Citation: Shafiuzzaman Khan Khadem, Malabika Basu, Michael F. Conlon. Capacity enhancement and flexible operation of unified power quality conditioner in smart and microgrid network[J]. AIMS Energy, 2018, 6(1): 49-69. doi: 10.3934/energy.2018.1.49
[1] | Ping Yan, Gerardo Chowell . Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach. Mathematical Biosciences and Engineering, 2024, 21(10): 7278-7296. doi: 10.3934/mbe.2024321 |
[2] | Jun Zhai, Bilin Xu . Research on meme transmission based on individual heterogeneity. Mathematical Biosciences and Engineering, 2021, 18(5): 5176-5193. doi: 10.3934/mbe.2021263 |
[3] | Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439 |
[4] | Huiping Zang, Shengqiang Liu, Yi Lin . Evaluations of heterogeneous epidemic models with exponential and non-exponential distributions for latent period: the Case of COVID-19. Mathematical Biosciences and Engineering, 2023, 20(7): 12579-12598. doi: 10.3934/mbe.2023560 |
[5] | Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis . Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475 |
[6] | Liqiong Pu, Zhigui Lin . A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 3094-3110. doi: 10.3934/mbe.2019153 |
[7] | Pengfei Liu, Yantao Luo, Zhidong Teng . Role of media coverage in a SVEIR-I epidemic model with nonlinear incidence and spatial heterogeneous environment. Mathematical Biosciences and Engineering, 2023, 20(9): 15641-15671. doi: 10.3934/mbe.2023698 |
[8] | Yongli Cai, Yun Kang, Weiming Wang . Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1071-1089. doi: 10.3934/mbe.2017056 |
[9] | Ahmed Alshehri, Saif Ullah . A numerical study of COVID-19 epidemic model with vaccination and diffusion. Mathematical Biosciences and Engineering, 2023, 20(3): 4643-4672. doi: 10.3934/mbe.2023215 |
[10] | Shubham Chaudhry, Gauri Agrawal, Maia Martcheva, A. K. Misra . Modeling the impact of temperature on the dynamics of carrier-dependent infectious diseases with control strategies. Mathematical Biosciences and Engineering, 2025, 22(7): 1722-1750. doi: 10.3934/mbe.2025063 |
This manuscript extends a previous work [20] which examined how variability of the latent and infectious periods of an infectious disease could affect the threshold value
A branching process is often used to approximate the cumulative number of infected individuals during the initial phase of an epidemic, when an infectious "seed" is planted in an infinitely large susceptible population [2]. The basic reproduction number
Assuming a very large population with homogeneous mixing, the infectious contact process (as defined in [3]) is a Poisson process with constant rate
This paper only considers the case
1.
2. Due to loss of immunity of recovered individuals or by demography, there is replacement of susceptible individuals so that
In both scenarios,
In practice,
In [20],
A latent period is a random duration
Rc(ϕ)=βL[fE](ϕ)L[¯FI](ϕ). | (1) |
The threshold condition is
Define a new p.d.f.
Under equilibrium, if an individual at a randomly chosen time
Assuming independency, the p.d.f. for
R0L[fG](ρ)=1. | (2) |
The quarantine-isolation paradigm in [20] is for the convenience of discussion. In this manuscript, the control measure is generalized into many types of intervention applied to individuals during their latent period and/or their infectious period. Such interventions include, but are not limited to, condom use for the reduction of sexual transmission of diseases, prophylactic intervention and use of antiviral drugs to reduce transmission, and so on.
Several factors may influence the risk of infection separately from any impact of the intervention. One of them is between-individual heterogeneity in compliance that individuals may not fully comply with the intervention. When individuals fully comply with the intervention and the exposure to the infectious agent is comparable across all individuals being studied, this is the idealized situation. The impact of an intervention is sometimes called the efficacy of the intervention. Since some level of non-compliance is likely where an intervention is widely implemented, the focus will be on effectiveness that provides a more accurate view of possible effects population-wide.
