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1. Introduction

Let R?, d > 1, be a Euclidean space of points x = (x',...,x%). In 1975 D. Adams [1] among
many other things proved that, if d > 2 and we are given u € Cy° = Cy’ (RY) with its gradient Du =
(D1, ..., Dgu), D; = 8/0x', satisfying

f \Du(y)l? dy < p**, (1.1)
lx—yl<p
withg > 1,1 <8 < d/q, and any p € (0, ) and x € R¢, then for all p € (0, o) and x € R? we have
f u)I" dy < N6 (1.2)
lx=yl<p

with a constant N independent of u and r satisfying (8 — 1)r = Sq.
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This fact played a crucial role in [10] where the author investigated the solvability of elliptic
equations
d'Diju+b'Du+u=f (D;=DD;) (1.3)

with b ¢ L, but rather satisfying for a sufficiently small b, all sufficiently small p and all balls B of
radius p

f |b|% dx < bp?=o
B

with certain dy € (d/2,d).

Our goal in this paper is to prepare necessary tools for developing a similar theory for parabolic
equations. In Section 2 we prove an analog of Adams’s intermediate estimate, which is the main
starting point. Section 3 contains the parabolic analog of the embedding theorem mentioned in the
beginning of the article. It also contains “local” interpolation inequalities in Morrey spaces allowing
one to deal with Morrey’s norms of expressions like b'D;u in domains when b is bounded. Section 4 is
devoted to the parabolic analog of a Chiarenza-Frasca theorem allowing to estimate the L,-norm rather
than Morrey’s norm of b'D;u. In Section 5 we treat parabolic Morrey spaces with mixed norms. The
main object of investigation is the term b'D;u and the ways to estimate it in various Morrey and L,
spaces in order to be able to treat it as a perturbation term in the parabolic analog of (1.3).

We finish the introduction with some notation and a remark. Define B,(x) = {y € R?: |x—y| < pl,
R™* = {z=(t,x): t € R, x € RY)},

C,(t,x) = {(s,y) e XR™ : [x—y| < p,t < s<t+p*}, C,=Cy0)

and let C, be the collection of C,(z), z € R C = {C,,p > 0}. For measurable I' C R%*! set |T| to be
its Lebesgue measure and when it makes sense set

fr:frfdp%j;fdz.

Similar notation is used for f = f(x).

Remark 1.1. Formally, Adams proved (1.2) assuming that d > 2. However, it is also true if d = 1.
To show this it suffices to take u depending only on one coordinate. The reader may wonder how the
restriction 8 < d/q will become 8 < 1/g. The point is thatif d = 1 and 8 > 1/q, we have d — Bg < 0
and condition (1.1) becomes only possible if u = 0.

2. Preliminary estimates

An important quantity characterizing L, = L,(R?*") is what we call the index which is the exponent

of p in the expression

.d+2
”ICp”LP that is T

For domains Q c R*!, p € [1, ), and 8 € (0, (d + 2)/p], introduce Morrey’s space E, 5(Q) as the
set of g such that

lglle,s0 = sup P HelollL,c wm) < o (2.1)

p<e0,(1,X)€Q
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where
1/p
Hellz, o = ( f 8" dz) "
r

We abbreviate E, 5 = E,z(R*"). Observe that if Q = Cg one can restrict p in (2.1) to p < R since
B < (d+2)/p. Also in that case one can allow (z, x) to be arbitrary, because, if |x| > R, then BxNB,(x) C
BrNB,(Rx/|x]). It is also useful to observe that, in case Q = Cg, one gets an equivalent norm by adding
to the restrictions p < oo,(t,x) € Cg, the requirement that the geometric center of C,(z, x) be in Cg.
This follows from the fact that the L,(C,(t, x))-norm of g/, will only increase if we pull C,(z, x) down
the ¢ axis to {t = 0} (if p> > 2R?) or to the moment that the shifted C,(t, x) has its geometric center
inside Ck.

There are many different notations for the norms in Morrey spaces. The convenience of the above
notation is well illustrated by Theorem 3.1 and Corollary 5.7.

We will often, always tacitly, use the following formulas in which u(z, x) = v(¢/R?, x/R):

JrJrM||L1,(CR) = ‘HV”LP(Cl)a ||M||E,,,,3(Q) = Rﬁ||v||Ep,ﬁ(QR),
where Qx = {(t, x) : (R’t, Rx) € Q},
-1 2 -2
||DM||EM(CR) =R ||DV||Epﬁ(cl), D u||E,,ﬁ(cR) =R ||V||Epﬁ(cl)'

For s,7 > 0, > 0, and appropriate f(z, x)’s on R¢*! define

—rz/sl

Pols, 1) = Sazant  Ieo

P.f(t,x) = fd 1 P8, YD f(t+ s, x +y)dyds.
R +
Observe that, if f is independent of ¢z, then
1
lylt=«

where [, is the Riesz potential. Therefore, one can get the Adams estimate found in the proof of
Proposition 3.1 of [1] from (2.3) below. In our investigation the most important values of « are 1
and 2. Set

Puf(t, ) = Paf(x) = N(@) f Flx+y)dy = NI f(x),
Rd

Mﬁf(t,x):suppﬁ lf(Dldz, 0<B<d+2,

p>0 Cp(t,x)

Mf=Mof.
The following lemma is obtained by integrating by parts.

