Citation: Masahiro Tokumura, Rurika Hatayama, Kouichi Tatsu, Toshiyuki Naito, Tetsuya Takeda, Mohammad Raknuzzaman, Md. Habibullah-Al-Mamun, Shigeki Masunaga. Car indoor air pollution by volatile organic compounds and aldehydes in Japan[J]. AIMS Environmental Science, 2016, 3(3): 362-381. doi: 10.3934/environsci.2016.3.362
[1] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[2] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[3] | Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479 |
[4] | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167 |
[5] | D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198 |
[8] | Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar . On generalized k-fractional derivative operator. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129 |
[9] | D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096 |
[10] | Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346 |
The Bessel function has immense applications in the field of engineering, physics, and applied mathematics. Baricz [1], Generalized Bessel functions of the first kind in (2010), which discussed the geometric properties, functional inequalities of generalized Bessel function and also the inequalities involving circular and hyperbolic functions to Bessel function and modified Bessel functions. Tumakov [2] investigated the numerical algorithms for fast computations of the Bessel functions of an integer order with the required accuracy. Choi and Agarwal[3], Abramowitz and Stegun [4], Heymans and Podlubny [5], Watson [6] and Purohit et al. [7] studied the following Bessel function (Bf) defined by
Jα(y)=∞∑n=0(−1)n(y/2)α+2nn!Γ(α+n+1). | (1.1) |
Edward Maitland Wright [8] introduced the generalized form of Bessel function with the name of Bessel-Maitland function (B-M1)
Jαβ(y)=∞∑n=0(−y)nn!Γ(αn+β+1). | (1.2) |
The properties of generalised Bessel function can be found in the work of Srivastava and Singh [9]. Suthar et al. [10,11] discussed the various properties of Bessel-Maitland function. Ali et al. [12] established some fractional operators with the generalized Bessel-Maitland function.
Waseem et al. [13] established the generalized Bessel-Maitland function (B-M11) and discuss the numerous integral formulas for y∈C/(−∞,0]; α,β,γ∈C, ℜ(α)≥0, ℜ(β)≥−1, ℜ(γ)≥0, k∈(0,1)∪N defined by
Jα,γβ,k(y)=∞∑n=0(γ)kn(−y)nn!Γ(αn+β+1). | (1.3) |
Suthar et al. [14] studied the following generalized multi-index Bessel function (Gm-Bf) defined by
J(αj,βj)mγ,k(y)=∞∑n=0(γ)kn(−y)nn!∏mj=1Γ(αjn+βj+1). | (1.4) |
Recently, fractional integrals are widely applied in different branches of mathematics, physics, engineering due to their wide applications (see e.g., [5,15,16,17,18]).
Riemann-Liouville fractional integral operators for ℜ(ρ)>0 are defined by
Iρa+h(u)=1Γ(ρ)∫ya(y−u)ρ−1h(u)du,a<y | (1.5) |
Iρbh(u)=1Γ(ρ)∫by(u−y)ρ−1h(u)du,y<b. | (1.6) |
Riemann-Liouville fractional differentials operators (RLDO) [12,19] for ℜ(ρ)>0; n=[ℜ(n)−1]
Dρa+h(u)=(d/dy)nIn−ρa+h(y) | (1.7) |
Dρbh(u)=(−d/dy)nIn−ρbh(y). | (1.8) |
Srivastava and Singh [9] defined the following fractional integral operator for α1,β1,r∈C, ℜ(α1)>0, ℜ(β1)≥−1 by
h(y)=def∫y0(y−t)β1Jα1β1(r(y−t)α1)h(u)du. | (1.9) |
Srivastava and Tomovski [20] established the fractional integral operator (FIO) having Mittag-Leffler function as a kernel, discuss its boundedness and convergence of integral and also derive the product of FIO with Riemann-Liouville fractional integral operator defined for r,γ∈C, ℜ(α1)>max{0,ℜ(k)−1}; min{ℜ(β1),ℜ(k)}>0
(Er;γ,ka+;α1,β1h)(y)=∫ya(y−t)β1−1Eγ,kα1,β1(r(y−t)α1)h(t)dt. | (1.10) |
Prabhakar fractional integral operators for γ,β1∈C, ℜ(α1)>0 are defined in [21] by
E∗(α1,β1;γ;r)h(y)=∘h(y)=∫ya(y−t)β1−1Eγα1,β1(r(y−t)α1)h(t)dt,a<y, | (1.11) |
E∗(α1,β1;γ;r)h(y)=∫by(t−y)β1−1Eγα1,β1(r(t−y)α1)h(t)dt,y<b. | (1.12) |
Tilahun et al. [22] derived the generalized FIO for ℜ(β1)>0, ℜ(α1)>0 and r,γ∈C as
(Ir;α1,γa+,β1,kh)(y)=∫ya(y−t)β1Jγ,kα1,β1(r(y−t)α1;p)h(t)dt,a<y | (1.13) |
and
(Ir;α1,γa+,β1,kh)(y)=∫by(y−t)β1Jγ,kα1,β1(r(y−t)α1;p)h(t)dt, | (1.14) |
where y<b.
