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Abstract: Using the discrete Markov chain, in this paper we develop a stochastic model for algal
bloom, in which white noise terms are introduced to describe the effects of environmental random
fluctuations and time delay to account for the time needed in the conversion of detritus into nutrient.
For the proposed model, we firstly discuss the well-posedness, namely the existence and uniqueness of
the global positive solution. Then, it is followed by seeking the sufficient conditions for the stochastic
stability of its washout equilibrium. Then by using Fourier transform method, the spectral densities of
the nutrient and the algae population are estimated. Finally, we show that larger noise can make the
algae population extinct exponentially with probability one. Our theoretical and numerical results sug-
gest that the environmental random fluctuations may have more significant influences on the dynamics
of the model than the delay. These findings are helpful for a better understanding of the formation
mechanism of algal blooms.

Keywords: delayed stochastic nutrient-algae model; discrete Markov chain; spectral density; It6’s
formula; lyapunov function

1. Introduction

It is known that many shallow lakes in China have been experiencing a problem of algal bloom
resulting in shortage of drinking water supply and degradation of lake ecosystem [1]. For example, it
is reported that in the spring of 2007, the accumulation of algal blooms in Tai Lake, the third largest
freshwater lake in China, left approximately 2 million people of Wuxi City without drinking water for
at least a week, and led to massive and rapid fish deaths [2, 3, 4]. The bloom of algal is a complex
process [5] and is due to the increased input of nutrients, such as nitrogen and phosphorus, which
directly affect the growth of algal [6] and nutrient-rich sediment (dead algae) [7], which sinks to the
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bottom of the lake forming detritus, and then is converted into nutrients due to the decomposition by
bacteria [8, 9].

It should be noted from [10, 11] that the conversion of detritus into nutrients is not instantaneous
and requires time for the completion of bacterial decomposition resulting a delay. To describe the
conversion of detritus into nutrients, authors of [8, 9] proposed a nutrient-phytoplankton model

{ $ =D =8)=mUS)x+uD; [ f(s)x(t - s)ds, (L.1)

X = x[—(D + Dy) + ymU(S)],

where S () and x(7) denote the concentrations of a limiting nutrient (nitrogen or phosphorus) and algae
density at time ¢, respectively; S is the input concentration of the nutrient, D is the washout rate, m
is the maximum specific uptake rate of nutrient, D; is the death rate of the algae, y € (0, 1), is the
fraction of nutrient conversion, the delay kernel f(s) is a non-negative bounded function defined on
[0, o) describing the contribution of the biomass dead in the past to the nutrient recycling at time ¢,
u € (0,1) is the fraction of the nutrient recycled by bacterial decomposition of the dead algae, U(S)
is the specific growth function. It is found in [9] that the delay should be relatively small to have
global attractivity of positive equilibrium. Recently, Misra and Chandra [11] studied the effect of
delayed nutrient recycling on a nutrient-algae-dissolved oxygen model. They found that if the delay
is lager than some threshold then the concentration of algae fluctuates and may increase drastically;
meanwhile, the concentration of dissolved oxygen may reduce drastically, resulting massive death of
fish population in the lake. To avoid the massive death of fish population and other losses, the detritus
from the lake should be regularly removed before the threshold value. To provide sound scientific
advices, various studies using mathematical models have been conducted for algal bloom caused by
nutrients in the lakes, where both nutrient and algae population dynamics are described by a system of
coupled deterministic continuous processes [12, 13, 14, 15].

It is known that nutrient inputs from runoff vary not only in quantity (influenced by rainfall and other
environmental factors), but also in composition (based on the form of fertilizer in use) [16]. These vari-
ations are random in nature and generally affect the nutrient balances, influence mass transfer efficien-
cies along food chains [17], and therefore play a key role in bloom initiation and maintenance [18]. To
better understand algal bloom phenomenon, stochastic models are needed, describing the variation of
nutrients and environmental forcing. Several studies have already addressed the stochastic modelling
of the algal bloom. For example, according to the experimental data from Bohai Bay of China, Huang
et al. [19] constructed a nonlinear stochastic model on densities of two kinds of typical HAB (harmful
algae blooms) algae: diatom and dianoflagellate, and analyzed their characters of stability and Hopf
bifurcation; Das et al. [20] proposed a stochastic model with the main purpose of considering the
severity and duration of algal blooms in the ecological arena; Mandal et al. [21] established stochas-
tic models of allelopathic interactions between two competing phytoplankton species as a continuous
time Markov chain model and as an It stochastic differential equation model, in which approximate
extinction probabilities for both species were obtained analytically for the continuous time Markov
chain model.

Our goals of this paper are to extend the delayed model (1.1) into a stochastic one for algal bloom
and to explore how the random fluctuations and the delay affect the dynamics of algae population.
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Recall that system (1.1) has a washout equilibrium E, = (§°, 0) when

D+D
U@s®) < !

(1.2)

and a positive equilibrium E*(S*, x*) when
D+ D, <ym and S°>S", (1.3)

with
S*:U‘I(D+D1) . D(S? -5

ym * T mU(S*) — uD,

and here U™! is the inverse function of U [8, 9]. Under random fluctuations, one naturally concerns
whether or not there exists a steady state for the stochastic system, and how the dynamics of algae
population can be affected.

To derive a reasonable stochastic analogue of the deterministic model (1.1), it generally needs the
help of Markov chain [22]. But this approach is not justified for (1.1) because the delayed stochastic
system is non-Markovian. So, in this paper, we assume that f(s) takes the following special family of

memory functions:

a,n

(n—1)!

where @ > 0 is a constant, n is an nonnegative integer. In particular, we call (1.4) the weak kernel
when n = 1 and strong kernel when n = 2. Notice also that in the limit case when n — oo, the delay
kernel f](s) converges to a Dirac delta function f(s) = 6(s — 7). Then (1.1) becomes a model with
discrete time delay 7;. To properly propose our model, we first convert (1.1) into a system of ordinary
differential equations by using chain-trick, and then derive a stochastic analogue by means of Markov
chain. Based on the derived stochastic model we will investigate the effects of delay and environmental
random fluctuations on the dynamics of the model.

