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Abstract: Using the discrete Markov chain, in this paper we develop a stochastic model for algal
bloom, in which white noise terms are introduced to describe the effects of environmental random
fluctuations and time delay to account for the time needed in the conversion of detritus into nutrient.
For the proposed model, we firstly discuss the well-posedness, namely the existence and uniqueness of
the global positive solution. Then, it is followed by seeking the sufficient conditions for the stochastic
stability of its washout equilibrium. Then by using Fourier transform method, the spectral densities of
the nutrient and the algae population are estimated. Finally, we show that larger noise can make the
algae population extinct exponentially with probability one. Our theoretical and numerical results sug-
gest that the environmental random fluctuations may have more significant influences on the dynamics
of the model than the delay. These findings are helpful for a better understanding of the formation
mechanism of algal blooms.

Keywords: delayed stochastic nutrient-algae model; discrete Markov chain; spectral density; Itô’s
formula; lyapunov function

1. Introduction

It is known that many shallow lakes in China have been experiencing a problem of algal bloom
resulting in shortage of drinking water supply and degradation of lake ecosystem [1]. For example, it
is reported that in the spring of 2007, the accumulation of algal blooms in Tai Lake, the third largest
freshwater lake in China, left approximately 2 million people of Wuxi City without drinking water for
at least a week, and led to massive and rapid fish deaths [2, 3, 4]. The bloom of algal is a complex
process [5] and is due to the increased input of nutrients, such as nitrogen and phosphorus, which
directly affect the growth of algal [6] and nutrient-rich sediment (dead algae) [7], which sinks to the
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bottom of the lake forming detritus, and then is converted into nutrients due to the decomposition by
bacteria [8, 9].

It should be noted from [10, 11] that the conversion of detritus into nutrients is not instantaneous
and requires time for the completion of bacterial decomposition resulting a delay. To describe the
conversion of detritus into nutrients, authors of [8, 9] proposed a nutrient-phytoplankton model

 Ṡ = D(S 0 − S ) − mU(S )x + µD1

∫ ∞
0

f (s)x(t − s)ds,

ẋ = x[−(D + D1) + γmU(S )],
(1.1)

where S (t) and x(t) denote the concentrations of a limiting nutrient (nitrogen or phosphorus) and algae
density at time t, respectively; S 0 is the input concentration of the nutrient, D is the washout rate, m
is the maximum specific uptake rate of nutrient, D1 is the death rate of the algae, γ ∈ (0, 1), is the
fraction of nutrient conversion, the delay kernel f (s) is a non-negative bounded function defined on
[0,∞) describing the contribution of the biomass dead in the past to the nutrient recycling at time t,
µ ∈ (0, 1) is the fraction of the nutrient recycled by bacterial decomposition of the dead algae, U(S )
is the specific growth function. It is found in [9] that the delay should be relatively small to have
global attractivity of positive equilibrium. Recently, Misra and Chandra [11] studied the effect of
delayed nutrient recycling on a nutrient-algae-dissolved oxygen model. They found that if the delay
is lager than some threshold then the concentration of algae fluctuates and may increase drastically;
meanwhile, the concentration of dissolved oxygen may reduce drastically, resulting massive death of
fish population in the lake. To avoid the massive death of fish population and other losses, the detritus
from the lake should be regularly removed before the threshold value. To provide sound scientific
advices, various studies using mathematical models have been conducted for algal bloom caused by
nutrients in the lakes, where both nutrient and algae population dynamics are described by a system of
coupled deterministic continuous processes [12, 13, 14, 15].

It is known that nutrient inputs from runoff vary not only in quantity (influenced by rainfall and other
environmental factors), but also in composition (based on the form of fertilizer in use) [16]. These vari-
ations are random in nature and generally affect the nutrient balances, influence mass transfer efficien-
cies along food chains [17], and therefore play a key role in bloom initiation and maintenance [18]. To
better understand algal bloom phenomenon, stochastic models are needed, describing the variation of
nutrients and environmental forcing. Several studies have already addressed the stochastic modelling
of the algal bloom. For example, according to the experimental data from Bohai Bay of China, Huang
et al. [19] constructed a nonlinear stochastic model on densities of two kinds of typical HAB (harmful
algae blooms) algae: diatom and dianoflagellate, and analyzed their characters of stability and Hopf
bifurcation; Das et al. [20] proposed a stochastic model with the main purpose of considering the
severity and duration of algal blooms in the ecological arena; Mandal et al. [21] established stochas-
tic models of allelopathic interactions between two competing phytoplankton species as a continuous
time Markov chain model and as an Itô stochastic differential equation model, in which approximate
extinction probabilities for both species were obtained analytically for the continuous time Markov
chain model.

Our goals of this paper are to extend the delayed model (1.1) into a stochastic one for algal bloom
and to explore how the random fluctuations and the delay affect the dynamics of algae population.
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Recall that system (1.1) has a washout equilibrium E0 = (S 0, 0) when

U(S 0) <
D + D1

γm
(1.2)

and a positive equilibrium E∗(S ∗, x∗) when

D + D1 < γm and S 0 > S ∗, (1.3)

with

S ∗ = U−1
(

D + D1

γm

)
, x∗ =

D(S 0 − S ∗)
mU(S ∗) − µD1

and here U−1 is the inverse function of U [8, 9]. Under random fluctuations, one naturally concerns
whether or not there exists a steady state for the stochastic system, and how the dynamics of algae
population can be affected.

To derive a reasonable stochastic analogue of the deterministic model (1.1), it generally needs the
help of Markov chain [22]. But this approach is not justified for (1.1) because the delayed stochastic
system is non-Markovian. So, in this paper, we assume that f (s) takes the following special family of
memory functions:

f n
α (s) =

αn

(n − 1)!
sn−1e−αs, (1.4)

where α > 0 is a constant, n is an nonnegative integer. In particular, we call (1.4) the weak kernel
when n = 1 and strong kernel when n = 2. Notice also that in the limit case when n → ∞, the delay
kernel f n

α (s) converges to a Dirac delta function f (s) = δ(s − τ f ). Then (1.1) becomes a model with
discrete time delay τ f . To properly propose our model, we first convert (1.1) into a system of ordinary
differential equations by using chain-trick, and then derive a stochastic analogue by means of Markov
chain. Based on the derived stochastic model we will investigate the effects of delay and environmental
random fluctuations on the dynamics of the model.

The paper is organized as follows. In Section 2, a detailed derivation of the stochastic model is
performed by using discrete Markov chain. In Section 3, we show the uniqueness and global existence
of a positive solution of the stochastic model. In Section 4, we carry out the long term behavior analysis
of the model: we first investigate the sufficient conditions for the stochastic stability of the washout
equilibrium; then the spectral densities of the nutrient and the algae population are estimated by using
Fourier transform method. Our study shows that the algae population can be extinct if experiencing
a sufficiently large noise. Finally, numerical simulations to illustrate the results obtained and a brief
discussion are presented in Section 5.