Definition 1.1. (FIO)Fractional integral operator with generalized multi-index Bessel function (Gm-Bf) kernel for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0.
Ir;γ,ka+;(αj,βj)mh(y)=m∏j=1∫ya(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)h(u)du,a<y | (1.15) |
Ir;γ,kb;(αj,βj)mh(y)=m∏j=1∫by(u−y)βjJ(αj,βj)mγ,k(r(u−y)αj)h(u)du,y<b. | (1.16) |
Dirichlet formula (Fubini's theorem) Samko et al. in [23] and Kelelaw et al. in [22] is defined as
∫dbdy∫ybh(y,z)dz=∫dbdz∫dzh(y,z)dy. | (1.17) |
Kilbas [24] analyzed the generalized Wright function for ξi,ζj∈R, (i=1,2⋯r),(j=1,2⋯s) and bi,cj∈C as
rψs(y)=∞∑n=0∏ri=1Γ(bi+ξin)∏sj=1Γ(cj+ζjn)ynn!=rψs[(bi,ξi)1,r(cj,ζj)1,s|y]. | (1.18) |
The integral representation of beta function [25,26] for ℜ(y)>0, ℜ(z)>0 and also in gamma form appearance of beta function is defined as follows
B(y,z)=∫10uy−1(1−u)z−1du=Γ(y)Γ(z)Γ(y+z). | (1.19) |
Pochhammer symbol and its properties can be found [25,26,27] as
(γ)n={γ(γ+1)(γ+2)⋯(γ+n−1),for n≥11,for n=0, γ≠0 | (1.20) |
=Γ(γ+n)Γ(γ) and (γ)kn=Γ(γ+kn)Γ(γ) (k>0). | (1.21) |
The space of Lebesgue measurable for complex and real valued functions defined by Kelelaw et al. [22] as follows
L(a,y)={h:||h||1:=∫ya|h(u)|du<∞}. | (1.22) |
The following some conditions of fractional integral operators can be obtained by setting the integrals according to requirements:
1). Setting r=0, j=1=m and β1=β1−1 in (FIO) defined in Eqs (1.15) and (1.16), we get the Riemann-Liouville fractional integral operator defined in [28] as
I0;γ,ka+;(α1,β1−1)mh(y)=Iβ1a+h(y) | (1.23) |
I0;γ,kb;(α1,β1−1)mh(y)=Iβ1bh(y). | (1.24) |
2). Setting j=m=1, β1=β1−1 in Eq (1.15), we have a fractional integral defined in Eq (1.10) as
Ir;γ,ka+;(α1,β1−1)mh(y)=(Er;γ,ka+;α1,β1h)(y). | (1.25) |
3). Setting j=m=1, k=1, β1=β1−1, in Eqs (1.15) and (1.16), we get the FIO defined in Eqs (1.11) and (1.12) respectively
Ir;γ,1a+;(α1,β1−1)mh(y)=E∗(α1,β1;γ;r)h(y)=∘h(y) | (1.26) |
Ir;γ,1b;(α1,β1−1)mh(y)=E∗(α1,β1;γ;r)h(y). | (1.27) |
4). Setting j=m=1, k=0 and limits from [0,y] in Eq (1.15), we get a fractional integral defined in Eq (1.9) as
Ir;γ,0a+;(α1,β1)mh(y)=∫y0(y−t)β1Jα1β1(r(y−t)α1)h(u)du=h(y). | (1.28) |
5). Setting j=m=1 in Eq (1.15) then, we get the generalized fractional integral operator defined in Eq (1.13) as
Ir;γ,ka+;(α1,β1)h(y)=(Ir;α1,γa+,β1,kh)(y). | (1.29) |
Lemma 1.1. Consider the Riemann-Liouville fractional integral operator with multi-index power function for αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0 and ℜ(ρ)>0 as
m∏j=1Iρa+[(u−a)βj+αjn](y)=m∏j=1[Γ(βj+αjn+1)Γ(ρ+βj+αjn+1)(y−a)ρ+βj+αjn]. | (1.30) |
Remark 1.1. Setting j=m=1 in lemma 1.1 then we obtain the result that defined the Mathai Haubold [29] and Kelelaw et al. [22] as
Iρa+[(u−a)β1+α1n](y)=(y−a)ρ+β1+α1nΓ(β1+α1n+1)Γ(ρ+β1+α1b+1). | (1.31) |
The preliminary results for generalized multi-index Bessel function which used to proceed the new results is given in this section. We calculate the nth-differential and also develop some results with the coordination of Riemann-Liouville fractional operator and (Gm-Bf).