The paper is organized as follows. In Section 2, a detailed derivation of the stochastic model is
performed by using discrete Markov chain. In Section 3, we show the uniqueness and global existence
of a positive solution of the stochastic model. In Section 4, we carry out the long term behavior analysis
of the model: we first investigate the sufficient conditions for the stochastic stability of the washout
equilibrium; then the spectral densities of the nutrient and the algae population are estimated by using
Fourier transform method. Our study shows that the algae population can be extinct if experiencing
a sufficiently large noise. Finally, numerical simulations to illustrate the results obtained and a brief
discussion are presented in Section 5.

f2(s) = s e, (1.4)

2. Model formulation and some preliminaries

By taking into account of random effects, we consider a stochastic analogue of the deterministic
model (1.1)

dt

L = x[~(D + Dy) + ymU(S)] + 02x6,(0),

{ B = DS - 8)=mUS)x+uDy [~ f($)x(t = s)ds + 1S &(2), 2.1)
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with initial value
SO, w)=¢1(0) 20, x(0,w) =¢0) >0, 6€(—00,0] and ¢;(0) >0 =1,2),

where ¢(0), ¢2(0) € C((—o0,0],R,), the families of continuous functions from (—c0,0] to R,.
(&1(1), &(1)) 1s a two dimensional Gaussian white noise process satisfying

E[&(1) =01, i=1,2; E[&0E)] =000 —1), i,j=1,2

where 6;; is the Kronecker symbol and ¢ is the Dirac delta function. Since &(t) is delta-correlated,
so &;(t)dt can be written as dB;(t), where B(t) = (B;(t), By(?) is an independent Brownian motion or
Wiener process. Thus (2.1) can be rewritten as the form

{ dS =[D(S° - S) - mU(S)x + uD, fooo f(s)x(t — s)dsldt + oS dB (1), 22)

dx = x[—(D + Dy) + ymU(S)]dt + o>xdBy(t).

We now show in detail that model (2.2) or (2.1) is a reasonable stochastic analogue of the deterministic
model (1.1). To this end, introduce

Yi = f f;;(S)X(t— S)ds9 l: 1,2,...,”,
0

then (1.1) becomes the following system of coupled ordinary differential equations
S =D —8)—mU(S)x + uDy,,
X = x[-(D + Dy) + ymU(S)],
y1=—a(y—S),
yi=-—a@i—yi-1), i=2,3,...,n

(2.3)

Follow the idea and techniques in [22], next we derive a reasonable stochastic analogue of (2.3) using
a discrete time Markov chain. For a fixed time increment Az > 0 and t = 0, At, 2A¢, - - - define a process

T
XAt = (SM(0), M),y A 0

Here S2/(r) denotes the nutrient concentration, x*/(f) denotes the concentration of algae population,
and yiA’(t), i=1,2,...,n, are auxiliaries. Let the initial value be

At _ r
X¥(0) = (8(0), x(0), 1(0), y2(0), ..., yx(0))

and {RJA.I (k)};o, j=1,2,...,n+ 2 denote the n + 2 sequences of random variables. Suppose that these
variables are jointly independent and that within each sequence the variables are identically distributed
such that

ERY(k) =0, E[R}(K) =oc3Ar, j=1,2,k=0,1,.., (2.4)

where o; > 0 are constants reflecting the size of the stochastic effects, and

RY()=0, j=3,4,...,n+2,k=0,1,.. (2.5)
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Variable R)'(k) is supposed to capture the effect of random influences (due to the external factors such
as variation of nutrients, environmental forcing, or inherent factors, e.g. mutations) on the concentra-
tion of the algae during the period [kAt, (k + 1)Af). We assume that x*' grows within the time period
according to the deterministic system (2.3) and by the random amount Rg’ (k)x*(kAt). Random effects

on S can be similarly modelled as R?’ (k)S 2 (kAt). Specifically, for k = 0,1, ..., we set
SA((k + DAL) =52 (kAr)

+ AHD(S? = SY(kAL)) — mU(S Y (kAD))x™ (kAf)
+ uD Y5 (kAD} + RY (k)S ' (KAL),

M((k + DA =x(kAt)
+ AN (KAD[—(D + D) + ymU (S (kAD))]}
+ RS (k)x™ (kAt),

Y ((k + 1)AL) =y)'(kAt)
— Ata(yY (kAt) — S (kAD))
and

Y¥((k + 1)At) =y (kA?)
— Ata(yNM (kAt) =y (kAY), i=2,3,...,n.

We next show that X2 converges to a diffusion process as At — 0. To this end, we first determine the
drift coefficients of the diffusion. Let P*'(u, dv) denote the transition probabilities of the homogeneous

Markov chain {X*(kAt)}?,, that is

PA(u, A) = PIXY((k + 1)AL) € A | XM(kAr) = u)

forall u = (uy,...,un) € R™? and all Borel sets A C R™2. Letu; =S, up = X, u3 = yi,.

Then, by (2.4) and (2.5), we have

! S
& J 0= P ) = DS = $) = mUS ) + w1y, + L ERYO)

= D(S° - S) — mU(S)x + uD1y,,

1
= f (v2 — ux)P(u, dv) = x[—(D + Dy) + ymU(S)] + %ER?I(O)
= x[=(D + Dy) + ymU(S)],
1
Y f(v3 —u3)P(u, dv) = —a(y; - S)

and

1 .
Y f(vnz — Ui )PY (u, dv) = —a(y; — i), i=2,...,0.

cyUps2 = Ve

(2.6)

2.7)

(2.8)

(2.9
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To determine the diffusion coefficients, we consider the moments

1
gﬁt(u) = E f(vi - l/tl‘)(Vj - Ltj)PAt(Lt, dV), l,] = 1, 2, oo+ 2.

