Review Special Issues

Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles

  • Cryo-transmission electron microscopy (Cryo-TEM), and its technological variations thereof, have become a powerful tool for detailed morphological characterization and 3D tomography of soft lipid and polymeric nanoparticles as well as biological materials such as viruses and DNA without chemical fixation. Here, we review and discuss recent advances in Cryo-TEM analysis of lipid-based drug nanocarriers with particular emphasis on morphological and internal nanostructure characterization of lyotropic liquid crystalline nanoparticles such as cubosomes and hexosomes.

    Citation: Shen Helvig, Intan D. M. Azmi, Seyed M. Moghimi, Anan Yaghmur. Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles[J]. AIMS Biophysics, 2015, 2(2): 116-130. doi: 10.3934/biophy.2015.2.116

    Related Papers:

    [1] Wen Huang, Leiye Xu, Shengnan Xu . Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29(4): 2819-2827. doi: 10.3934/era.2021015
    [2] Hanan H. Sakr, Mohamed S. Mohamed . On residual cumulative generalized exponential entropy and its application in human health. Electronic Research Archive, 2025, 33(3): 1633-1666. doi: 10.3934/era.2025077
    [3] Mingtao Cui, Wang Li, Guang Li, Xiaobo Wang . The asymptotic concentration approach combined with isogeometric analysis for topology optimization of two-dimensional linear elasticity structures. Electronic Research Archive, 2023, 31(7): 3848-3878. doi: 10.3934/era.2023196
    [4] Julian Gerstenberg, Ralph Neininger, Denis Spiegel . On solutions of the distributional Bellman equation. Electronic Research Archive, 2023, 31(8): 4459-4483. doi: 10.3934/era.2023228
    [5] Natália Bebiano, João da Providência, Wei-Ru Xu . Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians. Electronic Research Archive, 2022, 30(5): 1864-1880. doi: 10.3934/era.2022094
    [6] Xiang Xu . Recent analytic development of the dynamic $ Q $-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113
    [7] Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, José Gregorio Rodríguez-Nieto, Odette M Mendez, Ricardo Hugo Arteaga-Bastidas . Extended Brauer analysis of some Dynkin and Euclidean diagrams. Electronic Research Archive, 2024, 32(10): 5752-5782. doi: 10.3934/era.2024266
    [8] Yu Chen, Qingyang Meng, Zhibo Liu, Zhuanzhe Zhao, Yongming Liu, Zhijian Tu, Haoran Zhu . Research on filtering method of rolling bearing vibration signal based on improved Morlet wavelet. Electronic Research Archive, 2024, 32(1): 241-262. doi: 10.3934/era.2024012
    [9] Zhenhua Wang, Jinlong Yang, Chuansheng Dong, Xi Zhang, Congqin Yi, Jiuhu Sun . SSMM-DS: A semantic segmentation model for mangroves based on Deeplabv3+ with swin transformer. Electronic Research Archive, 2024, 32(10): 5615-5632. doi: 10.3934/era.2024260
    [10] Suhua Wang, Zhen Huang, Bingjie Zhang, Xiantao Heng, Yeyi Jiang, Xiaoxin Sun . Plot-aware transformer for recommender systems. Electronic Research Archive, 2023, 31(6): 3169-3186. doi: 10.3934/era.2023160
  • Cryo-transmission electron microscopy (Cryo-TEM), and its technological variations thereof, have become a powerful tool for detailed morphological characterization and 3D tomography of soft lipid and polymeric nanoparticles as well as biological materials such as viruses and DNA without chemical fixation. Here, we review and discuss recent advances in Cryo-TEM analysis of lipid-based drug nanocarriers with particular emphasis on morphological and internal nanostructure characterization of lyotropic liquid crystalline nanoparticles such as cubosomes and hexosomes.


    Throughout this paper, by a topological dynamical system $ (X,T) $ (TDS for short) we mean a compact metric space $ (X,d) $ with a homeomorphism map $ T $ from $ X $ onto itself, where $ d $ refers to the metric on $ X $. By a measure preserving system (MPS for short) we mean a quadruple $ (X,\mathcal{X},\mu,T) $, where $ (X,\mathcal{X},\mu) $ is a Borel probability space and $ T, T^{-1}:X\rightarrow X $ are both measurable and measure preserving, i.e. $ T^{-1}\mathcal{X} = \mathcal{X} = T\mathcal{X} $ and $ \mu(A) = \mu(T^{-1}A) $ for each $ A\in \mathcal{X} $.

    Given a TDS $ (X,T) $, let $ \mathcal{M}(X,T) $ be the set of all $ T $-invariant Borel probability measures of $ X $. In weak$ ^* $-topology, $ \mathcal{M}(X,T) $ is a compact convex space. By Krylov-Bogolioubov Theorem $ \mathcal{M}(X,T)\neq \emptyset $. For each $ \mu\in \mathcal{M}(X,T) $, $ (X,\mathcal{B}_X,T,\mu) $ can be viewed as a MPS, where $ \mathcal{B}_X $ is the Borel $ \sigma $-algebra of $ X $. Let $ \mathcal{M}^e(X,T) $ be the space of all ergodic measures of $ (X, T) $. Then $ \mathcal{M}^e(X,T) $ is the set of extreme points of $ \mathcal{M}(X,T) $.

    Define

    $ \mathcal{E}(T) = \{h_\mu(T):\mu\in\mathcal{M}^e(X,T)\} $

    where $ h_\mu(T) $ denotes the measure-theoretic entropy of the measure preserving system $ (X,\mathcal{B}_X,T,\mu) $. By the variational principle of entropy $ \sup \mathcal{E}(T) = h_{top}(T) $, where $ h_{top}(T) $ is the topological entropy of $ (X,T) $. The extreme case is that $ \mathcal{M}^{e}(X,T) $ consists of only one member, that is, $ (X,T) $ is uniquely ergodic. When $ (X,T) $ is uniquely ergodic, $ \mathcal{E}(T) = \{h_{top}(T)\} $.

    It is interesting to consider the case when $ \mathcal{E}(T) $ is big. As a direct corollary of [7,Theorem 11], Katok showed that

    $ [0,htop(f))E(f)
    $
    (1.1)

    for any $ C^{1+\alpha} $ diffeomorphism $ f $ on a two-dimensional surface, based on the fact that every ergodic measure of positive metric entropy is hyperbolic. Katok conjectured that (1.1) holds for any smooth system.