Theorem 2.1. Consider the nth-differential of generalized multi-index Bessel function with power function for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, n∈N as
(d/dy)n[(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)]=(y−u)βj−nJ(αj,βj−n)mγ,k(r(y−u)αj). | (2.1) |
Proof. Let the nth-differential of generalized multi-index Bessel function with power function as
(d/dy)n[(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)], | (2.2) |
using the behavior of (1.4), we take as
(d/dy)n[(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)]=(d/dy)n[(y−u)βj∞∑n=0(γ)kn(−r(y−u)αj)nn!∏mj=1Γ(αjn+βj+1)]=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)(d/dy)n[(y−u)βj+αjn]=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)(d/dy)n[(y−u)(β1+β2+⋯+βm)+(α1n+α2n+⋯+αmn)]=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)(d/dy)n[(y−u)(β1+α1n)+(β2+α2n)+⋯+(βm+αmn)]=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)×(d/dy)n[(y−u)(β1+α1n)(y−u)(β2+α2n)⋯(y−u)(βm+αmn)]. | (2.3) |
Using the identity result for simplification of (2.3), we get
(d/dy)nyθ=Γ(θ+1)Γ(θ−n+1)yθ−n,θ≥n | (2.4) |
(d/dy)n[(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)]=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)×Γ(β1+α1n+1)Γ(β2+α2n+1)⋯Γ(βm+αmn+1)(y−u)αjn+βj−nΓ(β1+α1n−n+1)Γ(β2+α2n−n+1)⋯Γ(βm+αmn−n+1)=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)∏mj=1Γ(αjn+βj+1)∏mj=1Γ(αjn+βj−n+1)(y−u)αjn+βj−n=(y−u)βj−n∞∑n=0(γ)kn(−r(y−u)αj)nn!∏mj=1Γ(αjn+βj−n+1)=(y−u)βj−nJ(αj,βj−n)mγ,k(r(y−u)αj). | (2.5) |
Corollary 2.1. Suppose that αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, n∈N then theorem 2.1 can be expressed as
(d/dy)n[(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)]=1Γ(γ)(y−u)βj−n2ψm+1{(γ,k)(βj+1,αj)(βj−n+1,αj)(βj+1,αj)|mj=1|r(y−u)αj}. | (2.6) |
Corollary 2.2. Suppose that r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, n∈N and setting that βj=βj−1, (r(y−u)αj)=(−r(y−u)αj) in theorem 2.1 we see that
(d/dy)n[(y−u)βj−1J(αj,βj−1)mγ,k(r(y−u)αj)]=(y−u)βj−1−nE(αj,βj−n)mγ,k(r(y−u)αj), | (2.7) |
where E(αj,βj−n)mγ,k(.) is generalized multi-index Mittag-Leffler function.
Theorem 2.2. Consider the Riemann-Liouville fractional integral operator defined in Eq (1.5) with generalized multi-index Bessel function for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0 and y>a, a∈ℜ+(0,∞), ℜ(ρ)>0 as
m∏j=1Iρa+[(u−a)βjJ(αj,βj)mγ,k(r(u−a)αj)](y)=m∏j=1(y−a)βj+ρJ(αj,βj+ρ)mγ,k(r(y−a)αj). | (2.8) |
Proof. Let (RLIO) with (Gm-Bf) is defined in Eq (1.4), we have
m∏j=1Iρa+[(u−a)βjJ(αj,βj)mγ,k(r(u−a)αj)](y)=m∏j=1Iρa+[(u−a)βj∞∑n=0(γ)kn(−r(u−a)αj)nn!∏mj=1Γ(αjn+βj+1)]=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)m∏j=1Iρa+[(u−a)βj+αjn]. | (2.9) |
By using Lemma 1.1 in Eq (2.9) then we attain the equation as
m∏j=1Iρa+[(u−a)βjJ(αj,βj)mγ,k(r(u−a)αj)](y)=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)m∏j=1Γ(αjn+βj+1)(y−a)αjn+ρ+βjΓ(αjn+βj+ρ+1)=m∏j=1(y−a)ρ+βj∞∑n=0(γ)kn(−r(y−a)αj)nn!∏mj=1Γ(αjn+βj+ρ+1)=m∏j=1(y−a)βj+ρJ(αj,βj+ρ)mγ,k(r(y−a)αj). | (2.10) |
Corollary 2.3. Consider the right-sided Riemann-Liouville fractional integral operator with generalized multi-index Bessel function for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0 and y>a, a∈ℜ+(0,∞), ℜ(ρ)>0 as
m∏j=1Iρb[(b−u)βjJ(αj,βj)mγ,k(r(b−u)αj)](y)=m∏j=1(b−y)βj+ρJ(αj,βj+ρ)mγ,k(r(b−y)αj). | (2.11) |
Corollary 2.4. Consider the Riemann-Liouville fractional differential operator defined in Eq (1.7) with generalized multi-index Bessel function for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0 and y>a, a∈ℜ+(0,∞), ℜ(ρ)>0 as
m∏j=1Dρa+[(u−a)βjJ(αj,βj)mγ,k(r(u−a)αj)](y)=m∏j=1(y−a)βj−ρJ(αj,βj−ρ)mγ,k(r(y−a)αj). | (2.12) |
Corollary 2.5. Consider the right-sided Riemann-Liouville fractional differential operator with generalized multi-index Bessel function for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0 and y>a, a∈ℜ+(0,∞), ℜ(ρ)>0 as
m∏j=1Dρb[(b−u)βjJ(αj,βj)mγ,k(r(b−u)αj)](y)=m∏j=1(b−y)βj−ρJ(αj,βj−ρ)mγ,k(r(b−y)αj). | (2.13) |
In this section, we discuss some properties of the generalized fractional integrals with non singular function as a kernel.
