501 (0.018) 0.505 (0.027) 0.502 (0.019)

0.75 Pro. 0.745 (0.025) 0.742 (0.015) 0.755 (0.034) 0.751 (0.025) 0.760 (0.039) 0.757 (0.029)

Cox 0.764 (0.029) 0.764 (0.019) 0.751 (0.031) 0.752 (0.021) 0.736 (0.039) 0.740 (0.027)

K-M 0.752 (0.022) 0.748 (0.015) 0.750 (0.023) 0.748 (0.015) 0.748 (0.032) 0.749 (0.022)

NOTE: ‘Pro’ indicates the proposed method; ‘Cox’ indicates the proportional hazards model; ‘K-M’ indicates the Kaplan-Meier estimator. The τ-quantiles

(QT (0.25),QT (0.5),QT (0.75)) for prediction in model I, II and III are (0.2594, 0.9993827, 3.8538), (0.1411, 0.6041, 2.4361) and (0.1930, 0.9995, 5.1773),

respectively.
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Table 3. The empirical mean of the estimated values of P̂r{Xβ̂,̂λ ≤ QT (τ)} by the proposed
method under Example 3 with unpaired observations. (Median absolute deviation values are
given in the parentheses).

n = 400 n = 800

miss. c% τ λ = 0 λ = 1 λ = 0 λ = 1

0% 0 0.25 0.250 (0.022) 0.250 (0.022) 0.251 (0.017) 0.250 (0.015)

0.50 0.500 (0.024) 0.502 (0.026) 0.501 (0.019) 0.500 (0.019)

0.75 0.750 (0.022) 0.750 (0.022) 0.751 (0.015) 0.750 (0.015)

20 0.25 0.250 (0.022) 0.250 (0.022) 0.251 (0.015) 0.250 (0.017)

0.50 0.507 (0.026) 0.500 (0.022) 0.501 (0.019) 0.505 (0.020)

0.75 0.760 (0.026) 0.750 (0.022) 0.751 (0.017) 0.756 (0.019)

40 0.25 0.250 (0.026) 0.250 (0.022) 0.251 (0.015) 0.250 (0.019)

0.50 0.510 (0.033) 0.499 (0.024) 0.501 (0.019) 0.506 (0.022)

0.75 0.760 (0.033) 0.748 (0.026) 0.750 (0.019) 0.756 (0.022)

20% 0 0.25 0.250 (0.023) 0.250 (0.023) 0.252 (0.014) 0.252 (0.016)

0.50 0.500 (0.028) 0.500 (0.023) 0.500 (0.019) 0.500 (0.019)

0.75 0.750 (0.023) 0.750 (0.023) 0.752 (0.016) 0.752 (0.016)

20 0.25 0.253 (0.023) 0.250 (0.023) 0.252 (0.016) 0.252 (0.016)

0.50 0.503 (0.023) 0.500 (0.023) 0.502 (0.019) 0.503 (0.019)

0.75 0.753 (0.023) 0.750 (0.023) 0.752 (0.016) 0.752 (0.016)

40 0.25 0.250 (0.023) 0.250 (0.023) 0.252 (0.014) 0.250 (0.019)

0.50 0.509 (0.032) 0.500 (0.028) 0.502 (0.019) 0.506 (0.021)

0.75 0.759 (0.032) 0.747 (0.028) 0.750 (0.019) 0.756 (0.023)

5. Application

We apply the proposed methods to analyze Veterans’ administration lung cancer data collected from
the patients with advanced inoperable lung cancer [25]. This data set consists of 137 patients who were
randomized to either a standard or test chemotherapy, among them 128 were followed to death. In this
study, one primary endpoint for the therapy comparison is the time to death. In addition to the treatment
indicator, several covariates are included, such as the Karnofsky performance score (Karnofsky), the
time in months from the diagnosis to randomization (diagtime), the prior therapy (yes or no), and the
patient’s age in years and the lung cancer cell type (squamous cell = 1, small cell = 2, adenocarcinoma
cell = 3, large cell = 4). According to existing literature, all the above covariates are important factors
affecting the survival time.

The goal is to estimate β and λ such that the distribution of Gλ(βT Z) matches the distribution of
T , i.e., the survival time in days. The covariate Zi = (1,Zi1, . . . ,Zi8)T are defined as follows: Zi1 =

age/100, Zi2 = Karnofsky/10, Zi3 = diagtime/100, and Zi4 = 0 if no prior therapy and 1 otherwise;
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Table 4. The empirical median of the estimated values P̂r{T ≤ QT (τ)} and the empirical
bias of prediction of disease risk with different approaches in Example 4 (the values in the
parentheses are standard deviations).