It follows from (2.4) and (2.5) that
|g§§(u) - a§x2|

:'Ait E[At[—(D + Dy) + ymU(S)]x + Ry (0)x]* — o3
:'At[—(D + D)) + ymU(S)°x* + 2[—(D + Dy) + ymU(S)]x*ER5'(0)

1
+ A—tsz[Ii’Q’(O)]2 —oox*

=At[—(D + Dy) + ymU(S)]*x>.

Thus,

lim sup |gs(u) — o5x*] = 0 (2.10)
At—0+ ||M||SK

for all K € (0, 00). Similarly, for all K € (0, o), we can obtain

lim sup |g{(u) — 03S? =0, (2.11)
Ar—0+ ||M|ISK
lim sup |g¥, ., =0,i=1,2,...,n (2.12)
At—0+ llull<K ’
and
lim sup [g5/(w)| =0, fori,j=1,...,n+2andi# | (2.13)
At—0+ ”u”SK

Assuming that £ [RiA’ (k)]* = o(A¢r) for i = 1,2, one may verify that for all K € (0, o),

1
lim sup Y fllu — VPP (u, dv) = 0. (2.14)

At—0+ llull<K

Extend the definition of X*/(¢) to all # > 0 by setting X*(r) = X*/(kAt) for t € [kAt, (k + 1)Af) and let
X(t) be the solution of system

dS =[D(S° - 8) — mU(S)x + uD,y,ldt + 1S dB(¢),
dx = x[—(D + Dy) + ymU(S)]dt + 02,xdB,(t),

dy, = —a(y; — S)dt,

dy; = —a(y; —yi-)dt, i=2,3,...,n.

(2.15)

with initial condition X(0) = (S (0), x(0), y;(0), ..., y,(0))". Then according to Theorem 7.1 of [23], we
can from (2.6)-(2.15) obtain the following lemma.

Lemma 2.1. Given initial condition X(0) = (S(0), x(0),y,(0),...,y,(0)!, assume X(t) is the unique
solution of (2.15). Then X®!(t) converges weakly to X(t) as At — 0.
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Notice that if we take n — oo for the kernel £ (s), then it converges to a Dirac delta function. Thus
(2.1) becomes a stochastic model with discrete time delay. Then, conditional probability density can
be used to determine the ’conditional average drift” and “conditional average diffusion” of the process
(see Chapter 6 in [24]).

We should point out that (2.1) and (2.2) are two equivalent stochastic counterparts of deterministic
model (1.1). In the sequel, we will select the specific form of the random model according to the spe-
cific needs. In the following sections, we will first show the uniqueness of positive solution of system
(2.1), and then study the dynamics of the system on a complete probability space (Q,.%,{-%}»0, P)
with a filtration {.%#,}5 satisfying the usual conditions, i.e., it is right continuous and .% contains all
P-null sets. Before that, we introduce a differential operator L associated with a general n-dimensional
stochastic functional differential equation [25]:

dx = f(t, x,)dt + g(t, x,)dB(t) (2.16)

with initial condition xy = ¢ € S, where 7 is the space of .%y-adapted random variables ¢, with
¢(s) € R" for s < 0, and
llgll = suplp(s)l,  llgll; = sup E(lp(s)P).
0

s<
B(t) denotes m-dimensional standard Brownian motions. The differential operator L is defined as

2

0 0o 1 0
L= oy + f(x,0) - ox, + ETr[gT(xt’ 1 - 8_)6,2 - 8(x, D] (2.17)

3. Existence and uniqueness of the global positive solution of system (2.1)

The existence and uniqueness theorem of solutions for stochastic functional differential equations
had been studied by Mao [25], see also the related results in [26, 27]. However, these results are all
in the case that the delay is finite. Recently, Wei and Wang [28] generalized the theorem to the case
of infinite delay under the linear growth condition and local Lipschitz condition. For our model (2.1),
obviously, the coefficients are locally Lipschitz continuous, but they do not satisfy the linear growth
condition. So, the solution of system (2.1) may explode at a finite time. In this section, we shall show
that the solution of system (2.1) with any positive initial value remains positive for all # > 0.

Theorem 3.1. Given any initial value (¢1(6), p2(8)) € C((—=0,0],R2), model (2.1) has a unique solu-
tion (S (1), x(t)) for all t > O; furthermore, the solution remains positive for all t > O with probability 1,
namely S (t) > 0 and x(t) > 0 for all t > 0 almost surely, if the specific growth function U(S) satisfies

Uo0)=0,US)>0, U'(S)<O0 for S >0 and Slim Uues)=1.
Proof. It is easy to verify that for any given initial value (¢, (), ¢2(0)) € C((—o0,0],R?), system (2.1)
has a unique local solution (S (¢), x(¢)) on ¢ € [0, 7,), where 7, is the explosion time. To prove this

theorem, we only need to show this solution is also global, that is 7, = o a.s.
Let ko > 0 be sufficiently large so that kl—o < ¢1(0), 92(0) < ko, and for each integer k > kj define

T = inf {t €[0,7,): 5@ ¢ (%,k) or x(t) ¢ (%,k)},

Mathematical Biosciences and Engineering Volume 16, Issue 1, 1-24.
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which is known as the stopping time and increasing as k — oo. Set 7, = lim 74, whence 7., < 7, a.s..
k—o0

We next show 7, = oo a.s. by contradiction, which implies 7, = oo a.s..
If 7o, # oo, then there is a pair of constants 7 > 0 and ¢ € (0, 1) such that

P(tr, <T)>0.
Hence there is an integer k; > k( such that for all k > k;
P, <T) >0

Consider a Lyapunov function

00 !
V(S,x)=y(S -C; - C, lnci)+(x— 1—1nx)+yuD1f f(s)f x(7)dtds,
1 0 t—s

where C| = %. By 1t6’s formula, one has
s ¥Cuae e L1
dv(s, x) =ydS S das + 2S2(dS) +dx xdx + % (dx)
+ yuD1(x(t) - f f(s)x(t — s)ds)dt
0
=LV(S, x)dt + yo(§S — C1)dBy + o,(x — 1)dB,,
where

1 1 0
LV(S,x) =yDS° + yC,D + D + D, + E)/Cla'% + 50’% +yuD, f F($)x(t = 8)ds
0

US)  yCiDS® I fo)x(t = s)ds
s s ! S
— (D + Dy)x — ymU(S) + yuD; (x(t) - f f()x(t = s)ds).
0

—yDS +vyCim yCiuD

Notice for S > 0
Ues)

U'(S) < < U(0).