2. Model formulation and some preliminaries

By taking into account of random effects, we consider a stochastic analogue of the deterministic
model (1.1)  dS

dt = D(S 0 − S ) − mU(S )x + µD1

∫ ∞
0

f (s)x(t − s)ds + σ1S ξ1(t),
dx
dt = x[−(D + D1) + γmU(S )] + σ2xξ2(t),

(2.1)
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with initial value

S (θ, ω) = ϕ1(θ) ≥ 0, x(θ, ω) = ϕ2(θ) ≥ 0, θ ∈ (−∞, 0] and ϕi(0) > 0 (i = 1, 2),

where ϕ1(θ), ϕ2(θ) ∈ C((−∞, 0],R+), the families of continuous functions from (−∞, 0] to R+.
(ξ1(t), ξ2(t)) is a two dimensional Gaussian white noise process satisfying

E[ξi(t) = 0], i = 1, 2; E[ξi(t)ξ j(t′)] = δi jδ(t − t′), i, j = 1, 2

where δi j is the Kronecker symbol and δ is the Dirac delta function. Since ξi(t) is delta-correlated,
so ξi(t)dt can be written as dBi(t), where B(t) = (B1(t), B2(t) is an independent Brownian motion or
Wiener process. Thus (2.1) can be rewritten as the form dS = [D(S 0 − S ) − mU(S )x + µD1

∫ ∞
0

f (s)x(t − s)ds]dt + σ1S dB1(t),

dx = x[−(D + D1) + γmU(S )]dt + σ2xdB2(t).
(2.2)

We now show in detail that model (2.2) or (2.1) is a reasonable stochastic analogue of the deterministic
model (1.1). To this end, introduce

yi =

∫ ∞

0
f i
α(s)x(t − s)ds, i = 1, 2, . . . , n,

then (1.1) becomes the following system of coupled ordinary differential equations

Ṡ = D(S 0 − S ) − mU(S )x + µD1yn,

ẋ = x[−(D + D1) + γmU(S )],
ẏ1 = −α(y1 − S ),
ẏi = −α(yi − yi−1), i = 2, 3, . . . , n.

(2.3)

Follow the idea and techniques in [22], next we derive a reasonable stochastic analogue of (2.3) using
a discrete time Markov chain. For a fixed time increment ∆t > 0 and t = 0,∆t, 2∆t, · · · define a process

X∆t(t) =
(
S ∆t(t), x∆t(t), y∆t

1 , y
∆t
2 , . . . , y

∆t
n

)T
.

Here S ∆t(t) denotes the nutrient concentration, x∆t(t) denotes the concentration of algae population,
and y∆t

i (t), i = 1, 2, . . . , n, are auxiliaries. Let the initial value be

X∆t(0) =
(
S (0), x(0), y1(0), y2(0), . . . , yn(0)

)T

and
{
R∆t

j (k)
}∞

k=0
, j = 1, 2, . . . , n + 2 denote the n + 2 sequences of random variables. Suppose that these

variables are jointly independent and that within each sequence the variables are identically distributed
such that

ER∆t
j (k) = 0, E[R∆t

j (k)]2 = σ2
j∆t, j = 1, 2, k = 0, 1, ..., (2.4)

where σ j ≥ 0 are constants reflecting the size of the stochastic effects, and

R∆t
j (k) = 0, j = 3, 4, . . . , n + 2, k = 0, 1, ... (2.5)
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Variable R∆t
2 (k) is supposed to capture the effect of random influences (due to the external factors such

as variation of nutrients, environmental forcing, or inherent factors, e.g. mutations) on the concentra-
tion of the algae during the period [k∆t, (k + 1)∆t). We assume that x∆t grows within the time period
according to the deterministic system (2.3) and by the random amount R∆t

2 (k)x∆t(k∆t). Random effects
on S ∆t can be similarly modelled as R∆t

1 (k)S ∆t(k∆t). Specifically, for k = 0, 1, ..., we set

S ∆t((k + 1)∆t) =S ∆t(k∆t)
+ ∆t{D(S 0 − S ∆t(k∆t)) − mU(S ∆t(k∆t))x∆t(k∆t)
+ µD1y∆t

n (k∆t)} + R∆t
1 (k)S ∆t(k∆t),

x∆t((k + 1)∆t) =x∆t(k∆t)
+ ∆t{x∆t(k∆t)[−(D + D1) + γmU(S ∆t(k∆t))]}
+ R∆t

2 (k)x∆t(k∆t),

y∆t
1 ((k + 1)∆t) =y∆t

1 (k∆t)
− ∆tα(y∆t

1 (k∆t) − S ∆t(k∆t))

and

y∆t
i ((k + 1)∆t) =y∆t

i (k∆t)
− ∆tα(y∆t

i (k∆t) − y∆t
i−1(k∆t)), i = 2, 3, . . . , n.

We next show that X∆t converges to a diffusion process as ∆t → 0. To this end, we first determine the
drift coefficients of the diffusion. Let P∆t(u, dv) denote the transition probabilities of the homogeneous
Markov chain {X∆t(k∆t)}∞k=0, that is

P∆t(u, A) = P{X∆t((k + 1)∆t) ∈ A | X∆t(k∆t) = u}

for all u = (u1, . . . , un+2) ∈ Rn+2 and all Borel sets A ⊂ Rn+2. Let u1 = S , u2 = x, u3 = y1, . . . , un+2 = yn.
Then, by (2.4) and (2.5), we have

1
∆t

∫
(v1 − u1)P∆t(u, dv) = D(S 0 − S ) − mU(S )x + µD1yn +

S
∆t

ER∆t
1 (0)

= D(S 0 − S ) − mU(S )x + µD1yn,

(2.6)

1
∆t

∫
(v2 − u2)P∆t(u, dv) = x[−(D + D1) + γmU(S )] +

x
∆t

ER∆t
2 (0)

= x[−(D + D1) + γmU(S )],
(2.7)

1
∆t

∫
(v3 − u3)P∆t(u, dv) = −α(y1 − S ) (2.8)

and

1
∆t

∫
(vi+2 − ui+2)P∆t(u, dv) = −α(yi − yi−1), i = 2, . . . , n. (2.9)
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To determine the diffusion coefficients, we consider the moments

g∆t
i j (u) =

1
∆t

∫
(vi − ui)(v j − u j)P∆t(u, dv), i, j = 1, 2, . . . , n + 2.