Lemma 2.1. Let 8 > 0 be a finite number, f(t) > 0 be a function on [0, 00) such that

t‘ﬁf f(s)ds — 0
0

ast — oo. Then, for any S > 0,

f ) Pf@) dt < B f ) 7 f t f(s)ds)dt.
S S S
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Lemma 2.2. For any a € (0,0),8 € (0,d + 2] there exist constants N (< oo) such that for any f > 0
and p € (0, 00) we have

Po(Ic, /)©0) < No*Mf(0),  Po(lcs/)(0) < Np" P Mpf(0), (2.2)
Pof < N(Mp)™P(M f)=P. (2.3)
In particular (by Holder’s inequality), for any p € [1, 0], g € (1, 0], and measurable T
1Pafllz,a < NIMa I 11,7, 2.4)
provided that

1 a 1 (1_%)1

-—=—-—+ -.
r B p B’q

Proof. We basically mimic the proof of Proposition 3.1 of [1]. Observe that (2.3) at the origin is easily
obtained from summing up the inequalities in (2.2) and minimizing with respect to p. At any other
point it is obtained by changing the origin. Furthermore clearly, we may assume that f is bounded with

compact support. Set O = {(s,y) : [yl = s}, Q> = {(s,y) : [yl < +/s}. Dealing with P,(fI,,) we
observe that p,(s,r) < Nr=@+*2=® if r > +/s. Therefore,

00 1 72
Po(flg,ncy)(0) < Nf e f ( f(s,y) do'r) dsdr,
Iy 0 lyl=r

where do, is the element of the surface area on |[y| = r. By Lemma 2.1 (@ < d + 2)

00 1 r p2
Po(flginc)(0) < N fp gy fp ( fo (), fnde,)ds)dpdr
(o] 1 r }’2
st mf (f ( f(s,y)dap)ds)dpdr
P 0 0 yl=p
=N£oo rd+13_al(r)dr,

1) = f F(s.y) dyds.

We use that I(r) < Nr'**# Mg f(0) and that @ < 8. Then we see that

where

Po(floincs)(0) < No“ P My f(0). 2.5

Next, by using Lemma 2.1 we obtain that

© 1
Pu(fIpync:)(0) < f [ feyds
2 pz S(d+2 @)/2 bl< V3

“ 1 ® 1
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This along with (2.5) prove the second inequality in (2.2).
As long as the first inequality is concerned, observe that similarly to Lemma 2.1 using that & > 0
we have

0] r
Pa(fIchp)(O)SNf mf ( f(S,y)dO'r)der
o r 0 bl=r

* 18 (T, ("
:Nf rd+2‘“(5ff (‘fo |y|:Tf(s,y)d0'Tds)dT)dr
=J; +Nf e af f f(s,y)doy)ds)drdr
yl=7

<J1+Nf e I(r)dr

1 P( T2 ) 1 (p)
J :N—f f f(s,y)do.ds)dr < N———1
1 o+ | 0 sler pd+2-a

Here I(r) < Nr**2M £(0) and a > 0, so that

where

Po(flg,nc,)(0) < Np“M f(0). (2.6)
Furthermore, ,
» 1
Po(flg,nc,)(0) < Nf S@ron \ff(S, y)dyds
[yl<
<J2+Nf - a)/ZI(\/_)ds—J2+Nf I(r)dr
where

2

1 O
Jz=N—_af f f@,y)dydr <
P Jo o Jpisve
This and (2.6) prove the first inequality in (2.2). The lemma is proved.

Remark 2.3. If d = @ = 1 and f is independent of 7, the inequalities (2.2) and (2.3) are useless, because
the first one in (2.2) follows by definition and the second one and (2.3) are trivial because Mgf = oo
(B>a=1)unless f =0.

If a is strictly less than the index of L,, we have the following.

Corollary 2.4. If @ € (0,(d + 2)/q), q € (1,0), then there exists a constant N such that for any f > 0

we have
1P fllz, < NIIfllz,
as long as
d+?2 d+2
—_— —a =
q r

In particular, (a classical embedding result) if 1 < g <d+2andu € Cy = C(‘;"(Rd“), then

IDull, < NlIdu + Aull,, (9, = 0/01)
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as long as

d+?2 | d+?2

q r

Indeed, the first assertion follows from Holder’s inequality and (2.4) with p = co and 8 = (d + 2)/q
(> a@). The second assertion follows from the first one with @ = 1 (< ) and the fact that for f = d,u+Au

we have
y 2/
Du(t, x) = cfd 1 We DA £ + 5, x + y) dyds,
R+

where ¢ is a constant and (Jy|/s'/?)e /@) < Ne bF/®s),

Remark 2.5. After Corollary 2.4 a natural question arises as to what power of summability b = (b%)
will be sufficient for the term b'D;u to be considered as a perturbation term in d,u + Au + b'D;u in the
framework of the L,-theory. Observe that, in the notation of Corollary 2.4

I Dl < bl 1Dully, < NIl N0 + Aull,. 2.7)

It follows that b should be of class L;,, and g < d + 2. Of course, if b contains just bounded part, this
part in b'D;u is taken care of by interpolation inequalities.

In the next section we will also need the following result.

Corollary 2.6. For any a € (0,8),8 € (0,d + 2] there exists a constant N such that for any g > 0,
p € (0,00), and (t, x) € C, we have

Po(lcg @)(t, X) < Np" P Mpg(1, x).