    Conjecture 1.1 (Katok). Let $ f $ be a $ C^r $ ($ r>1 $) diffeomorphism on a smooth compact manifold $ M $, then (1.1) holds, i.e. for every $ a\in [0,h_{top}(f)) $, there is $ \mu_a\in \mathcal{M}^e(M,f) $ such that $ h_{\mu_a}(f) = a $.

    We need to point out that Katok's conjecture implies that any positive entropy smooth system is not uniquely ergodic, though whether or not a smooth diffeomorphism of positive topological entropy can be uniquely ergodic is still in question (see [5] for Herman's example: positive entropy minimal $ C^\infty $-smooth diffeomorphisms). In [13,14], Quas and Soo showed that if a topological dynamical system satisfies asymptotic entropy expansiveness, almost weak specification property and small boundary property, then it is universal, which implies the conclusion of Katok's conjeture. Recently, Burguet [2], Chandgotia and Meyerovitch [4], extended the result of Quas and Soo to request only the almost weak specification property.

    In this paper, we study intermediate entropy for affine transformations of nilmanifolds. Throughout this paper, by a nilmanifold $ G/\Gamma $ we mean that $ G $ is a connected, simply connected nilpotent Lie group, and $ \Gamma $ is a cocompact discrete subgroup of $ G $. A homeomorphism $ \tau $ of $ G/\Gamma $ is an affine transformation if there exist a $ \Gamma $-invariant automorphism $ A $ of $ G $ and a fixed element $ g_0\in G $ such that $ \tau(g\Gamma) = g_0A(g)\Gamma $ for each $ g\in G $. Our main result is the following.

    Theorem 1.2. Let $ G/\Gamma $ be a nilmanifold and $ \tau $ be an affine transformation of $ G/\Gamma $. If $ (G/\Gamma,\tau) $ has a periodic point, then $ \mathcal{E}(\tau) = [0, h_{top}(\tau)] $.

    Following Lind [11], we say that an affine transformation of a nilmanifold is quasi-hyperbolic if its associated matrix has no eigenvalue 1. As an application of Theorem 1.2, one has the following.

    Theorem 1.3. Let $ G/\Gamma $ be a nilmanifold and $ \tau $ be an affine transformation of $ G/\Gamma $. If $ \tau $ is quasi-hyperbolic, then $ \mathcal{E}(\tau) = [0, h_{top}(\tau)] $.

    The paper is organized as follows. In Section 2, we introduce some notions. In Section 3, we prove Theorem 1.2 and Theorem 1.3.

    In this section, we recall some notions of entropy, nilmanifold and upper semicontinuity of entropy map.

    We summarize some basic concepts and useful properties related to topological entropy and measure-theoretic entropy here.

    Let $ (X,T) $ be a TDS. A cover of $ X $ is a family of subsets of $ X $, whose union is X. A partition of $ X $ is a cover of X whose elements are pairwise disjoint. Given two covers $ \mathcal{U},\mathcal{V} $ of $ X $, set $ \mathcal{U}\vee \mathcal{V} = \{ U\cap V:U\in \mathcal{U},V\in \mathcal{V}\} $ and $ T^{-i}\mathcal{U} = \{T^{-i}U: U\in \mathcal{U}\} $ for $ i\in \mathbb{Z}_+ $. Denote by $ {N}(\mathcal{U}) $ the minimal cardinality among all cardinalities of subcovers of $ \mathcal{U} $.

    Definition 2.1. Let $ (X,T) $ be a TDS and $ \mathcal{U} $ be a finite open cover of $ X $. The topological entropy of $ \mathcal{U} $ is defined by

    $ h_{top}(T,\mathcal{U}) = \lim\limits_{n\rightarrow +\infty}\frac{1}{n}\log {N}(\bigvee_{i = 0}^{n-1}T^{-i}\mathcal{U}), $

    where $ \{\log {N}(\bigvee_{i = 0}^{n-1}T^{-i}\mathcal{U})\}_{n = 1}^\infty $ is a sub-additive sequence and hence $ h_{top}(T,\mathcal{U}) $ is well defined. The topological entropy of $ (X,T) $ is

    $ h_{top}(T) = \sup\limits_{\mathcal{U}} h_{top}(T,\mathcal{U}), $

    where supremum is taken over all finite open covers of $ X $.

    A subset $ E $ of $ X $ is an $ (n, \epsilon) $-separated set with respect to $ T $ provided that for any distinct $ x,y\in E $ there is $ 0\le j<n $ such that $ d(T^jx, T^jy)\ge\epsilon $. Let $ K $ be a compact subset of $ X $. Let $ s_n^{(T)}(\epsilon, K) $ be the largest cardinality of any subset $ E $ of $ K $ which is an $ (n, \epsilon) $-separated set. Then the Bowen's topological entropy of $ K $ with respect to $ T $ [1] is defined by

    $ h_d(T,K) = \lim\limits_{\epsilon\to0}\limsup\limits_{n\to\infty}\frac{\log s^{(T)}_n(\epsilon,K)}{n}. $

    Let $ Z $ be a non-empty subset of $ X $. The Bowen's topological entropy of $ Z $ with respect to $ T $ is defined by

    $ h_d(T,Z) = \sup\limits_{K\subset Z\atop K\text{ is compact}}h_d(T,K). $

    And the Bowen's topological entropy of a TDS $ (X,T) $ is defined by $ h_d(T) = h_d(T,X) $ which happens to coincide with $ h_{top}(T) $.

    Next we define measure-theoretic entropy. Let $ (X,\mathcal{X},\mu,T) $ be a MPS and $ \mathcal{P}_X $ be the set of finite measurable partitions of $ X $. Suppose $ \xi\in \mathcal{P}_X $. The entropy of $ \xi $ is defined by

    $ h_{\mu}(T,\xi) = \lim\limits_{n\rightarrow +\infty} \frac{1}{n} H_\mu(\bigvee_{i = 0}^{n-1}T^{-i}{\xi}), $

    where $ H_\mu(\bigvee_{i = 0}^{n-1}T^{-i}{\xi}) = -\sum _{A\in \bigvee_{i = 0}^{n-1}T^{-i}{\xi}} \mu (A)\log \mu(A) $ and $ \{H_\mu(\bigvee_{i = 0}^{n-1}T^{-i}{\xi})\}_{n = 1}^\infty $ is a sub-additive sequence. The entropy of $ (X,\mathcal{X},T,\mu) $ is defined by

    $ h_{\mu}(T) = \sup\limits_{\xi\in \mathcal{P}_X} h_\mu(T,\xi). $

    The basic relationship between topological entropy and measure-theoretic entropy is given by the variational principle [12].