It follows from (2.4) and (2.5) that∣∣∣g∆t
22(u) − σ2

2x2
∣∣∣

=

∣∣∣∣∣ 1
∆t

E[∆t[−(D + D1) + γmU(S )]x + R∆t
2 (0)x]2 − σ2

2x2
∣∣∣∣∣

=

∣∣∣∣∣∆t[−(D + D1) + γmU(S )]2x2 + 2[−(D + D1) + γmU(S )]x2ER∆t
2 (0)

+
1
∆t

x2E[R∆t
2 (0)]2 − σ2

2x2
∣∣∣∣∣

=∆t[−(D + D1) + γmU(S )]2x2.

Thus,
lim

∆t→0+
sup
‖u‖≤K

|g∆t
22(u) − σ2

2x2| = 0 (2.10)

for all K ∈ (0,∞). Similarly, for all K ∈ (0,∞), we can obtain

lim
∆t→0+

sup
‖u‖≤K

|g∆t
11(u) − σ2

1S 2| = 0, (2.11)

lim
∆t→0+

sup
‖u‖≤K

|g∆t
i+2,i+2(u)| = 0, i = 1, 2, . . . , n (2.12)

and
lim

∆t→0+
sup
‖u‖≤K

|g∆t
i j (u)| = 0, for i, j = 1, . . . , n + 2 and i , j. (2.13)

Assuming that E[R∆t
i (k)]4 = o(∆t) for i = 1, 2, one may verify that for all K ∈ (0,∞),

lim
∆t→0+

sup
‖u‖≤K

1
∆t

∫
‖u − v‖3P∆t(u, dv) = 0. (2.14)

Extend the definition of X∆t(t) to all t ≥ 0 by setting X∆t(t) = X∆t(k∆t) for t ∈ [k∆t, (k + 1)∆t) and let
X(t) be the solution of system

dS = [D(S 0 − S ) − mU(S )x + µD1yn]dt + σ1S dB1(t),
dx = x[−(D + D1) + γmU(S )]dt + σ2xdB2(t),

dy1 = −α(y1 − S )dt,

dyi = −α(yi − yi−1)dt, i = 2, 3, . . . , n.

(2.15)

with initial condition X(0) = (S (0), x(0), y1(0), . . . , yn(0))T . Then according to Theorem 7.1 of [23], we
can from (2.6)-(2.15) obtain the following lemma.

Lemma 2.1. Given initial condition X(0) = (S (0), x(0), y1(0), . . . , yn(0))T , assume X(t) is the unique
solution of (2.15). Then X∆t(t) converges weakly to X(t) as ∆t → 0.
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Notice that if we take n→ ∞ for the kernel f n
α (s), then it converges to a Dirac delta function. Thus

(2.1) becomes a stochastic model with discrete time delay. Then, conditional probability density can
be used to determine the ”conditional average drift” and ”conditional average diffusion” of the process
(see Chapter 6 in [24]).

We should point out that (2.1) and (2.2) are two equivalent stochastic counterparts of deterministic
model (1.1). In the sequel, we will select the specific form of the random model according to the spe-
cific needs. In the following sections, we will first show the uniqueness of positive solution of system
(2.1), and then study the dynamics of the system on a complete probability space (Ω,F , {Ft}t≥0, P)
with a filtration {Ft}t≥0 satisfying the usual conditions, i.e., it is right continuous and F0 contains all
P-null sets. Before that, we introduce a differential operator L associated with a general n-dimensional
stochastic functional differential equation [25]:

dx = f (t, xt)dt + g(t, xt)dB(t) (2.16)

with initial condition x0 = ϕ ∈ H , where H is the space of F0-adapted random variables ϕ, with
ϕ(s) ∈ Rn for s ≤ 0, and

‖ϕ‖ = sup
s≤0
|ϕ(s)|, ‖ϕ‖21 = sup E(|ϕ(s)|2).

B(t) denotes m-dimensional standard Brownian motions. The differential operator L is defined as

L =
∂

∂t
+ f (xt, t)T ·

∂

∂xt
+

1
2

Tr
[
gT (xt, t) ·

∂2

∂x2
t
· g(xt, t)

]
. (2.17)

3. Existence and uniqueness of the global positive solution of system (2.1)

The existence and uniqueness theorem of solutions for stochastic functional differential equations
had been studied by Mao [25], see also the related results in [26, 27]. However, these results are all
in the case that the delay is finite. Recently, Wei and Wang [28] generalized the theorem to the case
of infinite delay under the linear growth condition and local Lipschitz condition. For our model (2.1),
obviously, the coefficients are locally Lipschitz continuous, but they do not satisfy the linear growth
condition. So, the solution of system (2.1) may explode at a finite time. In this section, we shall show
that the solution of system (2.1) with any positive initial value remains positive for all t ≥ 0.

Theorem 3.1. Given any initial value (ϕ1(θ), ϕ2(θ)) ∈ C((−∞, 0],R2
+), model (2.1) has a unique solu-

tion (S (t), x(t)) for all t ≥ 0; furthermore, the solution remains positive for all t > 0 with probability 1,
namely S (t) > 0 and x(t) > 0 for all t ≥ 0 almost surely, if the specific growth function U(S ) satisfies

U(0) = 0, U′(S ) > 0, U′′(S ) < 0 for S ≥ 0 and lim
S→∞

U(S ) = 1.

Proof. It is easy to verify that for any given initial value (ϕ1(θ), ϕ2(θ)) ∈ C((−∞, 0],R2
+), system (2.1)

has a unique local solution (S (t), x(t)) on t ∈ [0, τe), where τe is the explosion time. To prove this
theorem, we only need to show this solution is also global, that is τe = ∞ a.s.

Let k0 > 0 be sufficiently large so that 1
k0
≤ ϕ1(0), ϕ2(0) ≤ k0, and for each integer k ≥ k0 define

τk = inf
{
t ∈ [0, τe) : S (t) < (

1
k
, k) or x(t) < (

1
k
, k)

}
,
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which is known as the stopping time and increasing as k → ∞. Set τ∞ = lim
k→∞

τk, whence τ∞ ≤ τe a.s..
We next show τ∞ = ∞ a.s. by contradiction, which implies τe = ∞ a.s..

If τ∞ , ∞, then there is a pair of constants T > 0 and δ ∈ (0, 1) such that

P(τ∞ ≤ T ) > δ.

Hence there is an integer k1 ≥ k0 such that for all k ≥ k1

P(τk ≤ T ) ≥ δ. (3.1)

Consider a Lyapunov function

V(S , x) = γ
(
S −C1 −C1 ln

S
C1

)
+ (x − 1 − ln x) + γµD1

∫ ∞

0
f (s)

∫ t

t−s
x(τ)dτds, (3.2)

where C1 =
D+D1−γµD1
γmU′(0) . By Itô’s formula, one has

dV(S , x) =γdS −
γC1

S
dS +

γC1

2S 2 (dS )2 + dx −
1
x

dx +
1

2x2 (dx)2

+ γµD1
(
x(t) −

∫ ∞

0
f (s)x(t − s)ds

)
dt

=LV(S , x)dt + γσ1(S −C1)dB1 + σ2(x − 1)dB2,

(3.3)

where

LV(S , x) =γDS 0 + γC1D + D + D1 +
1
2
γC1σ

2
1 +

1
2
σ2

2 + γµD1

∫ ∞

0
f (s)x(t − s)ds

− γDS + γC1m
U(S )

S
x −

γC1DS 0

S
− γC1µD1

∫ ∞
0

f (s)x(t − s)ds

S

− (D + D1)x − γmU(S ) + γµD1
(
x(t) −

∫ ∞

0
f (s)x(t − s)ds

)
.