Then from (3.4), we deduce that

1 1
LV <yDS° +yC\D + D + Dy + ZyCio7 + 507

— (D + Dy = yuD, —yCimU'(0))x

1 1
S)’DSO +’)/C1D1 +D+ D + EyClo'% + EO‘% 2 K.

Therefore,
dV(S,X) < Kgd[ + ’)/O'l(S — Cl)dBl + O'2(X - l)de

Integrating both sides of the above inequality from O to 7, A T, and taking expectation, yields

E(V(S (ri A T), x(ri A T))) < V(1(0), 2(0)) + K2E(rc A T).

3.1

(3.2)

(3.3)

(3.4)
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One then has
E(V(S (1 A T), x(1 A T))) < V(1(0), 92(0)) + Ko T. (3.5)
Set Q = {1 < T}(k > ki) and by (3.1), P(€);) > 6. Note that for every w € €, there is at least one of

S (14, w), x(1y, w) which equals either k or % Then

k 1 1
V(S (Tka (,l)), X(Tk, (,())) Zy(k - C1 - C1 In C—l) AN ')/(% — Cl — Cl In k_C‘l)

1 1
Ak-1 —lnk)/\(% -1 _IHE)'
It follows from (3.5) that
V(©1(0), 92(0)) + K> T ZE(IQk(w)V(S (T AT), x(tyc A T)))

k 1 1
>Oly(k—C;—-Ciln—)Ay(=-C;{—-C{In—
2 [7’( 1 1 nCl) )’(k 1 1 nkCl)

1 1
ANk=1-Ink)A(--1-1In—
( n k) (k n k)]
where 1g, is the indicator function of €. Let k — oo, then
0 > V(1(0), 92(0)) + Ko T = o0,

which leads to a contradiction. So 7., = co. This completes the proof. O
4. Dynamical behavior of system (2.1)

In this section, we will study the long term dynamical behavior of model (2.1), particularly near the
equilibria of the corresponding deterministic model (1.1). Obviously, when oy = 0 and 0, # 0, Ej is
still an equilibrium of stochastic model (2.1), but E* is not; when oy and o, are positive, neither E, or
E™ is the equilibrium of model (2.1). Therefore, we will investigate

(a) the stochastic stability of Ey when o is zero; and
(b) the spectral densities of the nutrient and the algae population when o; > 0,i = 1, 2.
4.1. Stability of system (2.1) at Ey in case of o1 = 0

When oy = 0, substituting u; =5 — S 0 u, = x into model (2.2), one obtains

duy = [-Du; — mU(u; + SOu, + uD, fooo f(uy(t — s)dsldt, @.1)
du, = up[—(D + D)) + ymU (uy + SO)]dt + 0 urdBs, ’
which has the linearized system
du, = [-Du; — mU(S ")u, + uD, fooo f()u(t — s)dsldt, 4.2)
duy = u,[—(D + D)) + ’me(SO)]dl + o urdBs. ’

For the trivial solution of system (4.2), one has the following stability result. The method of con-
structing Liyapunov functions in its proof will help us to construct suitable Liyapunov functions in
investigating the stability of the trivial solution of nonlinear system (4.1).

Mathematical Biosciences and Engineering Volume 16, Issue 1, 1-24.
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Proposition 4.1. Assume C, = uD,[D+D;—ymU(S°)] and oy = 0. Then the trivial solution of system

(4.2) is asymptotically mean square stable if

mU(S®) + uD, + C,T; < 2D, and
2ymU(S") + 05 < 2(D + D)),

where Ty is the average delay with value Ty = +.

Proof. Consider the function
Vi(uy, uy) = ui.

It follows from (4.2) and It6’s formula that
dVi(ui,u) = 2uduy + (dup)’
= [-2Du - 2mU(S "Yuyus + 2uDyu; f ) F(Suy(t — s)dsldt
= [—2Du% -2mU(S 0)u1u2 + 2,uD1u1u20
—2uDu, j: f(s) f[ duy(t)ds + h(t)]dt,
i-s
where .
h(t) = =2uD\u, f, F($)(ua(t) — ua(t — 5))ds.

Then we have

LVi(uj,u) = =2Du; —2mU(S")uyuy + 2uDyuyuy + h(t)
00 t
—2uDu, f f(s) f [~(D + Dy) + ymU(S )]ux(v)drds
0 t—s
< —2Du% —2mUS Ouyuy + 2uD uju, + h(t)

t

+uD[D + Dy — ymU(S°)] f"" f(s) (u%(t) + u%(T))des
0 t—s

= —2Duj — 2mU(S "ujuy + 2uDyuyuy + h(?)
+uD;[D + Dy — ymU(S")]

(Trui(e) + f ) £(s) f t ui(7)drds).
0 t—s

Va(uy, up) = G f"" f(S)f f ui(t)drdrds
0 t—s Jr

which is well defined since fooo s2f(s)ds = % Then by 1t6’s formula, we have

Define function

00 !
LVa(uy, up) = CoT pus(1) — C f £(s) f ui(t)drds.
0 t—s
It then follows from (4.7) and (4.9) that

L(Vy + V) < =2Duj = 2mU(S “Yuyuy + 2uDyuyuy + CoT sy + CoTus + h(?).

4.3)
4.4)

(4.5)

(4.6)

4.7)

(4.8)

4.9)

(4.10)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 1-24.