Theorem 3.1. Fractional integral operator having generalized multi-index Bessel function (Gm-Bf) kernel for ϑ,ρ,σ,r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, when h(u)=(u−a)ϑ+ρσ−1, then
[Ir;γ,ka+;(αj,βj)m(u−a)ϑ+ρσ−1](y)=m∏j=1(y−a)ϑ+ρσ+βjΓ(ϑ+ρσ)J(αj,βj+ϑ+ρσ)mγ,k(r(y−a)αj). | (3.1) |
Proof. (FIO) defined in Eq (1.15) with Eq (1.4), we obtain as
[Ir;γ,ka+;(αj,βj)m(u−a)ϑ+ρσ−1](y)=m∏j=1∫ya(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)(u−a)ϑ+ρσ−1du=∞∑n=0(γ)kn(−r)nn!∏mj=1Γ(αjn+βj+1)m∏j=1∫ya(u−a)ϑ+ρσ−1(y−u)βj+αjndu=∞∑n=0(γ)kn(−r)nn!1∏mj=1Γ(αjn+βj+1)m∏j=1∫ya(u−a)ϑ+ρσ−1(y−u)βj+αjndu | (3.2) |
Substituting u=y−z(u−a) and using the definition of beta function and the following relation in Eq (3.2), we get
Iλa+[(y−a)u−1](y)=Γ(u)Γ(λ+u)(y−a)λ+u−1. |
[Ir;γ,ka+;(αj,βj)m(u−a)ϑ+ρσ](y)=m∏j=1∞∑n=0(γ)kn(−r)nn!Γ(ϑ+ρσ)∏mj=1Γ(ϑ+ρσ+αjn+βj+1)(y−a)ϑ+ρσ+βj+αjn=m∏j=1(y−a)ϑ+ρσ+βjΓ(ϑ+ρσ)∞∑n=0(γ)kn(−r(y−a)αj)nn!∏mj=1Γ(ϑ+ρσ+αjn+βj+1)=m∏j=1(y−a)ϑ+ρσ+βjΓ(ϑ+ρσ)J(αj,βj+ϑ+ρσ)mγ,k(r(y−a)αj). | (3.3) |
Corollary 3.1. Fractional integral operator having generalized multi-index Bessel function (Gm-Bf) kernel for ϑ,ρ,σ,r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, when h(u)=(a−u)ϑ+ρσ, then
[Ir;γ,kb;(αj,βj)m(b−u)ϑ+ρσ](y)=m∏j=1(b−y)ϑ+ρσ+βj+1Γ(ϑ+ρσ+1)J(αj,βj+ϑ+ρσ+1)mγ,k(r(b−y)αj). | (3.4) |
Theorem 3.2. Consider the composition of Riemann-Liouville fractional integral operator with (FIO) for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, ℜ(ρ)>0 then
{Iρa+[Ir;γ,ka+;(αj,βj)mh]}(y)={Ir;γ,ka+;(αj,βj+ρ)m}(y)={Ir;γ,ka+;(αj,βj)m[Iρa+h]}(y). | (3.5) |
Proof. Let the left side of Eq (3.5), we seen as
{Iρa+[Ir;γ,ka+;(αj,βj)mh]}(y)=1Γ(ρ)∫ya(y−u)ρ−1[Ir;γ,ka+;(αj,βj)mh](u)du=1Γ(ρ)∫ya(y−u)ρ−1[m∏j=1∫ua(u−t)βjJ(αj,βj)mγ,k(r(u−t)αj)h(t)dt]du. | (3.6) |
By interchanging the order of integrations and using the Eq (1.17) in Eq (3.6), we attain as
{Iρa+[Ir;γ,ka+;(αj,βj)mh]}(y)=∫ya[1Γ(ρ)m∏j=1∫yt(y−u)ρ−1(u−t)βjJ(αj,βj)mγ,k(r(u−t)αj)du]×h(t)dt. | (3.7) |
Setting u−t=η, we have
{Iρa+[Ir;γ,ka+;(αj,βj)mh]}(y)=∫ya[m∏j=11Γ(ρ)∫y−t0(y−t−η)ρ−1ηβjJ(αj,βj)mγ,k(r(η)αj)dη]×h(t)dt=∫yam∏j=1Iρ0+[ηβjJ(αj,βj)mγ,k(r(η)αj)](y−t)×h(t)dt. | (3.8) |