    Theorem 2.2 (The variational principle). Let $ (X, T ) $ be a TDS. Then

    $ h_{top}(T) = \sup\{h_\mu(T): \mu\in \mathcal{M}(X,T)\} = \sup\{h_\mu(T): \mu\in \mathcal{M}^e(X,T)\}. $

    A factor map $ \pi: (X,T)\rightarrow (Y,S) $ between the TDS $ (X,T) $ and $ (Y,S) $ is a continuous onto map with $ \pi\circ T = S\circ \pi $; we say that $ (Y,S) $ is a factor of $ (X,T) $ and that $ (X,T) $ is an extension of $ (Y,S) $. The systems are said to be conjugate if $ \pi $ is bijective. In [8], Ledrappier and Walters showed that if $ \pi: (X,T)\rightarrow (Y,S) $ is a factor map and $ \nu\in\mathcal{M}(Y,S) $, then

    $ supμM(X,T)π(μ)=νhμ(T)=hν(S)+Yhd(T,π1(y))dν(y)
    $
    (2.1)

    where $ \pi(\mu)(B) = \mu(\pi^{-1}(B)) $ for $ B\in\mathcal{B}_Y $.

    Let $ G $ be a compact metric group and $ \tau:G\to G $ be a continuous surjective map. Let $ \pi:(X,T)\to (Y,S) $ be a factor map. We say that $ \pi $ is a $ (G,\tau) $-extension, if there exists a continuous map $ P: X\times G\to X $ (we write $ P(x, g) = xg $) such that:

    $ (1) $ $ \pi^{-1}(\pi(x)) = xG $ for $ x\in X $,

    $ (2) $ For any $ x\in X,g_1,g_2\in G $, $ xg_1 = xg_2 $ if and only if $ g_1 = g_2 $,

    $ (3) T(xg) = T(x)\tau( g) $ for $ x\in X $ and $ g\in G $.

    The following is from [1,Theorem 19].

    Theorem 2.3. Let $ \pi:(X,T)\to (Y,S) $ be a factor map. If $ \pi $ is a $ (G,\tau) $-extension, then $ h_{top}(T) = h_{top}(S)+h_{top}(\tau) $.

    Remark 2.4. (1) In the above situation, Bowen shows that

    $ hd(T,π1(y))=htop(τ) for any yY,
    $
    (2.2)

    where $ d $ is the metric on $ X $. This fact is proved in the proof of [1,Theorem 19]. In fact, (2.2) holds in the more general situation of actions of amenable groups. This fact is given explicitly as Lemma 6.12 in the paper [10].

    (2) If $ G $ is a Lie group, $ H $ and $ N $ are cocompact closed subgroups of $ G $ such that $ N $ is a normal subgroup of $ H $, then $ G/N $ and $ G/H $ are compact metric spaces and $ H/N $ is a compact metric group. Given further $ g_0 \in G $ and an automorphism $ A $ of $ G $ preserving $ H $ and $ N $, one has the affine maps $ T : G/N \to G/N $ given by $ T(gN) = g_0A(g)N $, and $ S:G/H \to G/H $ given by $ S(gH) = g_0A(g)H $, and the automorphism $ \tau $ of $ H/N $ given by $ \tau (hN) = A(h)N $. Then there is a map $ \pi: G/N\to G/H $ given by $ \pi(gN) = gH $ for $ g\in G $, and a map $ P : G/N \times H/N \to G/N $ given by $ P(gN, hN) = ghN $ for $ g,h\in G $. These maps satisfy the conditions $ (1)- (3) $ in the definition of $ (H/N,\tau) $-extension for the factor map $ \pi:(G/N,T)\to (G/H,S) $. That is, $ (G/N, T) $ is an $ (H/N, \tau ) $-extension of $ (G/H, S) $. Hence one has by (2.2) that

    $ hd(T,π1(y))=htop(τ) for any yG/H,
    $
    (2.3)

    where $ d $ is the metric on $ G/N $.

    Given a TDS $ (X,T) $, the entropy map of $ (X,T) $ is the map $ \mu\mapsto h_\mu(T) $ which is defined on $ \mathcal{M}(X,T) $ and has value in $ [0,\infty] $. For any invariant measure $ \mu $ on $ X $, there is a unique Borel probability measure $ \rho $ on $ \mathcal{M}(X,T) $ with $ \rho(\mathcal{M}^e(X,T)) = 1 $ such that

    $ \int_{\mathcal{M}^e(X,T)}\int_X f(x)dm(x)d\rho(m) = \int_Xf(x)d\mu(x)\text{ for all }f\in C(X). $

    We write $ \mu = \int_{\mathcal{M}^e(X,T)}md\rho(m) $ and call it the ergodic decomposition of $ \mu $. The following is standard.

    Theorem 2.5. Let $ (X,T) $ be a TDS. If $ \mu\in\mathcal{M}(X,T) $ and $ \mu = \int_{\mathcal{M}^e(X,T)}md\rho(m) $ is the ergodic decomposition of $ \mu $. Then

    $ h_\mu(T) = \int_{\mathcal{M}^e(X,T)}h_m(T)d\rho(m). $

    We say that the entropy map of $ (X,T) $ is upper semicontinuous if for $ \mu_n,\mu\in\mathcal{M}(X,T) $

    $ \lim\limits_{n\to\infty}\mu_n = \mu \text{ implies }\limsup\limits_{n\to\infty}h_{\mu_n}(T)\le h_{\mu}(T). $

    We say that a TDS $ (X,T) $ satisfies asymptotic entropy expansiveness if

    $ \lim \limits_{\delta\rightarrow 0} \sup\limits_{x\in X} h_{d}(T,\Gamma_\delta(x)) = 0. $

    Here for each $ \delta>0 $,

    $ \Gamma_\delta(x) : = \{y \in X: d( T^jx,T^jy) < \delta \text{ for all }j\ge 0\}. $

    The result of Misiurewicz [12,Corollary 4.1] gives a sufficient condition for upper semicontinuity of the entropy map.

    Theorem 2.6. Let $ (X,T) $ be a TDS. If $ (X,T) $ satisfies asymptotic entropy expansiveness. Then the entropy map of $ (X,T) $ is upper semicontinuous.