Throughout the paper, the notation
Section 2 is a qualitative analysis. A frailty model, with a random effect
Section 3 is a quantitative analysis to evaluate how much influence
The results presented in this paper are not only invariant to the time scale of the disease progression, but also robust with respect to model assumptions in the disease progression.
In survival analysis, the frailty model is a random effect model to account for unobservable heterogeneity between individuals [7]. In the proportional hazard model
¯F(frailty)(x)=∫∞0¯F(x|z)ξ(z)dz=∫∞0e−zH0(x)ξ(z)dz=L[ξ](H0(x)) | (3) |
where
In the current context, the intervention is associated with a rate
Rc(ϕ)=R0∫∞0e−ϕxfG(x)dx=R0L[fG](ϕ). | (4) |
In the presence of frailty with a non-degenerated p.d.f.
R0∫∞0e−ϕxfG(x)dx<R0∫∞0L[ξ](ϕx)fG(x)dx<R0∥∥Rc(ϕ)Rv(ϕ) | (5) |
where
Unobservable heterogeneity is measured by variability for
Definition 2.1.
1.
2.
By this definition, the larger the distribution in convex order, the more it "spreads out" around its mean value. It is mathematically equivalent [11] to the following definition.
Definition 2.2.
The convex order is stronger than variance comparison as the choice of a convex function
The following identity, first proven in [5],
∫∞0L[ξ](ϕx)fG(x)dx=∫∞0∫∞0e−ϕxzξ(z)fG(x)dzdx=∫∞0L[fG](ϕz)ξ(z)dz |
leads to
Rv(ϕ)=R0∫∞0L[ξ](ϕx)fG(x)dx=R0∫∞0L[fG](ϕz)ξ(z)dz. |
It can be shown that
The natural history in the current context refers to assumptions in
Because the Laplace transform of a p.d.f. of a non-negative random variable is a survival function (arising from the mixture of an exponential survival function with the p.d.f. as the mixing distribution, see [11]),
Rv(ϕ)=R0∫∞0L[ξ](ϕy)f∗G(y)dy=R0∫∞0L[ξ](λϕx)fG(x;λ)dx, | (6) |
Rc(ϕ)=R0∫∞0e−ϕyf∗G(y)dy=R0∫∞0e−λϕxfG(x;λ)dx. | (7) |
Both
1. The solid line is
2. The dashed line is
3.
Rv(ρ)=∫∞0L[fG](ρz)L[fG](ρ)ξ(z)dz≡Rv(R0,fG) | (8) |
where
G(z;R0,fG)=L[fG](ρz)L[fG](ρ) | (9) |
is independent of
Both
The equation (8) shows that
G∗(z;R0)=R01+(R0−1)z | (10) |
has the same features as
On the other hand, the p.d.f.
ξ(z;v)=1/vΓ(1/v)(z/v)1/v−1e−z/v | (11) |
The Laplace transform is
When
Rv(ϕ)=R0∫∞0(1+ϕxv)−1/vfG(x)dx. | (12) |
When
Rv(R0,fG)=1/vΓ(1/v)∫∞0G(z;R0,fG)(z/v)1/v−1e−z/vdz. | (13) |
We also compare it with the approximation
R∗v(R0)=1/vΓ(1/v)∫∞0G∗(z;R0)(z/v)1/v−1e−z/vdz. | (14) |
Assuming the infectious period has a finite mean
G(z;R0,fG)=L[¯FI](ρz)L[¯FI](ρ). | (15) |
We consider two parametric models for the infectious period, both with mean
GGamma(z)=1z1−(1+y(R0,θ)z)−θ1−(1+y(R0,θ))−θ, θ>0 | (16) |
where
Rv(R0,θ)=(1/v)1/vΓ(1/v)∫∞01−(1+y(R0,θ)z)−1/θ1−(1+y(R0,θ))−1/θz1v−2e−z/vdz | (17) |
where
The second model is the inverse-Gaussian distribution
Ginv−Gaussian(z)=1z1−eθ(1−√1+2y(R0,θ)z)1−eθ(1−√1+2y(R0,θ)), θ>0 | (18) |
and (13) is expressed as
Rv(R0,θ)=(1/v)1vΓ(1/v)∫∞01−e1−√1+2y(R0,θ)zθ1−e1−√1+2y(R0,θ)θz1v−2e−z/vdz | (19) |
where
When
Rv(R0,0)=(1/v)1/vΓ(1/v)∫∞01−e−y(R0,0)z1−e−y(R0,0)z1v−2e−z/vdz. | (20) |
The corresponding expression for (9) is
The Gamma distribution includes the exponential distribution as a special case when
In spite of the differences shown in Figure 6 when
Figure 7 shows close agreements among the integrands in (17) and (19) in a very wide range of
Incidentally,
In this case,
Rv(R0,θ_)=∫∞0L[fG](ρz)L[fG](ρ)ξ(z)dz=(1/v)1vΓ(1/v)∫∞0L[fE](ρz)L[¯FI](ρz)L[fE](ρ)L[¯FI](ρ)z1v−1e−z/vdz, | (21) |
where
1. Gamma latent period + Gamma infectious period (including degenerated and exponential distributions):
L[fE](s)=(1+θEμEs)−1/θE,L[¯FI](s)=1s[1−(1+θμs)−θ] |
where
2. Gamma latent period + inverse-Gaussian infectious period
L[fE](s)=(1+θEμEs)−1/θE,L[¯FI](s)=1s(1−e1−√1+2θμsθ). |
3. Inverse-Gaussian latent period + Gamma infectious period