(3.4)

Notice for S > 0
U′(S ) <

U(S )
S

< U′(0).

Then from (3.4), we deduce that

LV ≤γDS 0 + γC1D + D + D1 +
1
2
γC1σ

2
1 +

1
2
σ2

2

− (D + D1 − γµD1 − γC1mU′(0))x

≤γDS 0 + γC1D1 + D + D1 +
1
2
γC1σ

2
1 +

1
2
σ2

2 , K2.

Therefore,
dV(S , x) ≤ K2dt + γσ1(S −C1)dB1 + σ2(x − 1)dB2.

Integrating both sides of the above inequality from 0 to τk ∧ T , and taking expectation, yields

E
(
V
(
S (τk ∧ T ), x(τk ∧ T )

))
≤ V

(
ϕ1(0), ϕ2(0)

)
+ K2E(τk ∧ T ).
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9

One then has
E
(
V
(
S (τk ∧ T ), x(τk ∧ T )

))
≤ V

(
ϕ1(0), ϕ2(0)

)
+ K2T. (3.5)

Set Ωk = {τk ≤ T }(k ≥ k1) and by (3.1), P(Ωk) ≥ δ. Note that for every ω ∈ Ωk, there is at least one of
S (τk, ω), x(τk, ω) which equals either k or 1

k . Then

V
(
S (τk, ω), x(τk, ω)

)
≥γ

(
k −C1 −C1 ln

k
C1

)
∧ γ

(1
k
−C1 −C1 ln

1
kC1

)
∧ (k − 1 − ln k) ∧

(1
k
− 1 − ln

1
k
)
.

It follows from (3.5) that

V
(
ϕ1(0), ϕ2(0)

)
+ K2T ≥E

(
1Ωk(ω)V

(
S (τk ∧ T ), x(τk ∧ T )

))
≥δ

[
γ
(
k −C1 −C1 ln

k
C1

)
∧ γ

(1
k
−C1 −C1 ln

1
kC1

)
∧ (k − 1 − ln k) ∧

(1
k
− 1 − ln

1
k
)]
,

where 1Ωk is the indicator function of Ωk. Let k → ∞, then

∞ > V
(
ϕ1(0), ϕ2(0)

)
+ K2T = ∞,

which leads to a contradiction. So τ∞ = ∞. This completes the proof. �

4. Dynamical behavior of system (2.1)

In this section, we will study the long term dynamical behavior of model (2.1), particularly near the
equilibria of the corresponding deterministic model (1.1). Obviously, when σ1 = 0 and σ2 , 0, E0 is
still an equilibrium of stochastic model (2.1), but E∗ is not; when σ1 and σ2 are positive, neither E0 or
E∗ is the equilibrium of model (2.1). Therefore, we will investigate

(a) the stochastic stability of E0 when σ1 is zero; and
(b) the spectral densities of the nutrient and the algae population when σi > 0, i = 1, 2.

4.1. Stability of system (2.1) at E0 in case of σ1 = 0

When σ1 = 0, substituting u1 = S − S 0, u2 = x into model (2.2), one obtains{
du1 = [−Du1 − mU(u1 + S 0)u2 + µD1

∫ ∞
0

f (s)u2(t − s)ds]dt,
du2 = u2[−(D + D1) + γmU(u1 + S 0)]dt + σ2u2dB2,

(4.1)

which has the linearized system{
du1 = [−Du1 − mU(S 0)u2 + µD1

∫ ∞
0

f (s)u2(t − s)ds]dt,
du2 = u2[−(D + D1) + γmU(S 0)]dt + σ2u2dB2.

(4.2)

For the trivial solution of system (4.2), one has the following stability result. The method of con-
structing Liyapunov functions in its proof will help us to construct suitable Liyapunov functions in
investigating the stability of the trivial solution of nonlinear system (4.1).
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Proposition 4.1. Assume C2 = µD1[D+D1−γmU(S 0)] and σ1 = 0. Then the trivial solution of system
(4.2) is asymptotically mean square stable if

mU(S 0) + µD1 + C2T f < 2D, and (4.3)
2γmU(S 0) + σ2

2 < 2(D + D1), (4.4)

where T f is the average delay with value T f = n
α
.

Proof. Consider the function
V1(u1, u2) = u2

1. (4.5)

It follows from (4.2) and Itô’s formula that

dV1(u1, u2) = 2u1du1 + (du1)2

= [−2Du2
1 − 2mU(S 0)u1u2 + 2µD1u1

∫ ∞

0
f (s)u2(t − s)ds]dt

= [−2Du2
1 − 2mU(S 0)u1u2 + 2µD1u1u2

−2µD1u1

∫ t

0
f (s)

∫ t

t−s
du2(τ)ds + h(t)]dt,

where
h(t) = −2µD1u1

∫ ∞

t
f (s)(u2(t) − u2(t − s))ds. (4.6)

Then we have

LV1(u1, u2) = −2Du2
1 − 2mU(S 0)u1u2 + 2µD1u1u2 + h(t)

−2µD1u1

∫ ∞

0
f (s)

∫ t

t−s
[−(D + D1) + γmU(S 0)]u2(τ)dτds

≤ −2Du2
1 − 2mU(S 0)u1u2 + 2µD1u1u2 + h(t)

+µD1[D + D1 − γmU(S 0)]
∫ ∞

0
f (s)

∫ t

t−s

(
u2

1(t) + u2
2(τ)

)
dτds

= −2Du2
1 − 2mU(S 0)u1u2 + 2µD1u1u2 + h(t)

+µD1[D + D1 − γmU(S 0)](
T f u2

1(t) +

∫ ∞

0
f (s)

∫ t

t−s
u2

2(τ)dτds
)
. (4.7)

Define function

V2(u1, u2) = C2

∫ ∞

0
f (s)

∫ t

t−s

∫ t

r
u2

2(τ)dτdrds (4.8)

which is well defined since
∫ ∞

0
s2 f (s)ds =

n(n+1)
α2 . Then by Itô’s formula, we have

LV2(u1, u2) = C2T f u2
2(t) −C2

∫ ∞

0
f (s)

∫ t

t−s
u2

2(τ)dτds. (4.9)