    The result of Buzzi [3] gives a sufficient condition for asymptotic entropy expansiveness.

    Theorem 2.7. Let $ f $ be a $ C^\infty $ diffeomorphism on a smooth compact manifold $ M $, then $ (M,f) $ satisfies asymptotic entropy expansiveness. Especially, the entropy map of $ (M,f) $ is upper semicontinuous.

    In this section, we prove our main results. In the first subsection, we prove that Katok's conjecture holds for affine transformations of torus. In the second subsection, we show some properties of metrics on nilmanifolds. In the last subsection, we prove Theorem 1.2 and Theorem 1.3.

    We say that a topological dynamical system $ (Y, S) $ is universal if for every invertible non-atomic ergodic measure preserving system $ (X,\mathcal{X}, \mu, T) $ with measure-theoretic entropy strictly less than the topological entropy of $ S $ there exists $ \nu\in \mathcal{M}^e(Y,S) $ such that $ (X,\mathcal{X}, \mu, T) $ is isomorphic to $ (Y,\mathcal{B}_Y,\nu, S) $. In [14], Quas and Soo show that toral automorphisms are universal, which implies the conclusion of Katok's conjeture. By using Quas and Soo's result, we have the following.

    Theorem 3.1. Let $ m\in\mathbb{N} $, $ \mathbb{T}^m = \mathbb{R}^m/\mathbb{Z}^m $ and $ \tau $ be an affine transformation of $ \mathbb{T}^m $. Then $ \mathcal{E}(\tau) = [0, h_{top}(\tau)] $.

    Proof. We think of $ \mathbb{T}^m $ as a group. Then there exist an element $ b\in\mathbb{T}^m $ and a toral automorphism $ A $ of $ \mathbb{T}^m $ such that

    $ \tau(x) = A(x)+b\text{ for each }x\in \mathbb{T}^m. $

    Let $ \mu_h $ be the Haar measure. Then $ h_{\mu_h}(\tau) = h_{top}(\tau) $. Let $ \mu_h = \int_{\mathcal{M}^e(\mathbb{T}^m,\tau)}\nu d\rho(\nu) $ be the ergodic decomposition of $ \mu_h $. Then by Theorem 2.5, one has

    $ h_{top}(\tau) = \int_{\mathcal{M}^e(\mathbb{T}^m,\tau)}h_\nu(\tau) d\rho(\nu). $

    By variational principle, there exists $ \mu\in\mathcal{M}^e(\mathbb{T}^m,\tau) $ such that $ h_\mu(\tau) = h_{top}(\tau) $. Now we assume that $ a\in [0,h_{top}(\tau)) $. We have two cases.

    Case 1. $ A $ is quasi-hyperbolic. In this case, there is $ q\in\mathbb{T}^m $ such that $ A(q) = q-b $. We let

    $ \pi(x) = x-q\text{ for each }x\in\mathbb{T}^m. $

    Then $ \pi $ is a self homeomorphism of $ \mathbb{T}^m $ and $ \pi\circ\tau = A\circ\pi $. That is, $ (\mathbb{T}^m,\tau) $ topologically conjugates to a torus automorphism. By Quas and Soo's result [14,Theorem 1], there exists $ \mu_a\in\mathcal{M}^e(\mathbb{T}^m,\tau) $ such that $ h_{\mu_a}(\tau) = a $.

    Case 2. $ A $ is not quasi-hyperbolic. In this case, we put

    $ H = \{x\in\mathbb{T}^m:(A-id)^mx = 0\}. $

    Then $ H $ is a compact subgroup of $ \mathbb{T}^m $ and $ \mathbb{T}^m/H $ is a torus. We let $ Y = \mathbb{T}^m/H $ and $ \pi_Y $ be the natural projection from $ \mathbb{T}^m $ to $ Y $. The induced map $ \tau_Y $ on $ Y $ is a quasi-hyperbolic affine transformation and the extension $ \pi_Y $ is distal. Therefore, $ h_{top}(\tau_Y) = h_{top}(\tau) $ and by Case 1 there exists $ \mu^Y_a\in\mathcal{M}^e(Y,\tau_Y) $ such that $ h_{\mu^Y_a}(\tau_Y) = a $. There is $ \mu_a\in\mathcal{M}^e(\mathbb{T}^m,\tau) $ such that $ \pi_Y(\mu_a) = \mu^Y_a. $ Since the extension $ \pi_Y $ is distal, one has $ h_{\mu_a}(\tau) = h_{\mu^Y_a}(\tau_Y) = a $ (see [6,Theorem 4.4]).

    This ends the proof of Theorem 3.1.

    Let $ G $ be a group. For $ g, h\in G $, we write $ [g, h] = ghg^{-1}h^{-1} $ for the commutator of $ g $ and $ h $ and we write $ [B_1,B_2] $ for the subgroup spanned by $ \{[b_1,b_2] : b_1 \in B_1, b_2\in B_2\} $. The commutator subgroups $ G_j $, $ j\ge 1 $, are defined inductively by setting $ G_0 = G_1 = G $ and $ G_{j+1} = [G_j ,G] $. Let $ s \ge 1 $ be an integer. We say that $ G $ is $ s $-step nilpotent if $ G_{s+1} $ is the trivial subgroup. Recall that an $ s $-step nilmanifold is a manifold of the form $ G/\Gamma $ where $ G $ is a connected, simply connected $ s $-step nilpotent Lie group, and $ \Gamma $ is a cocompact discrete subgroup of $ G $.

    If $ G/\Gamma $ is an $ s $-step nilmanifold, then for each $ j = 1,\cdots,s $, $ G_j\Gamma $ and $ G_j $ are closed subgroups of $ G $ and $ G_j\Gamma/\Gamma $ is a closed submanifold of $ G/\Gamma $ (see Subsection 2.11 in [9]).