Indeed, since
{t+s5s>4p> or |x+y|>2p)c{s=>p> or |y=>p}

for f = g(t+-,x + ) we have

Po(lcg 8)(1, x) < f Ice(5,Y)Pa(s,y)8(t + 5, x + y) dyds = Po(Ic f)(0)
Rd+1

< Np" PMyf(0) = Np" P Mpg(t, x).
3. A parabolic analog of the Adams Theorem 3.1 of [1]
Theorem 3.1. For any a € (0,5),5 € (0,(d + 2)/q], g € (1, ), and r such that

r(B —a) = gp,

there is a constant N such that for any f > 0 we have

IPaflle,. < NIfllg,, (3.1
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Proof. 1t suffices to prove that for any p > 0

o f Pusr )" < Nifl,,

that is

—Q— r r 1/r
e[ pugtr )" < Nl (32)

Cp

Observe that by Holder’s inequality Mgf < N||fl|g,, and by definition

1/
([, teutras)" < Np“ i,
R +

It follows from Lemma 2.2 with p = oo that
1/r
( f IPo(lc,, f)'dz) < Np(“@2aPi=elbyif,
c,

d+2)/r—
= Np“2IrFe | f| .

Furthermore, by Corollary 2.6
1/r
([ 1paticy pirae)"” < Np 2 sup Poticy )
c, p c, p

S Np(d+2)/r+a/_'BEq’ﬁf~

By combining these estimates we come to (3.2) and the theorem is proved.

Remark 3.2. We did not explicitly used that 8 < (d + 2)/g and formally the proof is valid for any
B € (0, o) if in Definition 2.1 we allow any 8 > 0. However, if 8 > (d + 2)/q and f # 0, the right-hand
side of (3.1) is infinite. Therefore, to make Theorem 3.1 nontrivial one requires 8 < (d + 2)/q.
Remark 3.3. There is a simple relation of P,, P,, to P,, +a,, Which, in light of Theorem 3.1, implies that,
iff>a 2 a1 >0,q91,q € (1,0), gi(B—a1) = 2(B—2) < d+2, then ||Po, fllg,, , ., < NlIPo,fllg, 40, -
We leave details of the proof to the reader and we do not use this fact in what follows.

The following, obtained similarly to Corollary 2.4, was communicated to the author by Hongjie
Dong.

Corollary 3.4. If 1 <g<d+2,€(1,(d+2)/q], andu € Cy, then
IDulls,, , < Nl + Aullg,,

as long as

1 1 1
r(B—1)=¢gp, thatis —=--—. (3.3)
roq pq

Remark 3.5. For 8 = (d + 2)/q Corollary 3.4 yields the second part of Corollary 2.4 once more. This
is because E, (412) = Ly-

Mathematics in Engineering Volume 5, Issue 2, 1-20.
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Remark 3.6. In the framework of the Morrey spaces Corollary 3.4 opens up the possibility to treat
the terms like b'D;u as perturbation terms in operators like d,u + Au + b'D;u even with rather low
summability properties of b = (b'). To show this, observe that for f,g > 0 in the notation of
Corollary 3.4

o’ Hrgle i, < p #fIc) e, - 077 Helc -

It follows that
b Ditll,, < IBlls,,, IDulE,,,, < NlIbllg,, 192 + Aull,,. (3.4)

For B = (d + 2)/q estimate (3.4) coincide with (2.7), but for 8 < (d + 2)/q in the framework of Morrey
spaces we allow b to be summable to the power g < d + 2 in contrast with Remark 2.5. However, we
need [|D]|g,, < co and, if we ask ourselves what r should be in order for b € L, to have ||b||g,,, < oo, the
answer is r = d + 2 at least. Still we gain the possibility to have higher singularities of » than functions
from L,,,. Elliptic versions of (3.4) for usual or generalized Morrey spaces are found in many papers,
see, for instance, [5] and the references therein.

Next we move to deriving “local” versions of the above results. A statement somewhat weaker than
Corollary 3.4 can be obtained from the following general result by taking (S, T') to be large enough and
then sending § — —co, T — oo.

Theorem 3.7. Let 1 < g <d+2,Be(1,(d+2)/q] and let (3.3) hold. Then there is a constant N such
that for any u € C°, —00 < S < T < o0, and Qs = (S,T) x R?

||Du||Erﬁ_1(Qs,T) S N”lalul + |A1/l| ||Eq‘/g(Q5,T) + N(T - S)_lllu”Eq,,B(QS,T)' (3‘5)

Proof. Shifting and changing the scales in R%*! allow us to assume that § = —1 = —7. In that case
consider the mapping @ : [-3/2,3/2] — [-1,1], ®(¢) = #(2/(]f] v 1) — 1) that preserves [—1, 1], is
Lipschitz continuous and has Lipschitz continuous inverse if restricted to [-3/2,3/2] \ (-1, 1). Then,
obviously, for w(z, x) = v(®D(¢), x) we have

||WIQ_3/2‘3/2||E,],/3 < N”v”Eqﬁ(Q_]yl)’ (36)

where N = N(g).

Now take (¢,x) € Q_1 1, p € (0,0), and take £ € C7'(R) such that { = 1 on (-1, 1), { = 0 outside
(—3/2,3/2), and |{]| + |{'] < 4.