It then follows from (4.7) and (4.9) that

L(V1 + V2) ≤ −2Du2
1 − 2mU(S 0)u1u2 + 2µD1u1u2 + C2T f u2

1 + C2T f u2
2 + h(t). (4.10)
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We now consider a function
V3(u1, u2) = C3u2

2,

where C3 = 2D
2(D+D1)−2γmU(S 0)−σ2

2
. By Itô’s formula, we have

LV3(u1, u2) = 2C3[−(D + D1) + γmU(S 0)]u2
2 + C3σ

2
2u2

2. (4.11)

For function
V(u1, u2) = V1(u1, u2) + V2(u1, u2) + V3(u1, u2),

we have from (4.10) and (4.11) that

LV(u1, u2) ≤ − (2D − mU(S 0) − µD1 −C2T f − 2µD1

∫ ∞

t
f (s)ds)u2

1

+ [mU(S 0) + µD1 + C2T f − 2C3(D + D1) + 2C3γmU(S 0)

+ C3σ
2
2 + µD1

∫ ∞

t
f (s)ds]u2

2 + µD1‖ϕ2‖
2
∫ ∞

t
f (s)ds

≤ − (2D − mU(S 0) − µD1 −C2T f − 2µD1

∫ ∞

t
f (s)ds)(u2

1 + u2
2)

+ µD1‖ϕ2‖
2
∫ ∞

t
f (s)ds.

By (4.3), we choose ε > 0 such that

mU(S 0) + µD1 + C2T f + 2µD1ε < 2D.

Let T = T (ε) > 0 such that
∫ ∞

t
f (s)ds < ε for all t ≥ T . Then for all t ≥ T , one has

LV(u1, u2) ≤ −(2D − mU(S 0) − µD1 −C2T f − 2µD1ε)(u2
1 + u2

2) + µD1‖ϕ2‖
2
∫ ∞

t
f (s)ds.

Integrating both sides of the above from T to t ≥ T yields

E(V(t)) + (2D − mU(S 0) − µD1 −C2T f − 2µD1ε)
∫ t

T
E(u2

1(s) + u2
2(s))ds

≤ V(T ) + µD1‖ϕ2‖
2
∫ t

T

∫ ∞

s
f (u)duds

≤ V(T ) + µD1‖ϕ2‖
2
∫ ∞

0
s f (s)ds

= V(T ) + µD1‖ϕ2‖
2T f < ∞.

Using the similar discussion as that in [9] and the Barbǎlat lemma, we conclude that E(u2
1(t) + u2

2(t))→
0 as t → ∞. Applying the definition of mean square stability of the solution [25], we obtain the
conclusion. �

Next, we give the result about the stability of the trivial solution of non-linear system (4.1), that is,
the stability of E0(S 0, 0) of system (2.1).
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Theorem 4.1. Let σ1 = 0 and assume conditions (4.3) and (4.4) hold. Then the trivial solution (0, 0)
of system (4.1) or the equilibrium E0(S 0, 0) of system (2.1) is stochastically stable.

Proof. Let (u1, u2) be any solution of system (4.1). Define the stopping time

Tε1 = inf{t ≥ 0 : u2
1 + u2

2 ≥ ε
2
1}.

For the Lyapunov function V1(u1, u2) defined in (4.5), we obtain

LV1(u1, u2) = −2Du2
1 − 2mU(u1 + S 0)u1u2 + 2µD1u1u2 + h(t)

−2µD1u1

∫ ∞

0
f (s)

∫ t

t−s
[−(D + D1) + γmU(u1 + S 0)]u2(τ)dτds

≤ −2Du2
1 − 2mU(u1 + S 0)u1u2 + 2µD1u1u2 + h(t)

+µD1[D + D1 − γmU(S 0)]
∫ ∞

0
f (s)

∫ t

t−s

(
u2

1(t) + u2
2(τ)

)
dτds

= −2Du2
1 − 2mU(u1 + S 0)u1u2 + 2µD1u1u2 + h(t)

+µD1[D + D1 − γmU(S 0)]

×
(
T f u2

1(t) +

∫ ∞

0
f (s)

∫ t

t−s
u2

2(τ)dτds
)
, (4.12)

where h(t) is defined as in (4.6). For V2(u1, u2) in (4.8), one then has

L(V1 + V2) ≤ −2Du2
1 − 2mU(u1 + S 0)u1u2 + 2µD1u1u2 + C2T f u2

1 + C2T f u2
2 + h(t). (4.13)

Now define
V3(u1, u2) = C4u2

2,

where C4 is a constant to be determined later. We have that

LV3(u1, u2) = 2C4[−(D + D1) + γmU(u1 + S 0)]u2
2 + C4σ

2
2u2

2. (4.14)

Therefore, for the function

V(u1, u2) = V1(u1, u2) + V2(u1, u2) + V3(u1, u2),

it follows from (4.13) and (4.14) that

LV(u1, u2) ≤ − 2Du2
1 − 2mU(u1 + S 0)u1u2 + 2µD1u1u2 + C2T f u2

1 + C2T f u2
2

+ 2C4[−(D + D1) + γmU(u1 + S 0)]u2
2 + h(t) + C4σ

2
2u2

2.
(4.15)

By (4.4), one can find a constant δ > 0 such that

2γmU(δ + S 0) + σ2
2 < 2(D + D1). (4.16)

Choose
C4 =

2D
2(D + D1) − 2γmU(δ + S 0) − σ2

2

.
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Then, it follows from (4.15) and (4.16) that

LV(u1, u2) ≤ −(2D − mU(S 0) − µD1 −C2T f − 2µD1

∫ ∞

t
f (s)ds)u2

1

+[mU(S 0) + µD1 + C2T f − 2C3(D + D1) + 2C3γmU(S 0)

+C3σ
2
2 + µD1

∫ ∞

t
f (s)ds]u2

2 + µD1‖ϕ2‖
2
∫ ∞

t
f (s)ds

≤ −(2D − mU(S 0) − µD1 −C2T f − 2µD1

∫ ∞

t
f (s)ds)(u2

1 + u2
2)

+µD1‖ϕ2‖
2
∫ ∞

t
f (s)ds. (4.17)

Integrating both sides of the above formula from 0 to t ∧ Tε1 , yields

E(V(t ∧ Tε1)) ≤V(0) + µD1‖ϕ2‖
2
∫ t∧Tε1

0

∫ ∞

s
f (τ)dτds

≤‖ϕ1‖
2 + [

1
2
µD1(D + D1 − γmU(S 0))

∫ ∞

0
s2 f (s)ds

+ C4]‖ϕ2‖
2 + µD1‖ϕ2‖

2
∫ ∞

0
s f (s)ds

≤(1 ∨ p)(‖ϕ1‖
2 + ‖ϕ2‖

2),

where p = 1
2µD1(D + D1 − γmU(S 0))

∫ ∞
0

s2 f (s)ds + C4 + µD1T f . Now for ε1, ε2 ∈ (0, 1), let

δ = min
{(1 ∧C4

1 ∨ p
ε2

) 1
2

ε1,
ε1

2

}
.