applying theorem 2.2, we see
{Iρa+[Ir;γ,ka+;(αj,βj)mh]}(y)=m∏j=1∫ya[(y−t)βj+ρJ(αj,βj+ρ)mγ,k(r(y−t)αj)]h(t)dt={Ir;γ,ka+;(αj,βj+ρ)m}(y). | (3.9) |
We start the right side to determine the second part of (3.5) with (FIO) defined in Eq (1.15) as
{Ir;γ,ka+;(αj,βj)m[Iρa+h]}(y)=m∏j=1∫ya(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)[Iρa+h](u)du=m∏j=1∫ya(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)[1Γ(ρ)∫ua(u−t)ρ−1h(t)dt]du. | (3.10) |
Interchanging the order of integration and using Eq (1.17), we get
{Ir;γ,ka+;(αj,βj)m[Iρa+h]}(y)=m∏j=1∫ya[1Γ(ρ)∫yt(y−u)βjJ(αj,βj)mγ,k(r(y−u)αj)(u−t)ρ−1du]h(t)dt. | (3.11) |
Setting y−u=x and using theorem (2.2) then
{Ir;γ,ka+;(αj,βj)m[Iρa+h]}(y)=m∏j=1∫ya[1Γ(ρ)∫0y−t(x)βjJ(αj,βj)mγ,k(r(x)αj)(y−x−t)ρ−1(−dx)]h(t)dt=m∏j=1∫ya[1Γ(ρ)∫y−t0(x)βjJ(αj,βj)mγ,k(r(x)αj)(y−t−x)ρ−1dx]h(t)dt=m∏j=1∫yaIρ0+[(x)βjJ(αj,βj)mγ,k(r(x)αj)](y−t)×h(t)dt=m∏j=1∫ya(y−t)βj+ρJ(αj,βj+ρ)mγ,k(r(y−t)αj)h(t)dt={Ir;γ,ka+;(αj,βj+ρ)m}(y). | (3.12) |
Thus, we obtain the desired results by combining Eqs (3.9) and (3.12).
CCorollary 3.2. Composition of right-sided (FIO) with right-sided Riemann-Liouville fractional integral for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, ℜ(ρ)>0 then
{Iρb[Ir;γ,kb;(αj,βj)mh]}(y)={Ir;γ,kb;(αj,βj+ρ)m}(y)={Ir;γ,kb;(αj,βj)m[Iρbh]}(y). | (3.13) |
Corollary 3.3. Consider the composition of Riemann-Liouville fractional differential operator with (FIO) for r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0, ℜ(ρ)>0 then
{Dρa+[Ir;γ,ka+;(αj,βj)mh]}(y)={Ir;γ,ka+;(αj,βj−ρ)m}(y)={Ir;γ,ka+;(αj,βj)m[Dρa+h]}(y). | (3.14) |
Theorem 3.3. If r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0 then
||Ir;γ,ka+;(αj,βj)mh||1≤A||h||1, | (3.15) |
where
A=m∏j=1∞∑n=0|(y−a)ℜ(βj)+1||(γ)kn||(−r(y−a)ℜ(αj))n|n!|∏mj=1Γ(αjn+βj+1)|ℜ(αj)n+ℜ(βj)+1. | (3.16) |
Proof. Let Vn be the nth-terms of (3.16); we have
|Vn+1Vn|=m∏j=1|(γ)kn+k|(γ)kn|n!(n+1)!|∏mj=1Γ(αjn+βj+1)∏mj=1Γ(αjn+αj+βj+1)|×ℜ(αj)n+ℜ(βj)+1ℜ(αj)n+ℜ(αj)+ℜ(βj)+1|(−1)n+1(−1)n||r(y−a)ℜ(αj)|≈m∏j=1(kn)k|−r(y−a)ℜ(αj)|(n+1)|∏mj=1|(αj)|n(αj)|,asn→∞ | (3.17) |