Although the function {w, where w(s,y) = u(®(s),y), is not as smooth as required in Corollary 3.4
the argument leading to it applies to {(s)w(s,y) (we have a general Remark 5.14 to that effect) and
since r(8 — 1) = gB we have

7~ WDulg., I,y < NP~ HDEW)IIL, e,

< Nlllg_y 5, 10w + IEAWDI |, .-

It only remains to note that the last expression is less than the right-hand side of (3.5) in light of (3.6).
The theorem is proved.
To prove an interpolation theorem in Cg we need two lemmas.
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Lemma 3.8. Letr0 < Ry <1 <Ry < 00,1 < q < oo, € (0,(d+2)/ql. Definel'y = By \ Bg,
I; = BRZ \ B, and let ® : T, — I'y be a smooth one-to-one mapping with |D®|, | D®~'| < K, where K is
a constant. Let v(t, x) > 0 be zero outside G, := (0, 1) X Iy and set u(t, x) = v(t, ®'(x))Ir,(x). Then

VIl 50,1)xBry) < N(d, q, B, K)llullg, 4cy)- (3.7)

Proof. Take (t, x) € (0,1) X Bg, and p > 0. Then

1 1/q
o ( o2 ‘[C 1(0,1)xBg, V' dyds)

p(1,X)

1 1/
< Npﬁ( e, f Ic,u! dyds) ‘o I,
P Y(C,)(t,9)NG2)

where W(s,y) = (s, ®(y)). Observe that, if C,(¢,x) N G, # 0, then |y; — y;| < 2p for any y;,y, €
C,(t,x) N G,. It follows that ®(C,(¢, x) N G») C B, where B is a ball of radius 2Kp with center in B,
and

I < NQK )ﬁ(;f Ieufd ds)l/q < Njul|
B P Kp)"*? Jirskpxs Qi B Fasl €1

This proves the lemma.

The following lemma about the interpolation inequality (3.9) is quite natural and obviously useful,
but its elliptic counterpart was proved only rather late in [10]. One of its goals is to be able to treat
b'D;u, when b is bounded, as a perturbation term.

Lemma 3.9. Let p € (1,00), 0 < B8 < (d+2)/p. Then there is a constant N such that, for any R € (0, 00),
p < 2R, C € C, with its geometric center in Cg, € € (0,1], and u € CJ, we have

0 HlcDullrcy < NeR sup s 1, (10.ul + ID*ulllr ccs)

P<s<2R

+N&e'R™" sup s e (u = Ol ey (3.8)
p<s<2R

where c is any constant and C(s) € C; with the geometric center the same as C. In particular,
2 “1p-1
IDulle, 4icry < NeR|1Oul + |D7ulllg, ycpy) + Ne™ R Nlulle, s(cp)- (3.9)

Proof. Changing scales shows that we may assume that R = 1. Obviously we may also assume that
¢ = 0. Then denote v = Du, w = |0,u| + |D?u|, G, = C(s) N Cy,

U= sup s Hullr,G,), W= sup s #(0.ul +|D*ullL,q,)

p<s<2 p<s<L2
By Poincaré’s inequality (see, for instance, Lemma 5.9), for p < s < 2,
v =ve,ll,c,) < N, p)s #wll, @G, < Ns'PW.
Also by interpolation inequalities, there exists a constant N = N(d, p) such that, for £ € (0,1] and

e<s<2,

1/2 1/2
v = ve Lo < 2 Wi, < N Wil T Hull, G
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+ N5~ e, < N Al o, Hudll G + Ne™! Hulle, 6, (3.10)
which for2 > s > ¢ v p yields
s v = v ) < NW'PU'? + Ne'U.
Hence, for any £ € (0, 1] and p < s <2
S v = vg i,y < NigW + Noe™'U,

where N1 = Ni(d, p), N> = N»(d, p).
Following Campanato, one can transform this result to estimate v, going along p, 2p,... and, since
B € (0,(d + 2)/p], by Campanato’s results (cf. for instance, Proposition 5.4 in [8]) one gets that

0 Wi,y < Ns(NigW + Nag™'U) + N3 #vllL, 65,

where N3 = Ns(d, p,5). We estimate the last term as in (3.10) and come to what implies (3.8). The
lemma is proved.

The following is a local version of Corollary 3.4. It allows us to draw the same conclusions as in
Remark 3.6 in bounded domains.

Theorem 3.10. Let 1 <g<d+2, € (1,(d+2)/q]and let r(B — 1) = gB. Then there is a constant N
such that for any R € (0,00], u € C7,

IDullE,, oy < NGl + 1Dl llg, yicpy + NRNull, yicr- (3.11)

Proof. The case of R = o is obtained by passing to the limit. In case R < oo, as usual, we may assume
that R = 1. In that case, mimicking the Hestenes formula, for 1 < |x| < 6/5 define

v(t, x) = 6u(t, x(2/|x| — 1)) — 8u(t, x(3/1x] — 2)) + 3u(z, x(4/|x| — 3))
=: 6\/1 - 8\/2 + 3V3
and for |x| < 1 set v(t,x) = u(t,x). One can easily check that v € C'*([0, 1] X Bgs). In light of
Lemmas 3.8 and 3.9, for instance,
ID*VIIE, y0.0xB5) < 1D ullE, yc1y + Nlllgg 08 D*VillE, 40.1)xBgs5) + -
+N||IBG/5\B]D2v3||Eqﬁ((0,1)xBﬁ/5) S N”Dzu”Eqﬁ(Cl) + N”Du”Eqﬁ(Cl)
< NIDullg, ¢y + Nllullg, ycp)- (3.12)
Now take (¢, x) € Cy, p € (0, ), and take { € Cg"(Rd) such that { = 1 on By, { = 0 outside Bgs, and
61 +1DZ| + |D*¢l < N = N(d).
By using Theorem 3.7 we get
7~ Dule |l < N #100, DEVIL,(c, 0

< NIDEV)IE, 41000 < NI + IALWN I, 500, + NIEVIE, 400,
< N[8:(&v)l + |A(QV)| ||Eqﬁ((o,1)x36/5) + N||V||Eqﬁ((0,1)><36/5)