Then, if ‖ϕ1‖
2 + ‖ϕ2‖

2 < δ2, it follows that

E(V(t ∧ Tε1)) ≤ (1 ∨ p)δ2 ≤ (1 ∧C4)ε2
1ε2.

On the other hand, we have

E(V(t ∧ Tε1)) ≥E[1{Tε1≤t}V(t ∧ Tε1)]

=E[1{Tε1≤t}V(Tε1)]

=P{Tε1 ≤ t}V(Tε1)
≥(1 ∧C4)ε2

1P{Tε1 ≤ t}.

Hence, we have P{Tε1 ≤ t} ≤ ε2. Letting t → ∞ gives

P{Tε1 < ∞} ≤ ε2,

which is equivalent to
P{u2

1 + u2
2 < ε

2
1} ≥ 1 − ε2.

Then the definition of the stochastic stability of the solution implies the conclusion. �
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4.2. Spectral density analysis of (2.1) in case of σi > 0

In this subsection, we study the dynamics of system (2.1) near E∗, the positive equilibrium of (1.1).
To this end, we assume condition (1.3) holds. Thus E∗ is a stable positive stable positive equilibrium
for system (1.1) but not the equilibrium for system (2.1) when σi , 0. We aim to investigate the
spectral densities, denoting the intensities of fluctuations, of the nutrient and the algae population by
Fourier transform method.

To perform the spectral density analysis on model (2.1) with a general delay kernel function is very
difficult, so we turn to consider the limit case when n → ∞ in (1.4), i.e., f (s) = δ(s − τ f ). Introducing
S (t) = exp(u1(t)) and x(t) = exp(u2(t)), one converts (2.1) into du1

dt = DS 0e−u1 − D − mU(eu1)eu2−u1 + µD1eu2(t−τ f )−u1 + σ1ξ1,
du2
dt = −(D + D1) + γmU(eu1) + σ2ξ2.

(4.18)

Substituting
u1 = v1 + u∗1, u2 = v2 + u∗2

into (4.18), yields 
dv1
dt = DS 0e−(v1+u∗1) − D − mU(ev1+u∗1)ev2+u∗2−v1−u∗1

+µD1ev2(t−τ f )+u∗2−v1−u∗1 + σ1ξ1,
dv2
dt = −(D + D1) + γmU(ev1+u∗1) + σ2ξ2,

(4.19)

where (u∗1, u
∗
2) = (ln S ∗, ln x∗). The linearized system of (4.19) is{ dv1

dt = a11v1 + a12v2 + a13v2(t − τ f ) + σ1ξ1,
dv2
dt = a21v1 + σ2ξ2,

(4.20)

where

a11 = −DS 0e−u∗1 − mU′(eu∗1)eu∗2 + mU(eu∗1)eu∗2−u∗1 − µD1eu∗2−u∗1 ,

a12 = −mU(eu∗1)eu∗2−u∗1 , a13 = µD1eu∗2−u∗1 , a21 = γmU′(eu∗1)eu∗1 .

Given continuous function v(t) over the interval −T
2 ≤ t ≤ T

2 (T > 0), define function

ṽ(ω) =

∫ T
2

− T
2

v(t)e−iωtdt. (4.21)

Since ṽ(ω) is the Fourier transform of v(t), we know

v(t) =
1

2π

∫ ∞

−∞

ṽ(ω)eiωtdω, (4.22)

which implies that 1
2π ṽ(ω) is the amplitude density of the components of v(t) in the angular frequency

interval ω to ω + dω. Thus 1
2π ṽ(ω)dω can be considered as an estimate of the amplitude of the compo-

nent of v(t) with angular frequency ω. Taking Fourier transform of system (4.20), we obtain{
σ1ξ̃1(ω) = (−a11 + iω)ṽ1(ω) − (a12 + a13e−iωτ f )ṽ2(ω),
σ2ξ̃2(ω) = −a21ṽ1(ω) + iωṽ2(ω),

(4.23)
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where ∫ ∞

−∞

ξ j(t − τ f )e−iωtdt = e−iωτ f ξ̃ j(ω) j = 1, 2.

Write (4.23) in the matrix form
η̃(ω) = A(ω)ṽ(ω), (4.24)

where

A(ω) =

(
−a11 + iω −(a12 + a13e−iωτ f )
−a21 iω

)
η̃(ω) = (η̃1(ω), η̃2(ω))T = (σ1ξ̃1(ω), σ2ξ̃2(ω))T , ṽ(ω) = (ṽ1(ω), ṽ2(ω))T . Let |A(ω)| = det(A(ω)) and we
assume |A(ω)| , 0. Then from (4.24) we have

ṽ(ω) = A−1(ω)η̃(ω), (4.25)

where

A−1(ω) = 1
|A(ω)|

(
iω a12 + a13e−iωτ f

a21 −a11 + iω

)
,

(
a′11 a′12
a′21 a′22

)
. (4.26)

Then

ṽi =

2∑
j=1

a′i jη̃ j, i = 1, 2. (4.27)

If the function v(t) has zero mean value then the fluctuation intensity (variance) of the components in
the frequency band ω and ω + dω is S v(ω)dω, where the spectral density S v(ω) is formally defined by

S v(ω)dω = lim
T→∞

|v(ω)|2

T
.

Hence,

S η(ω)dω = lim
T→∞

1
T

∫ T
2

− T
2

∫ T
2

− T
2

η(t)η(t′) exp(iω(t′ − t))dtdt′. (4.28)

From (4.27) and (4.28), we have

S vi(ω) =

2∑
j=1

|a′i j|
2σ jS ξ j(ω), i = 1, 2, (4.29)

since ξi(t) = 0 and ξi(t)ξ j(t′) = δi jδ(t − t′). Therefore, the fluctuation intensity (variance) in vi is

σ2
vi

=
1

2π

∫ ∞

−∞

S vi(ω)dω

=
1

2π

2∑
j=1

∫ ∞

−∞

|a′i j|
2σ jS ξ j(ω)dω (4.30)

=
1

2π

2∑
j=1

∫ ∞

−∞

|a′i j|
2σ jdω, i = 1, 2.
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It follows from (4.26) that

σ2
vi

=
1

2π

∫ ∞

−∞

Pi(ω)
M(ω)

dω, i = 1, 2, (4.31)

where

P1(ω) = σ1ω
2 + σ2(a12 + a13 cosωτ f )2 + σ2a2

13 sin2 ωτ f ,

P2(ω) = σ1a2
21 + σ2(a2

11 + ω2),
M(ω) = (−ω2 + a12a21 + a13a21 cosωτ f )2 + (a11ω − a13a21 sinωτ f )2. (4.32)

When τ f = 0, we have

P1(ω) = σ1ω
2 + σ2(a12 + a13)2,

P2(ω) = σ1a2
21 + σ2(a2

11 + ω2),
M(ω) = (−ω2 + a12a21 + a13a21)2 + (a11ω)2

= (−ω2 + a12a21 + a13a21 + a11iω)
×(−ω2 + a12a21 + a13a21 − a11iω). (4.33)

Following Gradshteyn and Ryzhik [29], the general integral encountered in calculations of fluctuation
is of the type

In =

∫ ∞

−∞

gn(ω)dω
hn(ω)hn(−ω)

, (4.34)

where

gn(ω) = b0ω
2n−2 + b1ω

2n−4 + · · · + bn−1,

hn(ω) = a0ω
n + a1ω

n−1 + · · · + an. (4.35)

When n = 2, the integral is given by

I2 =
πi(a0b1 − a2b0)

a0a1a2
.