11

We now consider a function
2
Vi(ui, up) = C3us,

2D 5. By Itd’s formula, we have

where C; = 2AD+Dy)—2ymU(S) -2

LV3(u1, up) = 2C3[—(D + D)) + ymU(S )iz + C303143. 4.11)

For function
V(ur, up) = Vi(uy, uz) + Vo(uy, uz) + Va(uy, up),

we have from (4.10) and (4.11) that
LV(uj,up) < — (2D = mU(S®) — uD, — C, Ty — 2uD, f f(s)ds)us
t
+[mU(S®) + uD| + C,T; — 2C3(D + Dy) + 2C3ymU(S°)
+ C30%5 + uD, f f(s)dslus + ,UD1||902||2f f(s)ds
t t

<—(@2D-mU(S°) —uD, — CoT; — 2uD, f f(s)ds)ui + u3)
t

+ uDillg| f f(s)ds.
t
By (4.3), we choose € > 0 such that
mU(S®) + uD, + CoT; + 2uDy& < 2D.

Let T = T(e) > 0 such that ftm f(s)ds < eforallt > T. Then for all t > T, one has
LV(ui,uz) < =(2D = mU(S°) — uDy — Co Ty = 2uD1&)(uf + u5) + uDillga|l* flw S(s)ds.
Integrating both sides of the above from 7T to ¢t > T yields
E(V(®) + (2D —mU(S°) — uDy — CoT; — 2uD; &) fT I E@u3(s) + u3(s))ds
< V(T) + uDillgs|? th fw f(wduds

< V(T)+#D1||902||2f sf(s)ds
0

= V(T) + uDillpsPT; < oo

Using the similar discussion as that in [9] and the Barbdlat lemma, we conclude that E (uf(t) + u%(t)) -
0 as + — oo. Applying the definition of mean square stability of the solution [25], we obtain the
conclusion. O

Next, we give the result about the stability of the trivial solution of non-linear system (4.1), that is,
the stability of E°(S°,0) of system (2.1).
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Theorem 4.1. Let 0y = 0 and assume conditions (4.3) and (4.4) hold. Then the trivial solution (0, 0)

of system (4.1) or the equilibrium E°(S°,0) of system (2.1) is stochastically stable.

Proof. Let (uy, u,) be any solution of system (4.1). Define the stopping time

: 22 2
T, =inf{t > 0 : uy +u; > &7}.

For the Lyapunov function V;(u;, u,) defined in (4.5), we obtain

LVi(uy, u) —~2Du; — 2mU (uy + SO)uyuy + 2uDyuyu; + h(t)

!

—2uDyu, f ) f(s) | [=(D+ D)) +ymU(u; + SO ux(t)drds
0

t—s

IA

—2Du? = 2mU (uy + S O)uyuy + 2uD uyu; + h(t)

+uD;[D + Dy — ymU(S%)] f ) £(s) f (U3 (t) + u5(1))drds
0 t—s

= —2Duf = 2mU(u; + SO)uyuy + 2uDyuyuy + h(t)
+uD\[D + Dy — ymU(S")]

X(T pus (1) + fo ) £(s) f uy(7)drds),

where h(?) is defined as in (4.6). For V,(u;, u,) in (4.8), one then has

L(V] + V2) < —ZDM% - 2mU(u1 + SO)M]MZ + 2/1D1M11/l2 + CszI/t% + CszI/t% + h(l’)

Now define
Va(uy, uy) = Caui3,

where Cy is a constant to be determined later. We have that
LV3(uy, up) = 2C4[=(D + Dy) + ymU(u; + SO)uj + Cyo3u3.
Therefore, for the function
V(ur, up) = Vi(ur, up) + Vo(ur, up) + Vi(uy, ua),
it follows from (4.13) and (4.14) that

LV(M], Mz) <- ZDM% - 2mU(u1 + SO)L{lblz + 2/1D1M1M2 + CszI/t% + Cszué
+2C4[—(D + D)) + ymU(u; + SO + h(t) + Cyo5u3.

By (4.4), one can find a constant 6 > 0 such that
2ymUS + S°) + 05 < 2(D + D).
Choose

~ 2D
2D+ D)) - 2ymUS + S0 — a3’

Cy

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Then, it follows from (4.15) and (4.16) that

LV(uy,u,)

IA

—~(2D - mU(S°) — uD; — C,T; — 2uD, f f(s)ds)yu;
t
+[mU(S®) + uDy + CoT; — 2C3(D + Dy) + 2C3ymU(S?)

+C302 + D, f F(s)dsTi + uDyllgalP f F(s)ds
t t

IA

~(2D - mU(S°) — uD, — C,Ts - 2uD, f f($)ds)u? + u)
t
+uD || f f(s)ds. (4.17)
t
Integrating both sides of the above formula from O to A T, yields
t/\Tgl )
VAT, ) VO +unilelf [ [ sndeds
0 s
1 00
<ligr|I* + [ZuDy(D + Dy = ymU(S®)) f s*f(s)ds
0

+ Calllgal? +,uD1II<P2II2f sf(s)ds
0
<1V )l + llgall®),

where p = suD (D + Dy — ymU(S?)) fﬂm s?f(s)ds + C4 + uD,Ty. Now for g1, & € (0, 1), let

. 1 ACy > &1
0 = min {( 82) &1, —}.
1vp 2

Then, if ||¢1]1* + |lga|*> < 62, it follows that
EV(tAT,)) <1V p)s* < (1ACyeie.
On the other hand, we have

E(V(t ATg)) 2E[Lir, <4Vt A T)]
:E[l{TgI ) V(Te)]
=P{T,, <t}V(T,,)
>(1 A Cy)elP{T,, < t).
Hence, we have P{T,, <t} < &,. Letting t — oo gives

P{T81 < OO} < &7,

which is equivalent to
Plus +u5 < g7} > 1 — &

Then the definition of the stochastic stability of the solution implies the conclusion. O
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4.2. Spectral density analysis of (2.1) in case of o; > 0

In this subsection, we study the dynamics of system (2.1) near E*, the positive equilibrium of (1.1).
To this end, we assume condition (1.3) holds. Thus E* is a stable positive stable positive equilibrium
for system (1.1) but not the equilibrium for system (2.1) when o; # 0. We aim to investigate the
spectral densities, denoting the intensities of fluctuations, of the nutrient and the algae population by
Fourier transform method.