It only remains to note that the last expression is less than the right-hand side of (3.11) as is well
seen from (3.12). The theorem is proved.
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Remark 3.11. By considering functions depending only on x we naturally obtain “elliptic”” analogs of
our results. For instance, for G € R by defining

lgllz, ) = sup pﬁ'l'l'gIG”Lp(Bp(x))a

p<oc0,xeG

we get from (3.11) for u € C(RY) that
||Du||E,_,3_1(BR) < N|||D2M ”Eq_,g(BR) + NR_ZHI/‘”EM(BR), (3.13)

whenever 1 < g < d,B € (1,d/q] and r(8 — 1) = gB. Actually, formally, one gets (3.13) even for
B <(d+2)/q,but for > d/q, both sides of (3.13) are infinite unless u = 0.
After that arguing as in (3.4) we see that for 1 < g <d,B € (1,d/q]

||b’DiM||Eq,ﬂ(Bl) < N||b||Eﬁq,1(Bl)||Au||Eq_ﬁ(Bl> + N||M||Eqﬁ(31)- (3.14)

From the point of view of the theory of elliptic equations the most desirable version of (3.14) would
be

||biDiu||Eqﬁ(Bl) < 8||AM||Eq,,3(Bl) + N(S)”u”Eqﬁ(Bl) (3.15)

for any £ > 0 with N(e) independent of u. This fact is, actually, claimed in Theorem 5.4 of [S5]. We
will show that (3.15) cannot hold if & is small enough.

Let A(t) be a smooth nondecreasing function on R such that A(t) = 0 for < 0, h(f) = t for ¢ > 1 and
for 0 > 0 set us(x) = h(In(6/|x|)). Let 1 < g <d/2,B =2, b(x) = 1/|x|.

Then

lulle, g8y < N(@Dllutsllzyz,) — O

as 6 | 0. At the same time

Xi 1 XiXj 1 XiXj
Dius = ——=h', Djus = —(2— - 6-»)h’ + ——hn".
l |x[2 RO YRR S DY x| [x?

It is seen that |[D*us| < N(d)/|xI* and, since ¢ < d/2, the E,5(B;)-norm of D*us is bounded as & | 0.
Also, for |x| < §/e, we have b|Duy| = 1/|x|%, so that for r < §/e

1/
( ]( bDusl? dx) " = Nd. pyr>.
[x|<r

It follows that the E,g(B)-norm of b|Dus| is bounded away from zero as ¢ | O and this shows that
(3.15) cannot hold for all 6 > 0 if € is small enough.

4. A parabolic version of Chiarenza—Frasca result [4]
In Remark 3.6 we have shown how to estimate a Morrey norm of |b||Du| in terms of a Morrey
norm of b. Here, following [4], we show how to estimate an L,-norm of the same quantity through the

L,-norms of d,u and D*u.
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Theorem 4.1. Letd +2 > g > p>1, b € E,,. Then for any f > 0 we have

L= [P de < NI, 171, wn
R4+

where N depends only on d, p, q. In particular (see the proof of Corollary 2.4), for any u € C
f |bIP1Dul” dz < NlIblly, K, (4.2)
Rd+1 e

where K = ||D?u, 6tu||€p and N depends only on d, p, q.

Observe that we already know this result if ¢ = d + 2 from Remarks 2.5 or 3.6.

In the proof we are going to use “parabolic” versions of some results from Real Analysis associated
with balls and cubes. These versions are obtained by easy adaptation of the corresponding arguments
by replacing balls with parabolic cylinders and cubes with parabolic boxes. To make the adaptation
more natural we introduce the “symmetric” maximal parabolic function operator by

Mf(t,x) = sup )( |f1dz,
CeC, C
Ca(t,x)

where (recall that) C is the set of C.(z), r > 0, z € R%*!. To prove the theorem we need the following.
Lemma 4.2. a) For r € (0, ) define D, = {|t| < r,|x| < r}. Then
}’d+2

|l|(d+2)/2 \Vi |x|d+2 -

MIp,(t,x) < Ip, + Nlp < N*MIp,(t, x), (4.3)

where N = N(d).
b) For any nonnegative g(t, x), g € [1,00), B€ (0,d+2],a >0, a > 1 —-¢gB/(d + 2), and r € (0, 00)

f g'(MIp,)" dz < N(d. q. 0. By gl . (44)
R4 '

Proof. Assertion a) is proved by elementary means. To prove b), we use a) and split D into two parts
N{|x|> > |¢|} and D5 N {Ix*> < |7} and, taking into account obvious symmetries, we see that it suffices

to show that N o
g, x (@+2)(1-0)~gBy) |14
= —_—— < 4
f: L; LV{ fa(d+2))2 dxdt < Nr lgllg, ,»

X g
t,x —a)—
L ::f f 8 (d 2) dtdx < Np@+1-a) qﬂ”g”% )
|x|>2r JO |x|a( +2) e

By observing that

1 ¢ ) (@22
[ < —
1a(d+2)2 Lﬂ (fl;{g (s, x) dx)ds S —e@on gllg,, — O

= q
I = f42 1a(d+2)/2 f fB (s, x) dx ds)d

Mathematics in Engineering Volume 5, Issue 2, 1-20.
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= —_— q
= Nf4r2 ta(d+2)/2+1(£r2 Lﬁg (S,x)dxds)dt

” 0 (d+2)[2-qB/2 (@421 —a)—qBy 1

— + —a)—q,

< Nligllg,, fz e A= Nr [P
A

Also as is easy to see

e )
L=N f - f f g"(t, %) do,) dtdp
2 2 PUID Ixl=p g

2

“ 1 0 v
oo [ [ rosiab

© plr (d+2)(1-a)

q _ + —-a)—qp q

< Nllgl?, f2 T dp = N lgll?, .
r

This proves the lemma.