Then from the relation between g2(ω) and Pi(ω)(i = 1, 2) and h2(ω)h2(−ω) with M(ω) we obtain

a0 = −1, a1 = a11, a2 = a12a21 + a13a21, b0(1) = σ1, b0(2) = σ2,

b1(1) = σ2(a12 + a13)2, b1(2) = σ1a2
21 + σ2a2

11.

Hence,

σ2
v1

=
σ2(a12 + a13)2 + σ1(a12a21 + a13a21)

2a11(a12a21 + a13a21)
,

σ2
v2

=
σ1a2

21 + σ2a2
11 + σ2(a12a21 + a13a21)

2a11(a12a21 + a13a21)
. (4.36)

Now, the variances have been obtained in (4.31) for τ f > 0 and in (4.36) for τ f = 0. But we should
point out that the computed variance σ2

vi
is for the linear system (4.20), while for the nonlinear system

(4.19), it is difficult to obtain. So, σ2
vi

in (4.31) is an estimate of the variance for system (4.19). Notice
that v1 = ln S − ln S ∗ and v2 = ln x − ln x∗, so the fluctuation intensities of the nutrient and the algae
population can be estimated as (S ∗)2σ2

v1
and (x∗)2σ2

v2
, respectively. Thus, the results obtained so far in

this subsection can be summarized as follow.
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Theorem 4.2. Assume (1.3) holds. Then the fluctuation intensities of the nutrient and the algae popu-
lation can be estimated as (S ∗)2σ2

v1
and (x∗)2σ2

v2
, respectively, where σ2

vi
is given in (4.31) for τ f > 0

and in (4.36) for τ f = 0.

4.3. Extinction

The following theorem shows that a sufficiently large noise can make the algae population extinct
exponentially with probability one.

Theorem 4.3. For any given initial value (S (0), x(0)) ∈ R2
+, the solution (S (t), x(t)) of system (2.1) has

the following property:

lim sup
t→∞

ln x(t)
t
≤ −(D + D1) + γm −

1
2
σ2

2.

In particular, if σ2
2 ≥ 2γm − 2(D + D1), then

lim sup
t→∞

ln x(t)
t
≤ 0.

Proof. Define function V(x) = ln x. Then by Itô’s formula, we have

dV(x) =
1
x

dx −
1

2x2 (dx)2

=

[
−(D + D1) + γmU(S ) −

1
2
σ2

]
dt + σ2dB2.

It follows that
dV(x) ≤ [−(D + D1) + γm −

1
2
σ2

2]dt + σ2dB2,

integrating both sides of which from 0 to t yields

ln x(t) − lnϕ2(θ) ≤ [−(D + D1) + γm −
1
2
σ2

2]t + M(t), (4.37)

where M(t) = σ2B2(t). Obviously, M(t) is a locally continuous martingale and

〈M(t),M(t)〉t = σ2
2t,

which implies that

lim sup
t→∞

〈M(t),M(t)〉t
t

< ∞.

By Strong Law of Large Numbers, we obtain

lim
t→∞

M(t)
t

= 0 a.s.

Dividing t on the both sides of (4.37) and letting t → ∞, we have

lim sup
t→∞

ln x(t)
t
≤ −(D + D1) + γm −

1
2
σ2

2.

This completes the proof of the Theorem. �

Theorem 4.3 reveals that a large noise may induce the extinction of algae population even though
its corresponding deterministic model (1.1) has a stable positive equilibrium E∗.
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5. Numerical simulations and discussions

In this paper, a delayed stochastic model (2.1) for algal bloom with nutrient recycling has been
proposed and investigated. Such a stochastic model is useful in investigating and understanding various
ecologically realistic features. We have focused our attention on two aspects:

(i) the random influences incorporated through perturbation on the nutrient and the algae population,
and

(ii) the conversion delay of detritus into nutrients.

For model (2.1), we first showed its reasonability by means of an approximate Markovian system
of it under the assumption that the delay kernel f (s) takes the family of generic delay kernel (1.4).
Then we carried out the analysis of the uniqueness and the global existence of its positive solution
with the help of the result in [28], since the incorporated delay in the system is infinite. Next, we
analyzed its long time behaviors around the various equilibria of its corresponding deterministic model
(1.1). Our findings in Theorem 4.1 reveal that E0 is stochastically stable provided the intensity of the
noise σ2 and the average delay T f = n

α
are small. Though E∗ is not an equilibrium of model (2.1)

when σi , 0, it is shown in Theorem 4.2 that the fluctuations intensities of the nutrient and the algae
population can be estimated in a neighbourhood of E∗. In addition, our result in Theorem 4.4 reveals
that sufficiently large noise can make the algae population extinct exponentially with probability one,
even if its corresponding deterministic model (1.1) has a stable positive equilibrium.

To illustrate the theoretic results obtained, numerical simulations are carried out by using Milstein
scheme [30]. Here we assume that the specific growth function U(S ) is of Michaelis-Menten type

U(S ) =
S

a1 + S
,

where a1 is the half-saturation constant.
The first given example below concerns the effects of the random influence and the delay on the

long time behavior around the washout equilibrium. Here we take n = 1 in (1.4), that is, the weak
delay kernel f (s) = αe−αs. Then the discretization of model (2.1) for t = 0,∆t, 2∆t, . . . , n∆t takes the
form 

S i+1 = S i + [D(S 0 − S i) − mU(S i)xi + µD1y1,i]∆t + +σ1S i
√

∆tξ1i,

xi+1 = xi + xi[−(D + D1) + γmU(S i)]∆t + σ2xi
√

∆tξ2i,

y1,i+1 = y1,i − α(y1,i − S i)∆t,
(5.1)

where time increment ∆t > 0 and ξi are N(0, 1)−distributed independent random variables which can
be generated numerically by pseudorandom number generators.