    We fix an $ s $-step nilmanifold of the form $ G/\Gamma $ and an affine transformation $ \tau $ of $ G/\Gamma $ such that

    $ \tau(g\Gamma) = g_0A(g)\Gamma\text{ for each } g\in G $

    where $ g_0\in G $ and $ A $ is a $ \Gamma $-invariant automorphism of $ G $. For each $ j\ge1 $, we let

    $ A_j: G_{j-1}\Gamma/G_{j}\Gamma\to G_{j-1}\Gamma/G_{j}\Gamma: A_j(hG_{j}\Gamma) = A(h)G_{j}\Gamma\text{ for each } h\in G_{j-1} $

    and

    $ \tau_j: G/G_{j}\Gamma\to G/G_{j}\Gamma: \tau_j(hG_{j}\Gamma) = g_0A(h)G_{j}\Gamma\text{ for each } h\in G. $

    It is easy to see that $ \{A_j\}_{j\in\mathbb{N}} $ and $ \{\tau_j\}_{j\in\mathbb{N}} $ are well defined since $ A(G_j)\subset G_j $ for each $ j\ge 1 $.

    For each $ j\ge 1 $, define the map $ \pi_{j+1} $ from $ G/G_{j+1}\Gamma $ to $ G/G_{j}\Gamma $ by

    $ πj+1(gGj+1Γ)=gGjΓ for each gG.
    $
    (3.1)

    It is easy to see that $ \pi_{j+1} $ is continuous and onto, and satisfies $ \pi_{j+1}\circ\tau_{j+1} = \tau_{j}\circ\pi_{j+1} $. Hence, for each $ j\ge 1 $, $ \pi_{j+1}:G/G_{j+1}\Gamma\to G/G_j\Gamma $ is a factor map. We let $ b_j = h_{top}(A_j) $ for each $ j\ge 1 $. Then we have the following.

    Lemma 3.2. For each $ j\ge 1 $ and $ y\in G/G_{j}\Gamma $, $ h_{d_{j+1}}(\tau_{j+1},\pi_{j+1}^{-1}(y)) = b_{j+1} $ where $ d_{j+1} $ is the metric on $ G/G_{j+1}\Gamma $.

    Proof. In Remark 2.4 (2), we let $ N = G_{j+1}\Gamma $ and $ H = G_{j}\Gamma $. Then both $ N $ and $ H $ are cocompact subgroup of $ G $. Moreover, $ N $ is a normal subgroup of $ H $. Hence $ (G/N = G/G_{j+1}\Gamma, \tau_{j+1}) $ is an $ (H/N = G_{j}\Gamma/G_{j+1}\Gamma, A_{j+1} ) $-extension of $ (G/H = G/G_{j}\Gamma, \tau_j) $. By (2.3), one has

    $ h_{d_{j+1}}(\tau_{j+1},\pi_{j+1}^{-1}(y)) = h_{top}(A_{j+1}) = b_{j+1}\text{ for every }y\in G/G_j\Gamma. $

    This ends the proof of Lemma 3.2.

    The following result is immediately from Lemma 3.2, (2.1) and Theorem 2.7.

    Lemma 3.3. For $ j\ge 1 $ and $ \nu_j\in \mathcal{M}(G/G_j\Gamma,\tau_j) $, there exists $ \mu\in\mathcal{M}(G/G_{j+1}\Gamma, \tau_{j+1}) $ such that $ h_{\mu}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1} $.

    We have the following.

    Corollary 3.4. $ h_{top}(\tau_j) = \sum_{i = 1}^jb_i $ for $ j\ge 1 $. Especially, $ h_{top}(\tau) = \sum_{i = 1}^{s+1}b_i $.

    Proof. We prove the corollary by induction on $ j $. In the case $ j = 1 $, it is obviously true. Now we assume that the corollary is valid for some $ j\in\mathbb{N} $. Then for $ j+1 $, let $ \pi_{j+1} $ be defined as in (3.1). Then by Ledrappier and Walters's result (2.1) and variational principle Theorem 2.2, we have

    $ htop(τj+1)=supμM(G/Gj+1Γ,τj+1)hμ(τj+1)supμM(G/GjΓ,τj)(hμ(τj)+G/GjΓhdj+1(τj+1,π1j+1(y))dμ(y))htop(τj)+supμM(G/GjΓ,τj)G/GjΓhdj+1(τj+1,π1j+1(y))dμ(y)=ji=1bi+bj+1=j+1i=1bi,
    $

    where we used Lemma 3.2. On the other hand, by Lemma 3.3 there exists $ \mu\in\mathcal{M}(G/G_{j+1}\Gamma,\tau_{j+1}) $ such that $ h_\mu(\tau_{j+1}) = \sum_{i = 1}^{j+1}b_i. $ Therefore $ h_{top}(\tau_{j+1}) = \sum_{i = 1}^{j+1}b_i. $ By induction, this ends the proof of Corollary 3.4.

    Remark 3.5. We remark that the topological entropy of $ (G/\Gamma,\tau) $ is determined by the associated matrix of $ \tau $ [1]. That is

    $ htop(τ)=hd(τ)=|λi|>1log|λi|
    $

    where $ \lambda_1,\lambda_2,\cdots,\lambda_m $ are the eigenvalues of the associated matrix of $ \tau $.

    Lemma 3.6. For $ j\ge 1 $ and $ \nu_j\in \mathcal{M}^e(G/G_j\Gamma,\tau_j) $, there is $ \nu_{j+1}\in\mathcal{M}^e(G/G_{j+1}\Gamma, \tau_{j+1}) $ such that $ h_{\nu_{j+1}}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $

    Proof. We fix $ \nu_j\in\mathcal{M}^e(G/G_j\Gamma,\tau_j) $. Let $ \pi_{j+1} $ be defined as in (3.1). By Lemma 3.3, there exists $ \nu\in\mathcal{M}(G/G_{j+1}\Gamma,\tau_{j+1}) $ such that

    $ h_{\nu}(\tau_{j+1}) = \sup\limits_{\mu\in\mathcal{M}(G/G_{j+1}\Gamma,\tau_{j+1})\atop \pi_{j+1}(\mu) = \nu_{j}}h_{\mu}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $

    We fix such $ \nu $ and assume that the ergodic decomposition of $ \nu $ is

    $ \nu = \int_{\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1})}md\rho(m). $

    Then by property of ergodic decomposition, one has

    $ ρ({mMe(G/Gj+1Γ,τj+1):πj+1(m)=νj})=1.
    $

    Therefore, for $ \rho $-a.e. $ m\in\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1}) $,

    $ h_m(\tau_{j+1})\le h_\nu(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}. $

    Hence by Theorem 2.5, one has

    $ h_{\nu_j}(\tau_{j})+b_{j+1} = h_\nu(\tau_{j+1}) = \int_{\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1})}h_m(\tau_{j+1})d\rho(m)\le h_{\nu_j}(\tau_{j})+b_{j+1}. $

    We notice that the equality holds only in the case $ h_m(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1} $ for $ \rho $-a.e. $ m\in\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1}) $. Therefore, there exists $ \nu_{j+1}\in\mathcal{M}^e(G/G_{j+1}\Gamma,\tau_{j+1}) $ such that

    $ h_{\nu_{j+1}}(\tau_{j+1}) = h_{\nu_j}(\tau_{j})+b_{j+1}\text{ and }\pi_{j+1}(\nu_{j+1}) = \nu_j. $

    This ends the proof of Lemma 3.6.