Estimation

Censoring rate = 0% Censoring rate = 20%

ε n τ% Prop Khan AFT.rank AFT Prop Khan AFT.rank AFT

N(0, 1) 200 25 25.3(2.7) 20.0(3.1) 23.0(8.6) 25.1(2.5) 25.1(3.2) 19.8(3.3) 23.5(10.6) 22.4(3.3)

50 49.1(4.0) 46.9(4.7) 50.6(11.8) 50.0(3.1) 49.9(4.1) 46.4(4.8) 50.7(14.5) 50.9(3.7)

75 74.4(3.3) 75.0(4.2) 77.3(9.6) 75.1(2.6) 76.5(3.5) 74.5(4.6) 76.8(11.7) 78.7(3.3)

400 25 25.1(2.1) 19.8(2.8) 22.0(6.2) 25.0(1.8) 24.1(2.5) 19.6(2.9) 22.1(6.7) 21.6(2.3)

50 49.5(2.7) 46.4(4.3) 49.7(8.9) 49.9(2.1) 49.2(3.2) 46.3(4.5) 49.9(9.7) 49.8(2.7)

75 74.6(2.4) 74.7(4.1) 77.3(7.3) 75.0(1.9) 75.6(2.6) 74.6(4.1) 77.2(8.1) 78.0(2.4)

t(3) 200 25 24.8(3.0) 18.3(3.6) 21.3(10.1) 23.0(2.8) 26.4(3.3) 18.3(3.4) 21.4(11.1) 19.7(3.6)

50 49.1(3.8) 46.8(5.3) 50.3(13.9) 50.3(4.0) 48.6(4.7) 47.2(5.1) 50.5(15.2) 50.2(4.4)

75 75.2(3.3) 77.1(4.6) 78.8(10.6) 79.3(3.5) 72.9(3.6) 77.6(4.6) 78.4(12.0) 80.1(3.7)

400 25 25.1(2.4) 18.2(3.0) 20.9(6.7) 23.7(2.4) 26.5(2.6) 18.1(2.9) 21.3(7.4) 19.7(2.5)

50 49.7(2.9) 46.9(4.4) 51.1(9.9) 50.0(3.1) 49.1(3.3) 46.9(4.6) 51.8(11.1) 50.6(3.2)

75 75.1(2.4) 77.3(4.0) 80.4(7.5) 80.5(2.7) 73.3(2.4) 77.2(4.3) 80.4(8.7) 80.9(2.9)

Prediction

Censoring rate = 0% Censoring rate = 20%

ε n Bias Prop Khan AFT.rank AFT Prop Khan AFT.rank AFT

N(0, 1) 200 Ŝ (tnew) −1.0(3.6) 4.6(6.1) 0.3(3.4) 0.3(3.4) −0.3(3.9) 5.5(6.2) 0.0(3.8) 0.0(3.8)

400 Ŝ (tnew) −0.1(2.5) 4.9(6.1) 0.2(2.4) 0.2(2.2) −0.1(2.8) 5.5(6.4) 0.2(2.7) 0.3(2.4)

t(3) 200 Ŝ (tnew) −0.4(3.7) 3.8(6.4) −0.2(3.6) −0.1(3.3) −0.9(3.1) 4.3(7.1) 0.1(3.3) 0.2(3.8)

400 Ŝ (tnew) −0.4(2.7) 5.8(6.6) −0.2(2.8) −0.2(2.4) −0.2(2.5) 5.6(5.7) −0.1(2.4) −0.1(2.8)

NOTE: ‘Prop’ indicates the proposed method; ‘Khan’ indicates the PRE method with the idea of maximum rank correlation; ‘AFT.rank’ indicates the rank-based

estimation; ‘AFT’ indicates the least squares estimation by Jin et al. [24].

Zi j = 1, j = 5, 6, 7, if the cell type is squamous, small or large, respectively, and 0 otherwise; Zi8 = 1 if
the patient is given the test chemotherapy treatment, otherwise Zi8 = 0. To apply the proposed methods,
we set αL = 0 and αU = F̂KM(1000) = 0.985 for the MCQ method. Considering the fact that the
estimated coefficients by the proposed method may not be unique, we compare the estimated survival
curve by the proposed methods with that by the Kaplan-Meier estimator and the Cox proportional
hazards model. To be specific, we calculate Ŝ β̂(t) = 1 − n−1 ∑n

i=1 I{Gλ̂(̂β
T Zi) ≤ t} using the estimated

regression coefficients β̂. Then, we use Ŝ β̂ to assess or approximate the survival probability of T . For
the Cox proportional hazards model, we use S̄ (t|Z) = n−1 ∑n

i=1 exp{−Λ̂0(t) exp(̂βT
CoxZi)} to estimate the
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Figure 2. Curve of the estimated values of ρ along with λ.
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Figure 3. The estimated curves of survival rates by different methods.

survival function of T , where Λ̂0 is the estimated baseline cumulative hazard function, and β̂Cox is the
estimated regression coefficient.
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Table 5. Estimated survival rates of the survival time with 95% confidence intervals (CI) for
Veterans’ administration lung cancer data analysis.