hence, |Vn+1Vn|→0 as n→∞, and k<ℜ(αj) which means that right hand side of (3.16) is convergent and finite under the given condition. The condition of boundedness of the integral operator (Ir;γ,ka+;(αj,βj)mh)(y) is discussed in the space of Lebesgue measure L(a,y) of a continuous function, where y>a. Consider the Lebesgue measurable space (1.22) and FIO (1.15), we have
||Ir;γ,ka+;(αj,βj)mh||1=∫ya|Ir;γ,ka+;(αj,βj)mh|du=∫ya|m∏j=1∫ua(u−τ)βjJ(αj,βj)mγ,k(r(u−τ)αj)h(τ)dτ|du≤∫ya[m∏j=1∫yτ(u−τ)βj|J(αj,βj)mγ,k(r(u−τ)αj)|du]|h(τ)|dτ. | (3.18) |
Putting u−τ=λ,u=y⇒λ=y−τ;u=τ⇒λ=0,du=dλ in Eq (3.18), we get
||Ir;γ,ka+;(αj,βj)mh||1≤∫ya[m∏j=1∫y−τ0λℜ(βj)|J(αj,βj)mγ,k(r(λ)αj)|dλ]|h(τ)|dτ≤∫ya[m∏j=1∫y−a0λℜ(βj)|J(αj,βj)mγ,k(r(λ)αj)|dλ]|h(τ)|dτ, |
where
m∏j=1∫y−a0λℜ(βj)|J(αj,βj)mγ,k(r(λ)αj)|dλ≤m∏j=1∫y−a0λℜ(βj)|∞∑n=0(γ)kn|(−r)n(λ)αjb|n!∏mj=1Γ(αjn+βj+1)|dλ≤∞∑n=0|(γ)kn||(−r)n|n!|∏mj=1Γ(αjn+βj+1)|m∏j=1∫y−a0λℜ(αj)n+ℜ(βj)dλ≤m∏j=1∞∑n=0|(y−a)ℜ(βj)+1||(γ)kn||(−r(y−a)ℜ(αj))n|n!|∏mj=1Γ(αjn+βj+1)|ℜ(αj)n+ℜ(βj)+1=A. | (3.19) |
Therefore,
||Ir;γ,ka+;(αj,βj)mh||1≤∫yaA|h(τ)|dτ≤A||h||1⇒||Ir;γ,ka+;(αj,βj)mh||1≤A||h||1 |
Corollary 3.4. If r,αj,βj,γ∈C, (j=1,2⋯m), ℜ(αj)>0, ℜ(βj)>−1, ∑mj=1ℜ(α)j>max{0;ℜ(k)−1}, k>0 then
||Ir;γ,kb;(αj,βj)mh||1≤A||h||1, | (3.20) |
where
A=m∏j=1(b−y)ℜ(βj)+1∞∑n=0|(γ)kn||(−r(b−y)ℜ(αj))n|n!|∏mj=1Γ(αjn+βj+1)|ℜ(αj)n+ℜ(βj)+1. | (3.21) |
The results we discussed in this paper is creating a chain of fractional operators with kernels, having convergence and boundedness, continuity, symmetric properties and composition with Riemann-Liouville operators [9,12,20,21,22,25,30,31] in fractional calculus. We constructed the fractional operator with generalized multi-index Bessel function as a kernel, and discussed its properties, continuity, and check the behaviour with Riemann-Liouville fractional operators. We analyzed the generalized multi-index Bessel function nth-derivative and integral in the field of fractional calculus.
Taif University Researchers Supporting Project number (TURSP-2020/20), Taif University, Taif, Saudi Arabia.
The authors declare that they have no competing interests.