L[fE](s)=exp(1−√1+2θEμEsθE), L[¯FI](s)=1s[1−(1+θμs)−1/θ] |
4. Inverse-Gaussian latent period + inverse-Gaussian infectious period
L[fE](s)=exp(1−√1+2θEμEsθE), L[¯FI](s)=1s(1−e1−√1+2θμsθ). |
Without repeating the investigation for robustness in the previous subsection, numerical results from selected special cases when both the latent and infectious period distribution are chosen from the Gamma family are presented.
For these numerical results, 16 distribution models for
The first 4 models assume Gamma distributed infectious period without the latent period. In particular, The p.d.f. for the infectious period
fI(x)=1θμΓ(1θ)(xθμ)1/θ−1e−1θμx |
by mean value
fG(x)=1μ¯FI(x)=1μ∫∞xfI(s)ds, |
involving the incomplete Gamma function. The mean value for
1. When
2. When
The scale parameter in Figure 8 is
The next 12 models include a latent period so that
Numerical calculation for
The left panel of Figure 10 provides a comparison of the results for
The right panel of Figure 10 is analogous to the left panel, representing the final size
Remark 1. It is well known that univariate frailty models are not identifiable from the survival information alone. In the current context, the true value of control rate
Figure 11 echoes the comments made at the end of Section 2 that, if
The idealized situation, assuming homogeneous intervention effect at rate
The frailty model addresses unobservable (and even un-quantifiable) heterogeneity that could arise in many situations, such as non-adherence (e.g. condom use), "leakage" (e.g. imperfect quarantine or isolation), or, in a prophylactic intervention, individuals may not take the prescribed dose of the medication provided. The frailty model in this paper provides some qualitative insights. More in-depth questions could be posed in each of the situation as alternative hypotheses and targeted models can be developed and applied. Even with that, there will still be unobservable part of heterogeneity and some random effect model may need to be added on top of the structured models. Take the condom use example, condom coverage can be explicitly modelled by space and time, yet there is still unobservable heterogeneity between and within individuals in adherence.
A related issue is the dependence between individuals. Under the null hypothesis, the intervention is applied homogeneously, and independently, on all individuals. Alternatively, one could question about independency and model correlation such as in a spatial structured model. The frailty model also introduces dependency. If a random effect
An important aspect of model is to order thoughts and sharpen vague intuitive notions. Empirical wisdom has told us that the control measure is most effective if applied homogeneously across all individuals and the more variable in adherence, the less the effectiveness. The first half of the sentence is mathematically expressed by (5). The notion variability is vague and intuitive. Definition 2.1 provides a verbal description and an illustration of the general concept of variability, which is sharpened in its mathematical equivalence, Definition 2.2. In return, variability according to Definition 2.2 leads to the order of
The findings that
The non-identifiability problem in Remark 1 poses challenges in the design of intervention studies at the population level. They are confounding factors that hinders the ability to distinguish the 'pure' impact of the intervention without the distorting influence of compliance from the effectiveness since some level of non-compliance are likely. Both the pure impact (efficacy) and population level effectiveness are important objectives in intervention studies.