Proof of Theorem 4.1. We follow some arguments in [4] and may assume that b > 0. First set
ro = (p + q)/2 and assume that there is a constant N, such that M(Ibl”’) < Nplb|™, that is, |b|™ is in
the class A; of Muckenhoupt. Observe that by Holder’s inequality ||b||E,O.1 < ||Bl|g,, - It is convenient to
prove the following version of (4.1) (notice ry in place of g)

1< NIl 1A, (4.5)

Then assume that b > 0, set u = P, f, and write

I= f (bPuP )P, f dz = f Pi(b"u ™) f dz < |Ifllg, ||Pi @ ™), . (4.6)
Rd+2 ]R‘l'*'z P

where p’ = p/(p — 1) and P] is the conjugate operator for P;, namely, for any g > 0,

(P18)(s, x) = (P1(g(=, =))(=s, —x). 4.7

Next, take y > 0, such that (1 + y)p < ry, 1 +yp’ <ry,and p > 1 + . Note that

l/ ’ ( _1)/
Pi(0"u™Y) = P07 (0" ) < (P01 n) (P )

It follows that
|PT(bPuP—1)||L, < (f bp_yp’upPl[(Pi(b“”)p))l/(p_l)] dz)(p_l)/p_
P Rd

Now in light of (4.6) we see that, to prove (4.5) in our particular case, it only remains to show that

. 1/(p-1) L
P[(Pi@" ™) ] < NBT DI, - (4.8)
Fora=1and B = (1 +7y)p (> a) it follows from (2.3) and (4.7) that

P*l‘(b(l+)’)[7) < N”b”Eﬁl (M(b(l+y)p))1—l/(p+yp).
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[1D]| Epr- After that to obtain (4.8) it suffices to use again (2.3) with @ = 1 and 8 = 1 + yp’ to see that

where the last factor by assumption (and Holder’s inequality) is dominated by Nb"*P~! and ||b|| Egy <

Pi(b""") < Nbllg,,,,,(M(B"7) ") < Nijb|lg, 577,

We now get rid of the assumption that M(b|"®) < Nolb|™ as in [4].

For r; = (ry + q)/2 we have |b"* < (M(|b|""))"®" := b and since ro/r, < 1, b is an A,-weight with
No = Ny(ro/r1) (see, for instance, [7] p. 158). Therefore, (4.5) holds with b in place of b and it only
remains to show that

1BllE,, , < NIl

ol = 012

that is, for any ¢, x, p,
f b" dz < Np™ bl . (4.9)
C,(t,%) ¢

Of course, we may assume that # = 0, x = 0. Then by Holder’s inequality we see that the left-hand side

of (4.9) is less than

A U /
N p(d+2)(q—ro)/q( (M(|b|"))/n Ic, dz) .

Rd+1

b

where the integral by a Fefferman-Stein Lemma 1, p. 111 of [6] and the fact that g/r; > 1 is dominated
by

N bl Mc, dz < Np™*|blly,
Rd-ﬂ '

where we used Lemma 4.2 b) for @ = 8 = 1. Hence,

5o (d+2)(g—r0)/q+(d+2—=q)ro/q||3,||"0
fc B dz < Np Bl .

which is (4.9).
An alternative way to get the result is to follow the proof of Theorem 3 of [3]. We have

f (M(Ib")"" Ic, dz < f (M(bI)*"(MIc,)* dz =: J,
Rd+! Rd+1

where @ € (0,1). An easy exercise leads to the well-known result that (]\;IICP)" is an A;-weight, and,
hence, an A/, -weight. By the Muckenhoupt theorem

J<N | [blUMIc, )" dz

Rd+1
and it only remains to use Lemma 4.2 b) again with 8 = 1 and any appropriate @. The theorem is
proved.

Remark 4.3. In the above proof we tacitly assumed that / < co. One can easily avoid it by taking f
with compact support, replacing |b| with |b| A b,, where n='b, = 1 A (V]t| +|x])~", observe that b}’ € A,
and while checking that the new 1 is finite use Holder’s inequality and Corollary 2.4.
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5. Mixed-norm estimates

For g1, ¢> € [1, o] and measurable f and I' ¢ R¢*! introduce

1 = ([ ([ 100 a™" an)"

Wiy, ey = WS (F I .-

which is the exponent of p in the expression

) d 2
e, ,, s —+—.
9

Here the index of L, ,,

If in addition 0 < 8 < d/q + 2/q», set

||f||Eq1$q2,ﬂ(Q) sup o 'HIQf”qu a5 (Cp(t,))+

p<co,(t,x)eQ

We also introduce the spaces L, ,,(Q) and E,, ,, 5(Q) as the spaces of functions whose respective norms
are finite. We abbreviate Ly, 5, = Ly, 0, (R, Ey 0 p = Egy g0 sRT).
The following is certainly well known.

Lemma 5.1. Let f be a nonnegative function on R, p,q € (1, 00). Then for any w(x), w,(t) which
are A, Muckenhoupt weights on R? and R, respectively, we have

f \M fIPw,w, dxdt < N |f1Pww, dxdt, 5.1)
]R"'*l R‘Hl

where N depends only on d, p, and the A ,-constants of wy, w,. Furthermore,

f flel”dxqut<Nf flfl”dx dt, (5.2)

where N depends only on d, p, q.