    Now we are ready to prove our main results.

    Proof of Theorem 1.2. Firstly we assume that $ (G/\Gamma,\tau) $ has a fixed point $ p\Gamma $. We fix a real number $ a\in[0, h_{top}(\tau)] $. We are going to show that there exists $ \mu_a\in\mathcal{M}^e(G/\Gamma,\tau) $ such that $ h_{\mu_a}(\tau) = a $. By Corollary 3.4, we can find an $ i\in\{1,2,\cdots,s, s+1\} $ such that

    $ \sum\limits_{j = i+1}^{s+1}b_j\le a\le\sum\limits_{j = i}^{s+1}b_j. $

    Since $ p\Gamma $ is a fixed point of $ (G/\Gamma,\tau) $, there exists $ \gamma\in\Gamma $ such that $ g_0A(p) = p\gamma $. Therefore,

    $ \tau_{i}(pG_{i-1}\Gamma/G_{i}\Gamma) = p\gamma G_{i-1}\Gamma/G_{i}\Gamma\subset p[\gamma ,G_{i-1}]G_{i-1}\gamma\Gamma/G_{i}\Gamma\subset pG_{i-1}\Gamma/G_{i}\Gamma, $

    where we used the fact $ [\gamma,G_{i-1}]\subset G_{i-1} $. That is, $ (pG_{i-1}\Gamma/G_{i}\Gamma,\tau_i) $ is a TDS. We let

    $ \pi( phG_{i}\Gamma) = hG_{i}\Gamma\text{ for each } h\in G_{i-1}. $

    Then for each $ h\in G_{i-1} $, one has

    $ \pi\circ \tau_{i}(phG_{i}\Gamma) = p^{-1}g_0A(p)A(h)G_{i}\Gamma = \gamma A(h)G_{i}\Gamma = A(h)\gamma[\gamma,A(h)]G_{i}\Gamma = A(h)G_{i}\Gamma $

    where we used the fact $ [\gamma,A(h)]\in G_i $ since $ h\in G_{i-1} $. Therefore $ \pi\circ \tau_{i}(phG_{i}\Gamma) = A_i\circ\tau_i(phG_{i}\Gamma) $ for each $ h\in G_{i-1} $. That is $ \pi\circ \tau_{i} = A_{i}\circ\pi. $ Hence,

    $ (pG_{i-1}\Gamma/G_{i}\Gamma,\tau_{i})\text{ topologically conjugates to } (G_{i-1}\Gamma/G_{i}\Gamma, A_{i}). $

    Notice that $ (G_{i-1}\Gamma/G_{i}\Gamma, A_{i}) $ is a toral automarphism and $ h_{top}(A_{i}) = b_i $. By Theorem 3.1, there exists $ \nu_{i}\in\mathcal{M}^e(G/G_i\Gamma,\tau_{i}) $ such that $ h_{\nu_{i}}(\tau_{i}) = a-\sum_{j = i+1}^{s+1}b_j $. Combining this with Lemma 3.6, there exists an ergodic measure $ \mu_a = \nu_{s+1}\in\mathcal{M}^e(G/G_{s+1}\Gamma,\tau_{s+1}) = \mathcal{M}^e(G/\Gamma,\tau) $ such that

    $ h_{\mu_a}(\tau) = h_{\nu_{s+1}}(\tau_{s+1}) = h_{\nu_{i}}(\tau_{i})+\sum\limits_{j = i+1}^{s+1}b_j = a. $

    Thus $ \mu_a $ is the ergodic measure as required.

    Now we assume that $ (G/\Gamma,\tau) $ has a periodic point. By assumption, there exists $ m\in\mathbb{N} $ such that $ (G/\Gamma,\tau^m) $ has a fixed point. Since $ \tau^m $ is an affine transformation of $ G/\Gamma $, by argument above, there exists $ \mu\in\mathcal{M}^e(G/\Gamma,\tau^m) $ such that $ h_{\mu}(\tau^m) = ma $. Put $ \mu_a = \frac{1}{m}\sum_{j = 0}^{m-1}\tau^j(\mu) $. It is easy to see that $ \mu_a\in\mathcal{M}^e(G/\Gamma,\tau) $ and $ h_{\mu_a}(\tau) = \frac{h_\mu(\tau^m)}{m} = a $. Thus $ \mu_a $ is the ergodic measure as required.

    This ends the proof of Theorem 1.2.

    Proposition 3.7. Let $ G $ be an $ s $-step nilpotent Lie group and $ A $ be a quasi-hyperbolic automorphism of $ G $. Then for $ g\in G $, there exists $ p\in G $ such that $ gA(p) = p $.

    Proof. We prove the proposition by induction on $ s $. In the case $ s = 1 $, it is obviously true. Now we assume that the Proposition is valid in the case $ s = k $. Then in the case $ s = k+1 $, we fix $ g\in G $. Notice that $ G/G_{k+1} $ is a $ k $-step nilpotent Lie group. There exists $ \tilde p\in G $ such that $ gA(\tilde p)G_{k+1} = \tilde pG_{k+1} $. There exists $ \bar g\in G_{k+1} $ such that $ gA(\tilde p)\bar g = \tilde p $. There exists $ p'\in G_{k+1} $ such that $ \bar g^{-1}A(p') = p' $. In the end, we let $ p = \tilde p p' $. Then

    $ gA(p) = gA(\tilde p)A(p') = \tilde p \bar g^{-1}\bar g p' = \tilde pp' = p. $

    By induction, we end the proof of Proposition 3.7.

    Proof of Theorem 1.3. This comes immediately from Proposition 3.7 and Theorem 1.2.

    W. Huang was partially supported by NNSF of China (11731003, 12031019, 12090012). L. Xu was partially supported by NNSF of China (11801538, 11871188, 12031019) and the USTC Research Funds of the Double First-Class Initiative.