[1] |
Klepeis NE, Nelson WC, Ott WR, et al. (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epid 11: 231-252. doi: 10.1038/sj.jea.7500165
![]() |
[2] |
Chen X, Feng L, Luo H, et al. (2014) Analyses on influencing factors of airborne VOCS pollution in taxi cabins. Environ Sci Pollut Res 21: 12868-12882. doi: 10.1007/s11356-014-3223-y
![]() |
[3] |
Kim KW, Lee BH, Kim S, et al. (2011) Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior. J Hazard Mater 187: 37-43. doi: 10.1016/j.jhazmat.2010.07.075
![]() |
[4] |
Zhang GS, Li TT, Luo M, et al. (2008) Air pollution in the microenvironment of parked new cars. Build Environ 43: 315-319. doi: 10.1016/j.buildenv.2006.03.019
![]() |
[5] |
Mandalakis M, Stephanou EG, Horii Y, et al. (2008) Emerging contaminants in car interiors: evaluating the impact of airborne PBDEs and PBDD/Fs. Environ Sci Technol 42: 6431-6436. doi: 10.1021/es7030533
![]() |
[6] |
Jo WK, Lee JW (2002) In-vehicle exposure to aldehydes while commuting on real commuter routes in a Korean urban area. Environ Res 88: 44-51. doi: 10.1006/enrs.2001.4313
![]() |
[7] |
Baldasano JM, Delgado R, Calbó J (1998) Applying receptor models to analyze urban/suburban VOCs air quality in martorell (Spain). Environ Sci Technol 32: 405-412. doi: 10.1021/es970008h
![]() |
[8] |
Mukund R, Kelly TJ, Spicer CW (1996) Source attribution of ambient air toxic and other VOCs in Columbus, Ohio. Atmos Environ 30: 3457-3470. doi: 10.1016/1352-2310(95)00487-4
![]() |
[9] |
Sweet CW, Vermette SJ (1992) Toxic volatile organic compounds in urban air in Illinois. Environ Sci Technol 26: 165-173. doi: 10.1021/es00025a020
![]() |
[10] |
Chan C-C, Spengler JD, Özkaynak H, et al. (1991) Commuter Exposures to VOCs in Boston, Massachusetts. J Air Waste Manage Assoc 41: 1594-1600. doi: 10.1080/10473289.1991.10466955
![]() |
[11] |
Rahman MM, Kim KH (2012) Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems. J Hazard Mater 241-242: 267-278. doi: 10.1016/j.jhazmat.2012.09.042
![]() |
[12] |
Brodzik K, Faber J, Łomankiewicz D, et al. (2014) In-vehicle VOCs composition of unconditioned, newly produced cars. J Environ Sci 26: 1052-1061. doi: 10.1016/S1001-0742(13)60459-3
![]() |
[13] |
Chien YC (2007) Variations in amounts and potential sources of volatile organic chemicals in new cars. Sci Total Environ 382: 228-239. doi: 10.1016/j.scitotenv.2007.04.022
![]() |
[14] |
Fedoruk MJ, Kerger BD (2003) Measurement of volatile organic compounds inside automobiles[dagger]. J Expo Anal Environ Epid 13: 31-41. doi: 10.1038/sj.jea.7500250
![]() |
[15] | Faber J, Brodzik K, Gołda-Kopek A, et al. (2013) Air pollution in new vehicles as a result of VOC emissions from interior materials. Pol J Environ Stud 22: 1701-1709. |
[16] |
Yoshida T, Matsunaga I (2006) A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use. Environ Int 32: 58-79. doi: 10.1016/j.envint.2005.04.009
![]() |
[17] |
Hori H, Ishimatsu S, Fueta Y, et al. (2013) Evaluation of a real-time method for monitoring volatile organic compounds in indoor air in a Japanese university. Environ Health Preventive Med 18: 285-292. doi: 10.1007/s12199-012-0319-1
![]() |
[18] |
Brommer S, Harrad S, Van den Eede N, et al. (2012) Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J Environ Monit 14: 2482-2487. doi: 10.1039/c2em30303e
![]() |
[19] |
Chin JY, Godwin C, Jia C, et al. (2013) Concentrations and risks of p-dichlorobenzene in indoor and outdoor air. Indoor air 23: 40-49. doi: 10.1111/j.1600-0668.2012.00796.x
![]() |
[20] |
Van den Eede N, Dirtu AC, Neels H, et al. (2011) Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ Int 37: 454-461. doi: 10.1016/j.envint.2010.11.010
![]() |
[21] |
Zuraimi MS, Roulet CA, Tham KW, et al. (2006) A comparative study of VOCs in Singapore and European office buildings. Build Environ 41: 316-329. doi: 10.1016/j.buildenv.2005.01.028
![]() |
[22] |
Tsai JH, Hsu YC, Weng HC, et al. (2000) Air pollutant emission factors from new and in-use motorcycles. Atmos Environ 34: 4747-4754. doi: 10.1016/S1352-2310(00)00270-3
![]() |
[23] |
Watson JG, Chow JC, Fujita EM (2001) Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ 35: 1567-1584. doi: 10.1016/S1352-2310(00)00461-1
![]() |
[24] |
Mendell MJ (2007) Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. Indoor air 17: 259-277. doi: 10.1111/j.1600-0668.2007.00478.x