The concept of frailty goes back to Greenwood and Yule [4] on accident proneness. The term frailty was introduced in demography [18]. It has been widely used to model heterogeneity in life insurance [13]. As extensions of the proportional hazard model [7], frailty models and are widely used in clinical applications where the study population must be considered as a heterogeneous sample, i.e. a mixture of individuals with different hazards.
When
Application of frailty models has been employed in a growing number of empirical works on a large variety of themes, including scale-free networks and dynamic systems. Examples include the population of cities, the study of stock markets, DNA sequences, family names, human behavior, geomagnetic records, train delays, reaction kinetics, air travel networks, hydrological phenomena, earthquakes, world bank records, voting processes, internet, citation of scientific papers, among others. A brief review of this distribution and a list of references of these studies are provided in Picoli et al. [14]. This manuscript adds another application field in this growing theme.
The author sincerely thank two anonymous referees for their useful comments and discussions which helped to re-develop the Discussions and limitations section.
Tables 2-8 contain numerical values for
Gamma distributed infectious period, variance/mean ratio =2 | ||||||||||
Gamma distributed infectious period, variance/mean ratio =0.5 | ||||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
Mean latent period equals to the mean infectious period: | ||||||||
Either | ||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
The survival function for
Rv(ρ)={R0(1−(1+ρμv)1−1vρμ(1−v)),v≠1R0log(ρμ+1)ρμ,v=1, | (22) |
of which,
In this case,
Rv(ρ)=(1/v)1/vΓ(1/v)∫∞0(zR0zR0−z+1)z1v−2e−z/vdz. | (23) |
The quantities are presented in Table 3.
The calculation of
1.
2.
In this case,
Rv(ρ)=R0∫l+1l[1+(ρμ)yv]−1/vdy. | (24) |
Although
We assume that
fG(x)={1(1−l)μ(e−xμ−e−xlμ),l≠11μ2xe−xμ,l=1. |
The mean value of
Rv(ρ)={R0∫∞0[1+(ρμ)yv]−1/vye−ydy,l=1R0(1−l)∫∞0[1+(ρμ)yv]−1/v(e−y−e−1ly)dy,l≠1 | (25) |
The quantity
{μE=lμ,l>0μI=μ and {μE=μ,μI=lμ,l>0 |
give identical results. When
The mean value for
fG(x)={0 if x≤lμ1μe−x−lμμ if lμ<x. |
The Laplace transform for
Rv(ρ)=R0(∫∞l[1+(ρμ)yv]−1/ve−(y−l)dy). | (26) |
The preserved quantity is
In this setting,
fG(x)={1μ(1−e−x/lμ),x≤μ1μe−x/lμ(e1/l−1),x>μ. |
The Laplace transform is
Rv(ρ)=R0(∫10[1+(ρμ)yv]−1/vdy+e1l∫∞1[1+(ρμ)yv]−1/ve−y/ldy−∫∞0[1+(ρμ)yv]−1/ve−y/ldy). | (27) |
The preserved quantity is
[1] |
Seme S, Lukač N, Štumberger B, et al. (2017) Power quality experimental analysis of grid-connected photovoltaic systems in urban distribution networks. Energy 139: 1261–1266. doi: 10.1016/j.energy.2017.05.088
![]() |
[2] |
Efkarpidis N, Rybel TD, Driesen J (2016) Technical assessment of centralized and localized voltage control strategies in low voltage networks. Sust Energ Grids Netw 8: 85–97. doi: 10.1016/j.segan.2016.09.003
![]() |
[3] | Khadem SK, Basu M, Conlon MF (2010) Power quality in grid connected renewable energy systems: Role of custom power devices. J Renew Energ Power Qual 8: 505. |
[4] | Ghosh A, Ledwich G (2002) Power quality enhancement using custom power devices. AH Dordrecht: Kluwer Academic Publisher Group. |
[5] |
Khadkikar V (2012) Enhancing electric power quality using UPQC: A comprehensive overview. IEEE T Power Electr 27: 2284–2297. doi: 10.1109/TPEL.2011.2172001