To perform the spectral density analysis on model (2.1) with a general delay kernel function is very
difficult, so we turn to consider the limit case when n — oo in (1.4), i.e., f(s) = 6(s — 7). Introducing
S () = exp(uy(¢)) and x(¢) = exp(uy(?)), one converts (2.1) into

dt

&2 = (D + D)) + ymU(e") + 02,

{ dup _ DSOe—ul -D- mU(em)euz—u] +#Dleu2(t—7f)—u1 + 0'161, (4 18)

Substituting
uy =vi+uy, Uy =vy+u
into (4.18), yields

vy

2 DS Oe—(v1+uT) -D-— mU(eV|+u’]‘ )evz+u”2‘—V|—u’]‘

+uD e TTONTT  gry & (4.19)
& = (D +Dy) + ymU(e") + 0t

where (1}, ;) = (InS™,In x*). The linearized system of (4.19) is

d
% =ap; vy +apv, +apv(t — Tf) + o1&y, 420
dvy _ ( . )
5 = axvi + 0262,
where
ay = —-DS%™ —mU'(e")e> + mU(e")e">™ — uDye'>™,
aiy = —mUE)e™™, a3 =pDie™, ay =ymU’'(€)e".
Given continuous function v(¢) over the interval —% <t< % (T > 0), define function
%
P(w) = f V(e " dt. (4.21)
=
Since ¥(w) is the Fourier transform of v(¢), we know
1 * ~ iwt
v(t) = 7 Pw)e dw, 4.22)
T J-c

which implies that %ﬁ(w) is the amplitude density of the components of v(¢) in the angular frequency
interval w to w + dw. Thus ﬁfx(w)a’w can be considered as an estimate of the amplitude of the compo-
nent of v(¢) with angular frequency w. Taking Fourier transform of system (4.20), we obtain

(4.23)

{ 0'1%1 () = (a1 + i)V (W) = (a2 + aize”7)(w),
026 (w) = —an V(W) + iwh(w),
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where .
f Et—Tp)e™dt = e E(w) j=1, 2.

Write (4.23) in the matrix form
i(w) = A(w)W(w), (4.24)

where

Alw) = (

—ap + lw —(6112 + 61136_[(‘”/{)
—aj iw

fi(w) = (i (w), RW) = (01&1(w), 26 (W))T, H(w) = (F1(w), H(w))". Let |A(w)| = det(A(w)) and we
assume |A(w)| # 0. Then from (4.24) we have

H(w) = A™ ()W), (4.25)
where _
; T a/ al
ANy = 1 e Tane ):( i %1 ) . 4.26
@) = pay ( a, — —ap +iw ay a, (4.26)
Then
2
W= apiy, i=1,2 4.27)
=1

If the function v(#) has zero mean value then the fluctuation intensity (variance) of the components in
the frequency band w and w + dw 1s S ,(w)dw, where the spectral density S ,(w) is formally defined by

2
S (w)dw = }im M
Hence,
1 : =
Sy(w)ydw = }im T f f n(n(t") exp(io(t’ — t))drdrt . (4.28)
2vYT2
From (4.27) and (4.28), we have
2
Sy() = Y 1 PoSe(w), i=1.2, (4.29)

=1

since % = 0 and &(2)&;(t') = 6;;0(t — t’). Therefore, the fluctuation intensity (variance) in v; is

1 00
ol = —f S (wdw
i 21 J o
= [
= ﬂz f ;oS ¢ (w)dw (4.30)
R

2
1 (o]

= 5 E f Ia;j|20'jda), i=1,2.
=1 Y
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It follows from (4.26) that
1 “ Pi(w) )
2= — | —=d =1,2 4.31
=0 | @yt =2 (4.31)

where
Pi(w) = ow*+ 0a(an + ags cos wrf)2 + O'Qaf3 sin’ wTy,
2 2 2
Py(w) = oa5 +oa(ay;, + w),
M(a)) = (—(1)2 + a|pdas + ajzas; CoS Q)Tf')z + (6111(1) — a13ds sin (J)Tf)2. (432)

When 7, = 0, we have

2 2
Pi(w) = ow +oy(an+ai),

2 2 2
Py(w) = o045 +oa(ay; + w),

2 2 2
Mw) = (—w” +apay +apax) + (a)w)

= (~w* +apay +apay + apiw)

><(—a)2 + appar + apzay — alliw). (433)

Following Gradshteyn and Ryzhik [29], the general integral encountered in calculations of fluctuation

is of the type
* g(w)dw
I, = —_— 4.34
Lo (@) —2) (39
where
gn(lw) = bow® 2+ byt + -+ b,
hy(w) = apw" +a™™" + - +a,. (4.35)

When n = 2, the integral is given by

ﬂi(dob] - azbo)
12 = .
aopd1ap

Then from the relation between g,(w) and P;(w)(i = 1,2) and hy(w)h,(—w) with M(w) we obtain
ap = —1, ay = an, ay = anay + apaz, by(l) = oy, by(2) = 02,
bi(1) = oaan + a3)’, bi(2) = o143, + 0aaj;.
Hence,
) os(ai ‘|‘6113)2 + oi(anay + ajzaz)

oL = ,
2a11(apan + ayzaz)

2 2
oa5, + oaai, + ox(anaz + apaz;)
o2 = 21 L . (4.36)

2a;1(apay + ayzas)

Now, the variances have been obtained in (4.31) for 7, > 0 and in (4.36) for 7, = 0. But we should
point out that the computed variance 0'51, is for the linear system (4.20), while for the nonlinear system
(4.19), it is difficult to obtain. So, agl_ in (4.31) is an estimate of the variance for system (4.19). Notice
that vi = InS — InS” and v, = Inx — In x*, so the fluctuation intensities of the nutrient and the algae
population can be estimated as (S*)*c and (x*)*c;, respectively. Thus, the results obtained so far in
this subsection can be summarized as follow.
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Theorem 4.2. Assume (1.3) holds. Then the fluctuation intensities of the nutrient and the algae popu-
lation can be estimated as (S*)*c;, and (x*)*o,, respectively, where o, is given in (4.31) for t; > 0
and in (4.36) for T = 0.