T (in days) Est. 95% CI

50 0.617 (0.540, 0.706)

100 0.451 (0.350, 0.519)

200 0.226 (0.153, 0.294)

300 0.120 (0.080, 0.206)

400 0.090 (0.015, 0.139)

500 0.053 (0.000, 0.097)

600 0.015 (0.000, 0.067)

The estimated value of λ for the transformation function Gλ is 0.4 which corresponds to the value
of ρ = 0.892. The estimated values of ρ indicate that the proposed method performs considerably
well in matching F̂KM. Table 5 presents the estimated survival rates of the survival time with 95%
confidence intervals (CI), and Figure 3 displays the estimated survival curves of T by MCQ with 95%
pointwise confidence bands (CB). Here, both the 95% CIs and the 95% CBs are constructed by the
0.025 and 0.975 quantiles of the estimated survival rates through the bootstrap method with 1000
bootstrap samples. Overall, the estimated survival curves by MCQ and KM are considerably close
to each other, except for minor differences at the tail. Compared with the survival curve by the Cox
proportional hazards model, the MCQ curve is much closer to the Kaplan-Meier curve, which indicates
that the estimated survival probability by the proposed methods might be more accurate than that by
the Cox proportional hazards model.

Remark 2. Here we assume, without any proof, that the proposed estimator converges to an
asymptotic distribution, hence we could use the bootstrap method under this assumption. In other
words, the bootstrap method used here is not rigorous from the theoretical point of view.

6. Discussions

In this paper, we propose a matching censored quantiles estimator to study the relationship between
the observed event times and the covariates in the presence of right censoring. The proposed method
provides a new option to predict the disease risks for survival events of interest.

Under the MCQ framework, we adopt a locally weighted approach to estimate the censored
quantiles. Other options such as the inverse probability weighting or the Buckley-James method [1]
can also be considered. Yet, it still lacks efficient approaches for statistical inference and hypothesis
testing on the obtained estimators which warrant further research. Last but not least, new algorithms
are also needed to combine the proposed methods with sparse model selection using penalty
functions.
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Appendix

Lemma 1. Under conditions (C2), (C4) and (C5), we have

sup
t

sup
Z

∣∣∣F̂T (t|Z) − FT (t|Z)
∣∣∣ = op(1),

where 0 < l0 < 1/4.
Proof. Lemma 1 follows from the result of Theorem 2.1 of [26] and Lemma A.1 of [27].
Lemma 2. If Mn(̂βn) → M(β0) in probability, where the estimator β̂n is defined by minimizing Mn(β),
then d(̂βn,B)→ 0 in probability as n→ ∞.
Proof. To prove this lemma is equivalent to prove that Pr{d(̂βn,B) ≥ ε} → 0 for any constant ε > 0.
Suppose there exists an ε > 0 such that lim supn→∞Pr{d(̂βn,B) ≥ ε} > 0, then there exists a subsequence
of {̂βn}, denoted by {̂βnk}, such that limk Pr{d(̂βnk ,B) ≥ ε} = η > 0. Define Bε = {β : d(β,B) ≥ ε}, hence
Bε is a compact set. Because B = {β : M(β) = M(β0)}, then infβ∈Bε M(β) = η + M(β0). Hence, it holds

lim
k→∞

Pr
{∣∣∣∣Mnk (̂βnk) − M(̂βnk)

∣∣∣∣ < η/2} = 1.
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Hence, we have

Mnk (̂βnk) ≥ M(̂βnk) − η/2 ≥ inf
β∈Bε

M(β) − η/2 > M(β0) + η/2 > M(β0).

This contradicts to the assumption that Mn(̂βn) → M(β0) in probability. This completes the proof of
Lemma 2.