![]() |
[6] |
Han B, Bae B, Kim H, et al. (2006) Combined operation of unified power-quality conditioner with distributed generation. IEEE T Power Deliver 21: 330–338. doi: 10.1109/TPWRD.2005.852843
![]() |
[7] |
Khadem SK, Basu M, Conlon MF (2015) Intelligent islanding and seamless reconnection technique for microgrid with UPQC. IEEE J Em Sel Top P 3: 483–492. doi: 10.1109/JESTPE.2014.2326983
![]() |
[8] | Khadem SK, Basu M, Conlon MF (2013) A new placement and integration method of UPQC to improve the power quality in DG network. Power Engineering Conference. IEEE, 1–6. |
[9] |
Khadem SK, Basu M, Conlon MF (2011) A review of parallel operation of active power filters in the distributed generation system. Renew Sust Energ Rev 15: 5155–5168. doi: 10.1016/j.rser.2011.06.011
![]() |
[10] |
Cheng PT, Lee TL (2006) Distributed active filter systems (DAFSs): A new approach to power system harmonics. IEEE T Ind Appl 42: 1301–1309. doi: 10.1109/TIA.2006.880856
![]() |
[11] |
Guerrero JM, Hang L, Uceda J (2008) Control of distributed uninterruptible power supply systems. IEEE T Ind Electron 55: 2845–2859. doi: 10.1109/TIE.2008.924173
![]() |
[12] |
Lai J, Peng FZ (1996) Multilevel converters-a new breed of power converters. IEEE T Ind Appl 32: 509–517. doi: 10.1109/28.502161
![]() |
[13] |
Munoz JA, Espinoza JR, Moran LA, et al. (2009) Design of a modular UPQC configuration integrating a components economical analysis. IEEE T Power Deliver 24: 1763–1772. doi: 10.1109/TPWRD.2009.2028795
![]() |
[14] |
Peng FZ, Mckeever JW, Adams DJ (1998) A power line conditioner using cascade multilevel inverters for distribution systems. IEEE T Ind Appl 34: 1293–1298. doi: 10.1109/28.739012
![]() |
[15] |
Han B, Bae B, Baek S, et al. (2006) New configuration of UPQC for medium-voltage application. IEEE T Power Deliver 21: 1438–1444. doi: 10.1109/TPWRD.2005.860235
![]() |
[16] | Han B, Baek S, Kim H, et al. (2006) Dynamic characteristic analysis of SSSC based on multibridge inverter. IEEE Power Eng Rev 22: 62–63. |
[17] |
Han BM, Mattavelli P (2003) Operation analysis of novel UPFC based on 3-level half-bridge modules. IEEE Power Tech Conference Proceedings, Bologna. IEEE 4: 307–312. doi: 10.1109/PTC.2003.1304740
![]() |
[18] | Munoz JA, Espinoza JR, Baier CR, et al. (2011) Design of a discrete-time linear control strategy for a multi-cell UPQC. IEEE T Ind Electron 59: 3797–3807. |
[19] | Khadem MSK, Basu M, Conlon MF (2012) UPQC for power quality improvement in dg integrated smart grid network-a review. Int J Emerg Electr Power Syst 13: 3. |
[20] |
Basu M, Das SP, Dubey GK (2008) Investigation on the performance of UPQC-Q for voltage sag mitigation and power quality improvement at a critical load point. IET Gener Transm Dis 2: 414–423. doi: 10.1049/iet-gtd:20060317
![]() |
[21] |
Khadem S, Basu M, Conlon M (2014) Harmonic power compensation capacity of shunt apf and its relationship to design parameters. IET Power Electron 7: 418–430. doi: 10.1049/iet-pel.2013.0098
![]() |
[22] |
Corradini L, Mattavelli P, Corradin M, et al. (2010) Analysis of parallel operation of uninterruptible power supplies loaded through long wiring cables. IEEE T Power Electr 25: 1046–1054. doi: 10.1109/TPEL.2009.2031178
![]() |
[23] |