4.3. Extinction

The following theorem shows that a sufficiently large noise can make the algae population extinct
exponentially with probability one.

Theorem 4.3. For any given initial value (S (0), x(0)) € Ri, the solution (S (1), x(t)) of system (2.1) has
the following property:

lim sup

t—00

In particular, if 03 > 2ym — 2(D + D), then

n x(z) I,
t

<—(D+ Dy)+ym-— 50'2.

In x(¢)

lim sup <0.

—o0

Proof. Define function V(x) = In x. Then by 1t6’s formula, we have
1 1
dV(x) = —dx — z—(dx)’
X 2x
1
= |[-(D+ D)) +ymU(S) - 50'2 dt + o»dB;.
It follows that

dV(x) < [-(D + Dy) + ym — %aﬁ]dt +0dB,,
integrating both sides of which from O to ¢ yields
Inx(#) —Ing,(0) < [-(D + D)) + ym — %o%]t + M(1), (4.37)
where M(t) = 0, B,(t). Obviously, M(t) is a locally continuous martingale and
(M(1), M(1), = o3t

which implies that
5 (M(1), M(1)),
im sup — < 00
[—o0

By Strong Law of Large Numbers, we obtain

M(t
limL =0 a.s.

t—oo

Dividing ¢ on the both sides of (4.37) and letting t — oo, we have

In x(t 1
lim sup n)tc( ) < —(D+ Dy)+ym-— 50‘%.
t—00
This completes the proof of the Theorem. O

Theorem 4.3 reveals that a large noise may induce the extinction of algae population even though
its corresponding deterministic model (1.1) has a stable positive equilibrium E*.
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5. Numerical simulations and discussions

In this paper, a delayed stochastic model (2.1) for algal bloom with nutrient recycling has been
proposed and investigated. Such a stochastic model is useful in investigating and understanding various
ecologically realistic features. We have focused our attention on two aspects:

(i) the random influences incorporated through perturbation on the nutrient and the algae population,
and

(ii) the conversion delay of detritus into nutrients.

For model (2.1), we first showed its reasonability by means of an approximate Markovian system
of it under the assumption that the delay kernel f(s) takes the family of generic delay kernel (1.4).
Then we carried out the analysis of the uniqueness and the global existence of its positive solution
with the help of the result in [28], since the incorporated delay in the system is infinite. Next, we
analyzed its long time behaviors around the various equilibria of its corresponding deterministic model
(1.1). Our findings in Theorem 4.1 reveal that E is stochastically stable provided the intensity of the
noise o and the average delay T, = 2 are small. Though E* is not an equilibrium of model (2.1)
when o; # 0, it is shown in Theorem 4.2 that the fluctuations intensities of the nutrient and the algae
population can be estimated in a neighbourhood of E*. In addition, our result in Theorem 4.4 reveals
that sufficiently large noise can make the algae population extinct exponentially with probability one,
even if its corresponding deterministic model (1.1) has a stable positive equilibrium.

To illustrate the theoretic results obtained, numerical simulations are carried out by using Milstein
scheme [30]. Here we assume that the specific growth function U(S) is of Michaelis-Menten type

S

Uws) = ,
() a+S

where a; is the half-saturation constant.

The first given example below concerns the effects of the random influence and the delay on the
long time behavior around the washout equilibrium. Here we take n = 1 in (1.4), that is, the weak
delay kernel f(s) = ae™®°. Then the discretization of model (2.1) for t = 0, At, 2A¢, . .., nAt takes the
form

Siv1 =S;+[DES® =S —mU(S )x; + uDyy1 1At + +01S; VAtEy,,
Xir1 = X + x;[=(D + Dy) + ymU(S )]At + 02x; \/A_ffﬁ, (5.1)
Yrir1 = Y1 — @y — S)HAL,
where time increment Az > 0 and &; are N(0, 1)—distributed independent random variables which can
be generated numerically by pseudorandom number generators.

Example 5.1. Consider model (2.1) with D = 0.3,D; = 0.1,8° = 3,m = 0.54,a; = 0.4,u = 0.3,y =
08,0, =0,0,=0.05and a = 10.

It is easy to see that Ty = 0.1. Simple computations show that
ud; + mU(S®) + C,T; = 0.5065 < 2D

and
2ymU(S°) + ?m*U*(S°) = 0.7649 < 2(D + D)).
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Then by Theorem 4.1, the equilibrium E, of model (2.1) is stochastically stable. Our simulation
supports this result as shown in Figure 1. To examine the effect of the delay in nutrient recycling,
increasing the value of Ty from 0.1 to 10 (i.e., decreasing the value of @ from 10 to 0.1), we find that
the equilibrium E, continues to be stochastically stable, but the levels of the nutrient and the algae
population will be lower in the beginning of time (see Figure 1). It is because that a large delay in
nutrient recycling can make the algae grow slowly.

3.6 w 0.4 ‘
_Tf=0.1 _Tf=0.1
_ 0.35 a1
34l ---T10 | - --T=10
0.3F
3.2r 0.25f
UJ/ 3 }’ 0.2
0.15f
2.8 01l
06 0.05 o
L L L L O L L
0 100 200 300 400 500 0 100 200 300 400 500
(a) t (b) t

Figure 1. The equilibrium E, of stochastic functional model (2.1) is stochastically asymp-
totically stable with oy = 0 and o, = 0.05.

To study effects of the random influence and delay on E*, we give the following example with
different values of noise intensities and delay. For the kernel function f(s) = 6(s—7/), the discretization
of model (2.1) for r = 0, At, 2At, . . ., nAt takes the form
S =8;+ [D(SO - S,) - mU(S,-)xl- + /lD]X,'(i — Tf/A[)]At + 405 \/Kt‘fli’ (5 2)
Xist = X + 5[=(D + Dy) + ymU(S )IAt + oy x; VAtEy;, '

where time increment Az > 0 and &; are N(0, 1)—distributed independent random variables which can
be generated numerically by pseudorandom number generators.