    [1] Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19: 311-330. doi: 10.1096/fj.04-2747rev
    [2] Grazú V, Moros M, Sánchez-Espinel C (2012) Nanobiotechnology - Inorganic Nanoparticles vs Organic Nanoparticles. Front Nanosci 4: 337-440. doi: 10.1016/B978-0-12-415769-9.00014-5
    [3] Lim SB, Banerjee A, Önyüksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163: 34-45. doi: 10.1016/j.jconrel.2012.06.002
    [4] Nel AE, Maedler L, Velegol D, et al. (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8: 543-557. doi: 10.1038/nmat2442
    [5] Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23: 1417-1450. doi: 10.1007/s11095-006-0284-8
    [6] Jin S-E, Jin H-E, Hong S-S (2014) Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BioMed Res Int 2014: 814208.
    [7] Moghimi SM, Peer D, Langer R (2011) Reshaping the future of nanopharmaceuticals: adiudicium. ACS Nano 5: 8454-8458. doi: 10.1021/nn2038252
    [8] Klang V, Valenta C, Matsko NB (2013) Electron microscopy of pharmaceutical systems. Micron 44: 45-74. doi: 10.1016/j.micron.2012.07.008
    [9] Danino D (2012) Cryo-TEM of soft molecular assemblies. Curr Opin Colloid Interface Sci 17: 316-329. doi: 10.1016/j.cocis.2012.10.003
    [10] Danino D (2001) Digital cryogenic transmission electron microscopy: an advanced tool for direct imaging of complex fluids. Colloids Surf A 183-185: 113-122.
    [11] Burrows ND, Penn RL (2013) Cryogenic Transmission Electron Microscopy: Aqueous Suspensions of Nanoscale Objects. Microsc Microanal 19: 1542-1553. doi: 10.1017/S1431927613013354
    [12] Cho EJ, Holback H, Liu KC, et al. (2013) Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol Pharm 10: 2093-2110. doi: 10.1021/mp300697h
    [13] McNeil SE (2011) Challenges for nanoparticle characterization. Methods Mol Biol 697: 9-15. doi: 10.1007/978-1-60327-198-1_2
    [14] Friedrich H, Frederik PM, de With G, et al. (2010) Imaging of self-assembled structures: interpretation of TEM and cryo-TEM images. Angew Chem Int Ed Engl 49: 7850-7858. doi: 10.1002/anie.201001493
    [15] Kuntsche J, Horst JC, Bunjes H (2011) Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm 417: 120-137. doi: 10.1016/j.ijpharm.2011.02.001
    [16] Rubino S, Akhtar S, Melin P, et al. (2012) A site-specific focused-ion-beam lift-out method for cryo Transmission Electron Microscopy. J Struct Biol 180: 572-576. doi: 10.1016/j.jsb.2012.08.012
    [17] Frederik PM, Stuart MC, Bomans PH, et al. (1991) Perspective and limitations of cryo-electron microscopy. From model systems to biological specimens. J Microsc 161: 253-262.
    [18] Mielanczyk L, Matysiak N, Michalski M, et al. (2014) Closer to the native state. Critical evaluation of cryo-techniques for Transmission Electron Microscopy: preparation of biological samples. Folia Histochem Cytobiol 52: 1-17.
    [19] Pilhofer M, Ladinsky MS, McDowall AW, et al. (2010) Bacterial TEM: new insights from cryo-microscopy. Methods Cell Biol 96: 21-45. doi: 10.1016/S0091-679X(10)96002-0
    [20] De Carlo S, Harris JR (2011) Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42: 117-131. doi: 10.1016/j.micron.2010.06.003
    [21] Adrian M, Dubochet J, Lepault J, et al. (1984) Cryo-electron microscopy of viruses. Nature 308: 32-36. doi: 10.1038/308032a0
    [22] Fatouros DG, Müllertz A (2013) Development of Self-Emulsifying Drug Delivery Systems (SEDDS) for Oral Bioavailability Enhancement of Poorly Soluble Drugs. Drug Delivery Strategies for Poorly Water-Soluble Drugs: John Wiley & Sons Ltd. pp. 225-245.
    [23] Talmon Y (2007) Seeing giant micelles by cryogenic-temperature transmission electron microscopy (cryo-TEM). Surfactant Sci Ser 140: 163.
    [24] Spernath L, Regev O, Levi-Kalisman Y, et al. (2009) Phase transitions in O/W lauryl acrylate emulsions during phase inversion, studied by light microscopy and cryo-TEM. Colloids Surf A 332: 19-25. doi: 10.1016/j.colsurfa.2008.08.026
    [25] Almgren M, Edwards K, Karlsson G (2000) Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf A 174: 3-21. doi: 10.1016/S0927-7757(00)00516-1
    [26] Ferreira DA, Bentley MVLB, Karlsson G, et al. (2006) Cryo-TEM investigation of phase behaviour and aggregate structure in dilute dispersions of monoolein and oleic acid. Int J Pharm 310: 203-212. doi: 10.1016/j.ijpharm.2005.11.028
    [27] Wytrwal M, Bednar J, Nowakowska M, et al. (2014) Interactions of serum with polyelectrolyte-stabilized liposomes: Cryo-TEM studies. Colloids Surf B 120: 152-159. doi: 10.1016/j.colsurfb.2014.02.040
    [28] Fatouros DG, Bergenstahl B, Mullertz A (2007) Morphological observations on a lipid-based drug delivery system during in vitro digestion. Eur J Pharm Sci 31: 85-94. doi: 10.1016/j.ejps.2007.02.009
    [29] Basáñez G, Ruiz-Argüello MB, Alonso A, et al. (1997) Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion. Biophys J 72: 2630-2637. doi: 10.1016/S0006-3495(97)78906-9
    [30] Phan S, Hawley A, Mulet X, et al. (2013) Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM. Pharm Res 30: 3088-3100. doi: 10.1007/s11095-013-1108-2
    [31] Alfredsson V (2005) Cryo-TEM studies of DNA and DNA-lipid structures. Curr Opin Colloid Interface Sci 10: 269-273. doi: 10.1016/j.cocis.2005.09.005
    [32] Abraham SA, Edwards K, Karlsson G, et al. (2004) An evaluation of transmembrane ion gradient-mediated encapsulation of topotecan within liposomes. J Control Release 96: 449-461. doi: 10.1016/j.jconrel.2004.02.017
    [33] Johansson E, Lundquist A, Zuo S, et al. (2007) Nanosized bilayer disks: attractive model membranes for drug partition studies. Biochim Biophys Acta 1768: 1518-1525. doi: 10.1016/j.bbamem.2007.03.006