Guerrero JM, Matas J, Castilla M, et al. (2006) Wireless-control strategy for parallel operation of distributed-generation inverters. IEEE T Ind Electron 53: 1461–1470. doi: 10.1109/TIE.2006.882015
![]() |
[24] | Khadem SK, Basu M, Conlon MF (2011) A review of parallel operation of active power filters in the distributed generation system. European Conference on Power Electronics and Applications. IEEE, 1–10. |
[25] | Arrillaga J, Liu YH, Watson NR (2007) Self-commutating conversion, in flexible power transmission: The HVDC options. John Wiley & Sons, Ltd, Chichester, UK. |
[26] | Khadem SK, Basu M, Conlon MF (2013) Selection of design parameters to reduce the zero-sequence circulating current flow in parallel operation of DC linked multiple shunt APF units. Adv Power Electron 2013: 13. |
[27] |
Asiminoaei L, Aeloiza E, Enjeti PN, et al. (2008) Shunt active-power-filter topology based on parallel interleaved inverters. IEEE T Ind Electron 55: 1175–1189. doi: 10.1109/TIE.2007.907671
![]() |
[28] |
Chen TP (2012) Zero-sequence circulating current reduction method for parallel HEPWM inverters between AC bus and DC bus. IEEE T Ind Electron 59: 290–300. doi: 10.1109/TIE.2011.2106102
![]() |
[29] | Ye Z, Boroyevich D, Choi JY, et al. (2006) Control of circulating current in parallel three-phase boost rectifiers. Applied Power Electronics Conference and Exposition, 2000. IEEE 1: 506–512. |
[30] |
Chen TP (2006) Circulating zero-sequence current control of parallel three-phase inverters. IEE P-Elect Pow Appl 153: 282–288. doi: 10.1049/ip-epa:20050231
![]() |
[31] | Abdelli Y, Machmoum M, Khoor MS (2004) Control of a multi module parallel able three phase active power filters. International Conference on Harmonics and Quality of Power. IEEE, 543–548. |
[32] | Wei X, Dai K, Fang X, et al. (2006) Parallel control of three-phase three-wire shunt active power filters. Automat Electr Power Syst 31: 70–74. |
1. | Gerardo Chowell, Amna Tariq, James M. Hyman, A novel sub-epidemic modeling framework for short-term forecasting epidemic waves, 2019, 17, 1741-7015, 10.1186/s12916-019-1406-6 | |
2. | Ping Yan, Gerardo Chowell, 2019, Chapter 6, 978-3-030-21922-2, 183, 10.1007/978-3-030-21923-9_6 | |
3. | Ping Yan, Gerardo Chowell, 2019, Chapter 9, 978-3-030-21922-2, 317, 10.1007/978-3-030-21923-9_9 | |
4. | Christiana Tsiligianni, Aristeides Tsiligiannis, Christos Tsiliyannis, A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws, 2023, 304, 03772217, 42, 10.1016/j.ejor.2021.12.037 | |
5. | Ping Yan, Gerardo Chowell, Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach, 2024, 21, 1551-0018, 7278, 10.3934/mbe.2024321 |
Gamma distributed infectious period, variance/mean ratio =2 | ||||||||||
Gamma distributed infectious period, variance/mean ratio =0.5 | ||||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
Mean latent period equals to the mean infectious period: | ||||||||
Either | ||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
Gamma distributed infectious period, variance/mean ratio =2 | ||||||||||
Gamma distributed infectious period, variance/mean ratio =0.5 | ||||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
Mean latent period equals to the mean infectious period: | ||||||||
Either | ||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||
The latent period is half the infectious period: | ||||||||
The latent period equals to the infectious period: | ||||||||
The latent period is twice the infectious period: | ||||||||