Example 5.2. Consider model (2.1) with D = 0.3, D; =0.1, S°=5, m=0.7, a; = 0.4, = 0.3 and
v =0.8.

It is easy to see example 5.2 satisfies condition (1.3). By Theorem 4.2, the fluctuation intensities of
the nutrient and the algae population can be estimated as o5 and o3, respectively, where o5 = (S*)*0,
and o3 = (x*)?07;,. The variations of o5 and o with respect to the delay 7, and noise intensities o~;
are drawn in Figure 2 for different 7, and o, and the corresponding trajectories of the nutrient and the
algae around E* are drawn in Figure 3.

Figures 2 (a) and (b) show the effect of the delay on 0'§ and o2, which are drawn by taking oy = 0.01
and o, = 0.01. From Figure 2 (a), U§ has a little decrease with the increase of the delay in the
beginning, then it increases as the delay increases and finally it remains unchanged when the delay
increases to 30. From Figure 2 (b), 0')% first decreases as the delay increases, then it remains unchanged
when the delay increases to 30. These two sub-figures reveal that the delay has a different effect on
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o’% and 0')26 when it is small, while it does not affect the fluctuation intensities when it is large. The
corresponding trajectories of the nutrient and the algae around E* are drawn by taking 7, = 0.1 and
7¢ = 10, respectively, please see Figure 3 (a) and (b). These two sub-figures reveal that with a different
value of 7, trajectories of the nutrient and the algae oscillate ultimately around E* with a certain
amplitude, but with a larger value of 7, the levels of the nutrient and the algae will be lower in the
beginning.

0.0615 i i i 0.148
0.061} 1 0.146¢
0.0605¢ 1 0.144¢
0.061 0.142¢
“” 0.0595¢ X 0.14f
0.059 0.138f
0.0585+ 0.136}
0.058} 0.134¢
0.0575 0.132 : ; ;
0 0 10 20 30 40
T T
(a) f (b) f
14 30
512 .25/
7] )
5 1 5
E E 201
I 2
8 0.8 P g o
= Y = 15 X
5 S ©
S5 0.67 o >
3] 3] o2
2 210 s
° 0.4r °
= £
0.2 5
0 : 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
(o} O,
() 1 (d 2

Figure 2. Variation of the fluctuation intensities of the nutrient and the algae population with
respect to the delay 7, and noise intensities o, i = 1,2. (a) (b) oy = 0.01 and o, = 0.01, (¢)
7y=0and o, =0,(d) 7, =0and oy = 0.

Figures 2 (c) and (d) show the effect of noise intensities on 0'§ and 0';2“ which are drawn by taking
T¢ = 03 = 0inFigure 2 (c) and 74 = 0y = 0 in Figure 2 (d). From these two sub-figures, the fluctuation
intensities of both the nutrient and the algae increase as o7y or 07, increases, and ag increases faster in
the absence of o, and o2 grows faster in the absence of oj. The corresponding trajectories of the
nutrient and the algae around E* are drawn by taking two different values of oy (Figure 3 (¢)-(d)) and
of o, (Figure 3 (e)-(f)).
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Figure 3. The dynamics of stochastic functional model (2.2) around the equilibrium E* with
different o~ and a. Here E*(S*, x*) = (1,2.55). (a)-(b) oy = 0 = 0.01; (¢)-(f) 74 = 0.
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From Figures 2 and 3, one can find that the fluctuation intensities 0'§ and 0'% are more sensitive to
the noise intensities o; than the delay 7, since the fluctuation intensities change within a narrow range
with respect to 7, ( Figures 2 and 3 (a)-(b)), and they change within a wide range with respect to 0'§
and 0)2( (Figures 2 (c)-(d) and 3 (c)-(f)). Furthermore, the fluctuation intensity of the nutrient is more
sensitive to oy than o, since in the absence of o, o% has a faster increase with the increase of 0.
Rather, the fluctuation intensity of the algae population is more sensitive to 0.

To further study the effects of the random influence on the extinction of system (2.1), we give the
following example with a sufficiently large noise. Here the discretization of model (2.1) takes the form
asin (5.1).

Example 5.3. Consider model (2.1) with @ = 10 (i.e., Ty = 0.1), oy = 0 and 0, = 0.5 and all other
parameters have the same values as in Example 5.2.

Simple computation shows that
2ym —2(D + Dy) = 0.064 < 03 = 0.25.

By Theorem 4.3, the algae population will go to extinction (see Figure 4).

5 : : ‘ ‘ 10 ‘ ‘ ‘ ‘
ﬂ/' -- -02=O -- -02=0
al —_— 02:0.5 | 8l — 02:0.5 |
3 6
@ <
2 4
1 -®-w--rr---------------1 ZPJ
0 L L L L O L L L
0 100 200 300 400 500 0 100 200 300 400 500
(a) t (b) t

Figure 4. Variation of the fluctuation intensities of the nutrient and the algae population with
respecttooy,i=1,2.(a) Ty =0.1and o, =0, (b) Ty = 0.1 and o7} = 0.

Examples 5.2 and 5.3 reveal that the algae population is more sensitive to 0. Under certain para-
metric conditions, there is fundamentally different behavior for the algae with different value of 0. If
o0, = 0.01, the algae population will survive. Whereas, when o, increase to 0.5, the extinction of the
algae will occur.

To sum up, this paper presents an investigation on the effect of the environmental noise and the
delay occurred in the nutrient recycling on a nutrient-algae system. Our findings are useful for a better
understanding of the dynamics of algal blooms. We should point out there are other interesting topics
meriting further investigation, for example, the stationary distribution of the system. It is also very
interesting to study the long time behavior of the multi-nutrient multi-algae system with noise. We
leave these for future considerations.
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