Proof. Estimate (5.1) follows by application of the Muckenhoupt theorem to w,w;, which is an A -
weight on R“*!. Then observe that in the particular case that w, = 1, (5.1) means that

I ) [ fR d wrfe dx) " wdi < N f ) ( fR d 1 dx) | i

for any A ,-weight w,, which implies (5.2) by the Rubio de Francia extrapolation theorem. The lemma
is proved.
This lemma, (2.3), and Holder’s inequality immediately yield the following.

Lemma 5.2. For any a € (0,8),8 € (0,d + 2], p € [1,0], q1,9> € (1, 00], there exists a constant N
such that for any f > 0 and measurable I we have

1Paflly iy < NIUMa I A1 (53)
provided that
1 1 1
=2 =4 (1-2)=, i=12
ri Bp B’ qi
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Similarly to Corollary 2.4 we have

Corollary 5.3. Let g1, ¢ € (1, ],

d 2
B:=—+—>0,
91

a € (0,8). Then for any f > 0 we have

||P01f||Lr1,r2 < N”fHLqm

aslongasqgpf=r(B—a),i=1,2.
In particular, (almost follows from Theorem 10.2 of [2]) if B > 1, and u € C;7, then

I1Dullz,,,, < Nlidu + Aull, (5.4

T q1:92

aslongasqp=r(B-1),i=1,2.

Corollary 5.4. Under the assumptions of Corollary 5.3, if B > 1, there is a constant N such that, for
any b = (b') € Lgy, g and u € Cy,

Ib'Dadls,,,, < Nlblls,,, , 18ite + Al

q1,92 °

(5.5)
Indeed, by Holder’s inequality
b Dudly, ,, < Wolls,, ,,, IDullr, ..

Remark 5.5. It is instructive to compare this result with Remark 2.5. Now we can treat b € L, ,, with
s; € (1,00] satisfying d/s; +2/s, = 1.

Since Ey, 4,5 = Ly, 4, if B = d/q1 +2/q», the following is a generalization of Corollary 5.3.

Theorem 5.6. Let gy, q> € (1, 0],

d 2
—+—2>8>0,
9 492

a € (0,0). Then there is a constant N such that for any f > 0 we have

1Pafl, .. < NIlflle, (5.6)
where r;(f —a) =q,B5,i=1,2.

Proof. 1t suffices to prove that for any p > 0

o (f a6 as)" < N, .

that is "
a—(d/r , 0 , r/r 1/r
pPratdin+2/ ﬂ(f (f IPaflldy)z ds) 2 < Nilfl, (5.7)
0

B,
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Observe that by Holder’s inequality Mgz f < N||fl|E and by definition

91928

0
@2/q /g
||IC2pf||qu,q2 — ]V/)d/ql-i-Z/L]z(f4 (f |f|q1 dy) dS)
0 B

2p

< Np e flle

q1:92:8

— Np(d/rl+2/rz)ﬁ/(,3—a)—ﬁ||f||E

q1-q2:8"°
It follows from Lemma 5.2 with p = co that (5.7) holds with I¢, f in place of f on the left.
Furthermore, by Corollary 2.6 we have |P(,(Ic5p HISN p”‘ﬁMﬁ fin C,,. Therefore,

o? r/r 1/r
(7 (et as)™" as)"™ < Nsup Mas < NI,

By combining these results we come to (3.2) and the theorem is proved.

Corollary 5.7. Under the assumptions of Theorem 5.6, if B > 1, for any u € Cg’, we have

IDullg < N0 + Aullg

91928

where ri(f — 1) = gp, i = 1,2. This coincides with (5.4) if B is equal to the index of Ly, ,,.

r1.rp,B-1

Remark 5.8. Corollary 5.7 opens up the possibility to treat the terms like ' D;u as perturbation terms in
operators like d,u + Au + b'D;u with even lower summability properties of b = (b’) than in Remark 5.5.
To show this observe that for gy, ¢», 5 as in Theorem 5.6 with 8 > 1 and s; = Bq; € (1,00],i = 1,2, we
have

o Hle,b' Dy, ,, < p #ble, s, - 0°" Hlc,Dulls

51552 T,y

implying that

Ib'Dadle,, ., < Wbl Dullr,, .., < Nllblle,, 19 + Aul

q1.92:8°

(5.8)

515821 51,52,1

where d/s; +2/s, > 1.
However, note that we also need
P Hblcp(z,x)||le,s2

to be bounded as a function of p,t, x. If we ask ourselves what 7 > 0 should be to guarantee this
boundedness if b € Ly, ;s,, 1f d/s; +2/s, > 1, the slightly disappointing answer is that 7 = d/s; +2/s»,
so that d/(ts,) + 2/(rs,) = 1. Still functions in Ej, ;,; may have higher singularities than those in
LTS1,T52‘

Another advantage of (5.8) in comparison with (5.5) is seen when b depends only on ¢ or |b(¢, x)| <
lAy(t). In that case (5.8) becomes

16" Djul | NlIbllgg,, @l + Aul|g

<
q1.92:8 — q1.42:8°

and if Bg, = 2, then
1611y, 12 = 11Blls(R)-
Thus for any ¢, € (1, 0] and ¢, € (1,2)

16" Dyl < N”[;“LZ(R)”atu + Aullg,

q1.92:219> q1.a22/90 °
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In case g € (1,d), g2 € (1,0], 1 < B < d/qy, and [Ib(:, Dllg,, sy < b < oo for any 1, we also have

I6'Diullg, ., < Nb||du + Aullg

q1.a28 — q1.928°

An application of the last inequality in case u, b are independent of ¢, 5 = d/q1, g1 € (1,d), and g, = oo,
yields the well-known estimate

16'Diullr,,, ray < NIIbllz e[| Aull, ey

To extend the embedding and interpolation results to Morrey spaces with mixed norms we need the
following result very useful also in other circumstances.