![]() |
[25] |
Sakai K, Norbäck D, Mi Y, et al. (2004) A comparison of indoor air pollutants in Japan and Sweden: formaldehyde, nitrogen dioxide, and chlorinated volatile organic compounds. Environ Res 94: 75-85. doi: 10.1016/S0013-9351(03)00140-3
![]() |
[26] |
Lundgren B, Jonsson B, Ek-Olausson B (1999) Materials Emission of Chemicals – PVC Flooring Materials. Indoor air 9: 202-208. doi: 10.1111/j.1600-0668.1999.t01-1-00007.x
![]() |
[27] |
Liu W, Zhang J, Zhang L, et al. (2006) Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmos Environ 40: 2202-2214. doi: 10.1016/j.atmosenv.2005.12.005
![]() |
[28] |
Wolkoff P (1998) Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products. Atmos Environ 32: 2659-2668. doi: 10.1016/S1352-2310(97)00402-0
![]() |
[29] |
You KW, Ge YS, Hu B, et al. (2007) Measurement of in-vehicle volatile organic compounds under static conditions. J Environ Sci 19: 1208-1213. doi: 10.1016/S1001-0742(07)60197-1
![]() |
[30] |
Parra MA, Elustondo D, Bermejo R, et al. (2008) Exposure to volatile organic compounds (VOC) in public buses of Pamplona, Northern Spain. Sci Total Environ 404: 18-25. doi: 10.1016/j.scitotenv.2008.05.028
![]() |
[31] |
Li S, Chen S, Zhu L, et al. (2009) Concentrations and risk assessment of selected monoaromatic hydrocarbons in buses and bus stations of Hangzhou, China. Sci Total Environ 407: 2004-2011. doi: 10.1016/j.scitotenv.2008.11.020
![]() |
[32] |
Azuma K, Uchiyama I, Ikeda K (2007) The risk screening for Indoor air pollution chemicals in Japan. Risk Anal 27: 1623-1638. doi: 10.1111/j.1539-6924.2007.00993.x
![]() |
[33] | Saito I, Onuki A, Seto H (2007) Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor air 17: 28-36. |
1. | Tumusiime Andrew Gahwera, Odongo Steven Eyobu, Mugume Isaac, Analysis of Machine Learning Algorithms for Prediction of Short-Term Rainfall Amounts Using Uganda’s Lake Victoria Basin Weather Dataset, 2024, 12, 2169-3536, 63361, 10.1109/ACCESS.2024.3396695 | |
2. | Arti Jain, Rajeev Kumar Gupta, Mohit Kumar, 2024, chapter 16, 9798369323519, 324, 10.4018/979-8-3693-2351-9.ch016 | |
3. | Babita Pathik, Rajeev Kumar Gupta, Nikhlesh Pathik, 2024, Chapter 4, 978-3-031-62216-8, 45, 10.1007/978-3-031-62217-5_4 | |
4. | Nan Yao, Jinyin Ye, Shuai Wang, Shuai Yang, Yang Lu, Hongliang Zhang, Xiaoying Yang, Bias correction of the hourly satellite precipitation product using machine learning methods enhanced with high-resolution WRF meteorological simulations, 2024, 310, 01698095, 107637, 10.1016/j.atmosres.2024.107637 | |
5. | Dhvanil Bhagat, Shrey Shah, Rajeev Kumar Gupta, 2024, Chapter 6, 978-3-031-62216-8, 63, 10.1007/978-3-031-62217-5_6 | |
6. | Tumusiime Andrew Gahwera, Odongo Steven Eyobu, Mugume Isaac, 2024, Transfer Learning Approach for Rainfall Class Amount Prediction Using Uganda's Lake Victoria Basin Weather Dataset, 979-8-3503-9174-9, 101, 10.1109/IBDAP62940.2024.10689700 | |
7. | Abhishek Thoke, Sakshi Rai, 2024, Exploring Faster R-CNN Algorithms for Object Detection, 979-8-3503-5293-1, 1, 10.1109/SSITCON62437.2024.10796389 | |
8. | S. P. Siddique Ibrahim, N.Venkata Harika, N.Mohitha Reddy, K. Srija, P.Shiva Sahithi, A. Kohima, 2024, Application of Machine Learning and Data Mining Techniques for Accurate Cloud Burst Prediction, 979-8-3315-1809-7, 1117, 10.1109/ICICNIS64247.2024.10823388 | |
9. | Hiresh Singh Sengar, Sakshi Rai, 2024, A Comparative Analysis of Different Machine Learning Approaches for Crop Yield Prediction, 979-8-3315-0496-0, 1, 10.1109/ICIICS63763.2024.10859455 | |
10. | C. Vijayalakshmi, M. Pushpa, Optimizing non-linear autoregressive networks with Bird Sea Lion algorithms for effective rainfall forecasting, 2025, 18, 1865-0473, 10.1007/s12145-025-01768-2 | |
11. | Tumusiime Andrew Gahwera, Odongo Steven Eyobu, Mugume Isaac, Samuel Kakuba, Dong Seog Han, Transfer Learning-Based Ensemble Approach for Rainfall Class Amount Prediction, 2025, 13, 2169-3536, 48318, 10.1109/ACCESS.2025.3551737 | |
12. | Rajeev Kumar Gupta, R.K. Pateriy, Debabrata Swain, Abhijit Kumar, Road Marking Detection in Challenging Environments using Optimized YOLOv7, 2025, 258, 18770509, 925, 10.1016/j.procs.2025.04.331 | |
13. | Rajeev Kumar Gupta, Interpretable AI-Enabled Model for Skin Cancer Diagnosis using LIME, 2025, 260, 18770509, 3, 10.1016/j.procs.2025.03.171 |