Proof of Theorem 1. By the definition of Mn(β), we have

|Mn(β) − M(β)|

≤ 2
Kn∑

k=1

δk
{
Q̂T (τk) − QT (τk)

}2I(αL ≤ τk ≤ αU)

+C1

Kn∑
k=1

δk

∣∣∣Q̂T (τk) − QT (τk)
∣∣∣I(αL ≤ τk ≤ αU)

+2
Kn∑

k=1

δk
{
Q̂Xβ(τk) − QXβ(τk)

}2I(αL ≤ τk ≤ αU)

+C2

Kn∑
k=1

δk

∣∣∣Q̂Xβ(τk) − QXβ(τk)
∣∣∣I(αL ≤ τk ≤ αU)

+
∣∣∣∣ Kn∑

k=1

δk
{
QT (τk) − QXβ(τk)

}2I(αL ≤ τk ≤ αU) −
∫ αU

αL

{
QT (τ) − QXβ(τ)

}2dτ
∣∣∣∣,

where C1 > 0 and C2 > 0 are some constants. According to the definition of the Riemann integral, the
last term on the right-hand side of the above equation tends to 0 as Kn → ∞ and max{δk} → 0 for any
finite β. We only need to consider the rear terms.

Firstly, because
∑Kn

k=1 δk
{
Q̂T (τk) − QT (τk)

}2I(αL ≤ τk ≤ αU) =
∫ αU

αL

{
Q̂T (t) − QT (t)

}2dt + o(1), and∫ αU

αL

{
Q̂T (t) − QT (t)

}2
dt =

∫ αU

αL

(
QT

[
FT {Q̂T (t)}

]
− QT (t)

)2
dt

=

∫ αU

αL

{
dQT (t∗)

dt

}2 [
FT

{
Q̂T (t)

}
− t

]2
dt,

where the last equation is by the mean value theorem, dQT (t)/dt is the first derivative of QT (t), and t∗

is a point between FT {Q̂T (t)} and t. By conditions (C1)–(C3), we know |dQT (t∗)/dt| can be bounded
by a positive constant. According to Lemma 1, the proof of Theorem 1 in [10] and the dominated
convergence theorem, we have

∑Kn
k=1 δk{Q̂T (τk) − QT (τk)}2I(αL ≤ τk ≤ αU) = oP(1). Using the same

argument, we can also conclude that
∑Kn

k=1 δk|Q̂T (τk) − QT (τk)|I(αL ≤ τk ≤ αU) = oP(1). Second,
note that the condition (C3) entails that Xβ has a bounded support for any β, even in the extreme
case with αL = 0 and αU close to 1. Using the same argument above and the Glivenko-Cantelli
theorem, for any fixed β we can also obtain

∑Kn
k=1 δk

{
Q̂Xβ(τk) − QXβ(τk)

}2I(αL ≤ τk ≤ αU) = oP(1) and∑Kn
k=1 δk|Q̂Xβ(τk) − QXβ(τk)|I(αL ≤ τk ≤ αU) = oP(1). Hence, |Mn(β) − M(β)| → 0 in probability as

n→ ∞ for any fixed and finite β.
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By conditions (C1) and (C2), the matching censored quantiles estimator defined by Eq (2.2) is
finite in Rp+1, hence there exists a compact neighborhood B ⊂ Rp+1 such that β̂ ∈ B. Next, we show
supβ∈B |Mn(β) − M(β)| → 0 in probability. Because M(β) is a continuous function with respect to β.
According to the Heine–Borel theorem, for any ε > 0, there exist finite elements β1, . . . , βm ∈ B, m is a
finite integer, such that ‖β − β j‖ < Cε and |M(β) − M(β j)| < ε, where C is a constant, j = 1, . . . ,m. By
conditions (C2), (C3) and the Glivenko-Cantelli theorem, we have

|Mn(β) − M(β)| ≤ |Mn(β) − Mn(β j)| + |Mn(β j) − M(β j)| + |M(β j) − M(β)|
≤ O(ε) + |Mn(β j) − M(β j)|.

Hence, supβ∈B |Mn(β) − M(β)| ≤ O(ε) +
∑m

j=1 |Mn(β j) − M(β j)|, by the arbitrariness of ε, we conclude
that supβ∈B |Mn(β) − M(β)| → 0 in probability for a compact neighborhood B ⊂ Rp+1. Finally, by the
inequation

|Mn(̂β) − M(̂β)| ≤ |Mn(̂β) − M(β0)| ≤ |Mn(β0) − M(β0)|,

and the fact that |Mn(β0) − M(β0)| → 0 and |Mn(̂β) − M(̂β)| → 0 in probability, it holds that |Mn(̂β) −
M(β0)| → 0 in probability. Using the same argument in the proof of Lemma 2, the second part of
Theorem 1 is proved.
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