Lemma 5.9 (Poincaré’s inequality). Let 1 < rj,r, < oo, u € Cy°, p € (0, 00). Then

#Du — (Du)c, II;;

2
ey SN i)™ §10,ul + 1D2ull?

By} (Cp) :

(5.9)

Proof. We follow the usual way (see, for instance, Lemma 4.2.2 of [9]). First, due to self-similar
transformations, we may take p = 1. In that case, for a € C’(B,) with unit integral, introduce

v(t) = f {)Du(t,y)dy.
B

Then by the usual Poincaré inequality

f |Du(t, x) — v(t)|" dx = f | f [Du(t, x) — Du(t, )L ) dy| " dx
B B B

< Nf |Du(t, x) — Du(t, y)|"" dxdy < Nf |D*u(t, x)|" dx. (5.10)
B B B

Next, observe that for any constant vector v the left-hand side of (5.9) is less than a constant times

(recall that p = 1)
1
rn/r
f ( f |Du(t, x) - vI" dx) ar
0 B

: 1
< Nf (f |Du(t, x) — V(t)|r1 dx)rz/m di + Nf |V(t) _ vlrz dt.
0 0

B
By (5.10) the first term on the right is less than the right-hand side of (5.9). To estimate the second

term, take
1
V= f v(t) dt.
0
Then by Poincaré’s inequality

1 1 1
f V(@) —vI*dt <N f | f {0,Dudx|” dt = N f | f (DO)dudx|” dt
0 0 B 0 By

and to finish the proof it only remains to use Holder’s inequality. The lemma is proved.

The usual Poincaré inequality was used in the proof of Lemma 3.9. Also observe that mixed-norms
estimates like (3.10) are available in [2] (see Theorem 9.5 there). Therefore, by using Lemma 5.9 and
following very closely the proofs of Lemmas 3.8, 3.9, and Theorems 3.10 we arrive at the following
results about interpolation and embedding for Morrey spaces with mixed norms.
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Lemma 5.10. Let q1,q> € (1,0), 0 < B8 < d/q1 + 2/q,. Then there is a constant N such that, for any
R € (0,00), £ € (0,1], and u € Cy,

2 Cip-l
IDullg, ,, scry < NeRIOwul +1D7ulllg, , scr) + Ne™ R lullg,, ) s(cr)- (5.11)

Theorem 5.11. Let g1, q> € (1,00), 1 <B<d/q,+2/q, and let r/(B— 1) = g8, i = 1,2. Then there is
a constant N such that for any R € (0, ], u € Cj’ we have

2 -2
||DM||E,1,,.2ﬁ,1(cR) < N|||0ul + |D7u| ||qu,q2ﬁ(cR) + NR ||M||qu,q2ﬁ(cR)-

(5.12)

Remark 5.12. By taking u depending only on x we recover from Lemma 5.10 and Theorem 5.11 their
“elliptic” counterpart stated as Lemmas 4.4 and 4.7 in [10], respectively.

Remark 5.13. Theorem 5.11 is the most general results of the paper containing as particular cases
our previous results on embeddings. Thus, Corollary 5.7 (in an obvious rougher form) follows from
Theorem 5.11 when R = oo and contains embedding results for Lebesgue spaces with mixed norms as
B =d/q +2/q, and for L,-spaces as g = q; = q.

Remark 5.14. We stated our results only for u € Cy’ just for convenience. Let us show why, for
instance, Theorem 5.11 is valid as long as d,u, Du, D*u e E,, 4,5(Cr). For that, it suffices to prove that
forany R" < R, p > 0, (¢, x) € Cyg the quantity

I:=pf flc, Dully, , c w0

is less than the right-hand side of (5.12) with (R’)2 in place of R™2. For & > 0 define u'® = (Ic,u) * L,
where Z.(x) = £7971(t/e, x/&), nonnegative { € Cy has integral one and {(z,x) = 0 for # > 0. Also
introduce /¢ by replacing u in the definition of I with u®. Of course, I — I as £ | 0 and by
Theorem 5.11

I# < N|[|0,u®] + |D*u® || )+ NR) |t =: J°.

qwlzﬁ(CR’ q] «qzﬁ(CR')

Observe that if £ is small enough and (s,y) € Cg, then 0,u®(s,y) = (Ic,0,u) * {.(s,y). Similar
formulas are valid for D*u® and by Minkowski’s inequality (the norm of a sum is less then the sum of
norms) we have

T f L (NI, 1 + Dl = (5. ) ey,
Ra+
+NR)?|c,u(- - &(s, )’)||Eq,,q2ﬁ(cR,)) dyds
= jR;ﬁl (:(S, )’)(N||ICR(|(9tu| + |D2M|) ||Eq14,q2ﬁ(CR/—€(S7y))

+NR) eyl , pico—etsy) dyds.

Since in the last integral Cg — £(s,y) C Cg if € 1s small enough, it follows that for small &
J% < Nllc,(10:ul + |D*ul) lle,, 4, sco0 + N(R/)_2||ICRM||Eq1,q2,ﬁ(c,<)

which yields the desired result.
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