Example 5.1. Consider model (2.1) with D = 0.3,D1 = 0.1, S 0 = 3,m = 0.54, a1 = 0.4, µ = 0.3, γ =

0.8, σ1 = 0, σ2 = 0.05 and α = 10.

It is easy to see that T f = 0.1. Simple computations show that

µd1 + mU(S 0) + C2T f = 0.5065 < 2D

and
2γmU(S 0) + σ2m2U2(S 0) = 0.7649 < 2(D + D1).
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Then by Theorem 4.1, the equilibrium E0 of model (2.1) is stochastically stable. Our simulation
supports this result as shown in Figure 1. To examine the effect of the delay in nutrient recycling,
increasing the value of T f from 0.1 to 10 (i.e., decreasing the value of α from 10 to 0.1), we find that
the equilibrium E0 continues to be stochastically stable, but the levels of the nutrient and the algae
population will be lower in the beginning of time (see Figure 1). It is because that a large delay in
nutrient recycling can make the algae grow slowly.
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Figure 1. The equilibrium E0 of stochastic functional model (2.1) is stochastically asymp-
totically stable with σ1 = 0 and σ2 = 0.05.

To study effects of the random influence and delay on E∗, we give the following example with
different values of noise intensities and delay. For the kernel function f (s) = δ(s−τ f ), the discretization
of model (2.1) for t = 0,∆t, 2∆t, . . . , n∆t takes the form{

S i+1 = S i + [D(S 0 − S i) − mU(S i)xi + µD1xi(i − τ f /∆t)]∆t + +σ1S i
√

∆tξ1i,

xi+1 = xi + xi[−(D + D1) + γmU(S i)]∆t + σ2xi
√

∆tξ2i,
(5.2)

where time increment ∆t > 0 and ξi are N(0, 1)−distributed independent random variables which can
be generated numerically by pseudorandom number generators.

Example 5.2. Consider model (2.1) with D = 0.3, D1 = 0.1, S 0 = 5, m = 0.7, a1 = 0.4, µ = 0.3 and
γ = 0.8.

It is easy to see example 5.2 satisfies condition (1.3). By Theorem 4.2, the fluctuation intensities of
the nutrient and the algae population can be estimated as σ2

S and σ2
x, respectively, where σ2

S = (S ∗)2σ2
v1

and σ2
x = (x∗)2σ2

v2
. The variations of σ2

S and σ2
x with respect to the delay τ f and noise intensities σi

are drawn in Figure 2 for different τ f and σi, and the corresponding trajectories of the nutrient and the
algae around E∗ are drawn in Figure 3.

Figures 2 (a) and (b) show the effect of the delay onσ2
S andσ2

x, which are drawn by takingσ1 = 0.01
and σ2 = 0.01. From Figure 2 (a), σ2

S has a little decrease with the increase of the delay in the
beginning, then it increases as the delay increases and finally it remains unchanged when the delay
increases to 30. From Figure 2 (b), σ2

x first decreases as the delay increases, then it remains unchanged
when the delay increases to 30. These two sub-figures reveal that the delay has a different effect on
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σ2
S and σ2

x when it is small, while it does not affect the fluctuation intensities when it is large. The
corresponding trajectories of the nutrient and the algae around E∗ are drawn by taking τ f = 0.1 and
τ f = 10, respectively, please see Figure 3 (a) and (b). These two sub-figures reveal that with a different
value of τ f , trajectories of the nutrient and the algae oscillate ultimately around E∗ with a certain
amplitude, but with a larger value of τ f , the levels of the nutrient and the algae will be lower in the
beginning.
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Figure 2. Variation of the fluctuation intensities of the nutrient and the algae population with
respect to the delay τ f and noise intensities σi, i = 1, 2. (a) (b) σ1 = 0.01 and σ2 = 0.01, (c)
τ f = 0 and σ2 = 0, (d) τ f = 0 and σ1 = 0.

Figures 2 (c) and (d) show the effect of noise intensities on σ2
S and σ2

x, which are drawn by taking
τ f = σ2 = 0 in Figure 2 (c) and τ f = σ1 = 0 in Figure 2 (d). From these two sub-figures, the fluctuation
intensities of both the nutrient and the algae increase as σ1 or σ2 increases, and σ2

S increases faster in
the absence of σ2 and σ2

x grows faster in the absence of σ1. The corresponding trajectories of the
nutrient and the algae around E∗ are drawn by taking two different values of σ1 (Figure 3 (c)-(d)) and
of σ2 (Figure 3 (e)-(f)).
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Figure 3. The dynamics of stochastic functional model (2.2) around the equilibrium E∗ with
different σ and α. Here E∗(S ∗, x∗) = (1, 2.55). (a)-(b) σ1 = σ2 = 0.01; (c)-(f) τ f = 0.
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From Figures 2 and 3, one can find that the fluctuation intensities σ2
S and σ2

x are more sensitive to
the noise intensities σi than the delay τ f , since the fluctuation intensities change within a narrow range
with respect to τ f ( Figures 2 and 3 (a)-(b)), and they change within a wide range with respect to σ2

S
and σ2

x (Figures 2 (c)-(d) and 3 (c)-(f)). Furthermore, the fluctuation intensity of the nutrient is more
sensitive to σ1 than σ2, since in the absence of σ2, σ2

S has a faster increase with the increase of σ1.
Rather, the fluctuation intensity of the algae population is more sensitive to σ2.

To further study the effects of the random influence on the extinction of system (2.1), we give the
following example with a sufficiently large noise. Here the discretization of model (2.1) takes the form
as in (5.1).

Example 5.3. Consider model (2.1) with α = 10 (i.e., T f = 0.1), σ1 = 0 and σ2 = 0.5 and all other
parameters have the same values as in Example 5.2.

Simple computation shows that

2γm − 2(D + D1) = 0.064 ≤ σ2
2 = 0.25.

By Theorem 4.3, the algae population will go to extinction (see Figure 4).
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Figure 4. Variation of the fluctuation intensities of the nutrient and the algae population with
respect to σi, i = 1, 2. (a) T f = 0.1 and σ2 = 0, (b) T f = 0.1 and σ1 = 0.

Examples 5.2 and 5.3 reveal that the algae population is more sensitive to σ2. Under certain para-
metric conditions, there is fundamentally different behavior for the algae with different value of σ2. If
σ2 = 0.01, the algae population will survive. Whereas, when σ2 increase to 0.5, the extinction of the
algae will occur.

To sum up, this paper presents an investigation on the effect of the environmental noise and the
delay occurred in the nutrient recycling on a nutrient-algae system. Our findings are useful for a better
understanding of the dynamics of algal blooms. We should point out there are other interesting topics
meriting further investigation, for example, the stationary distribution of the system. It is also very
interesting to study the long time behavior of the multi-nutrient multi-algae system with noise. We
leave these for future considerations.
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