    [34] Yaghmur A, Glatter O (2009) Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci 147-148: 333-342.
    [35] Yaghmur A, Glatter O (2012) Self-Assembly in Lipidic Particles. Self-Assembled Supramolecular Architectures: Lyotropic Liquid Crystals: John Wiley & Sons pp. 129-155.
    [36] Yaghmur A, Rappolt M (2012) Structural characterization of lipidic systems under nonequilibrium conditions. Eur Biophys J 41: 831-840. doi: 10.1007/s00249-012-0815-7
    [37] Nilsson C, Edwards K, Eriksson J, et al. (2012) Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem. Langmuir 28: 11755-11766. doi: 10.1021/la3021244
    [38] Hedegaard SF, Nilsson C, Laurinmaki P, et al. (2013) Nanostructured aqueous dispersions of citrem interacting with lipids and PEGylated lipids. RSC Adv 3: 24576-24585. doi: 10.1039/c3ra44583f
    [39] Chang DP, Jankunec M, Barauskas J, et al. (2012) Adsorption of lipid liquid crystalline nanoparticles: effects of particle composition, internal structure, and phase behavior. Langmuir 28: 10688-10696. doi: 10.1021/la301579g
    [40] Siegel DP, Burns JL, Chestnut MH, et al. (1989) Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Biophys J 56: 161-169. doi: 10.1016/S0006-3495(89)82661-X
    [41] Barauskas J, Johnsson M, Tiberg F (2005) Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett 5: 1615-1619. doi: 10.1021/nl050678i
    [42] Janiak J, Bayati S, Galantini L, et al. (2012) Nanoparticles with a bicontinuous cubic internal structure formed by cationic and non-ionic surfactants and an anionic polyelectrolyte. Langmuir 28: 16536-16546. doi: 10.1021/la303938k
    [43] Yaghmur A, De Campo L, Sagalowicz L, et al. (2005) Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir 21: 569-577. doi: 10.1021/la0482711
    [44] Yaghmur A, de Campo L, Salentinig S, et al. (2006) Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). Langmuir 22: 517-521. doi: 10.1021/la052109w
    [45] de Campo L, Yaghmur A, Sagalowicz L, et al. (2004) Reversible Phase Transitions in Emulsified Nanostructured Lipid Systems. Langmuir 20: 5254-5261. doi: 10.1021/la0499416
    [46] Nilsson C, Østergaard J, Larsen SW, et al. (2014) PEGylation of phytantriol-based lyotropic liquid crystalline particles-the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure. Langmuir 30: 6398-6407. doi: 10.1021/la501411w
    [47] Sagalowicz L, Michel M, Adrian M, et al. (2006) Crystallography of dispersed liquid crystalline phases studied by cryo-transmission electron microscopy. J Microsc 221: 110-121. doi: 10.1111/j.1365-2818.2006.01544.x
    [48] Gao M, Kim Y-K, Zhang C, et al. (2014) Direct observation of liquid crystals using cryo-TEM: specimen preparation and low-dose imaging. Microsc Res Tech 77: 754-772. doi: 10.1002/jemt.22397
    [49] Angelova A, Angelov B, Drechsler M, et al. (2013) Protein entrapment in PEGylated lipid nanoparticles. Int J Pharm 454: 625-632. doi: 10.1016/j.ijpharm.2013.06.006
    [50] Sagalowicz L, Mezzenga R, Leser ME (2006) Investigating reversed liquid crystalline mesophases. Curr Opin Colloid Interface Sci 11: 224-229. doi: 10.1016/j.cocis.2006.07.002
    [51] Driever CD, Mulet X, Waddington LJ, et al. (2013) Layer-by-layer polymer coating on discrete particles of cubic lyotropic liquid crystalline dispersions (cubosomes). Langmuir 29: 12891-12900. doi: 10.1021/la401660h
    [52] Oliveira IMSC, Silva JPN, Feitosa E, et al. (2012) Aggregation behavior of aqueous dioctadecyldimethylammonium bromide/monoolein mixtures: a multitechnique investigation on the influence of composition and temperature. J Colloid Interface Sci 374: 206-217. doi: 10.1016/j.jcis.2012.01.053
    [53] Bode JC, Kuntsche J, Funari SS, et al. (2013) Interaction of dispersed cubic phases with blood components. Int J Pharm 448: 87-95. doi: 10.1016/j.ijpharm.2013.03.016
    [54] Azmi IDM, Wu L, Wibroe PP, et al. (2015) Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid crystalline nanocarriers. Langmuir 31: 5042-5049. doi: 10.1021/acs.langmuir.5b00830
    [55] Nilsson C, Barrios-Lopez B, Kallinen A, et al. (2013) SPECT/CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications. Biomaterials 34: 8491-8503. doi: 10.1016/j.biomaterials.2013.07.055
    [56] Angelov B, Angelova A, Filippov SK, et al. (2014) Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS Nano 8: 5216-5226. doi: 10.1021/nn5012946
    [57] Yaghmur A, Laggner P, Almgren M, et al. (2008) Self-assembly in monoelaidin aqueous dispersions: direct vesicles to cubosomes transition. PLoS ONE 3: e3747. doi: 10.1371/journal.pone.0003747
    [58] Rizwan SB, Dong Y-D, Boyd BJ, et al. (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38:478-485. doi: 10.1016/j.micron.2006.08.003
    [59] Sagalowicz L, Acquistapace S, Watzke HJ, et al. (2007) Study of liquid crystal space groups using controlled tilting with cryogenic transmission electron microscopy. Langmuir 23: 12003-12009. doi: 10.1021/la701410n
    [60] Percec V, Wilson DA, Leowanawat P, et al. (2010) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328: 1009-1014. doi: 10.1126/science.1185547
    [61] Siegel DP, Epand RM (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J 73: 3089-3111. doi: 10.1016/S0006-3495(97)78336-X
    [62] Siegel DP, Green WJ, Talmon Y (1994) The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys J 66: 402-414. doi: 10.1016/S0006-3495(94)80790-8
    [63] Ansari MJ, Kohli K, Dixit N (2008) Microemulsions as potential drug delivery systems: a review. PDA J Pharm Sci Technol 62: 66-79.
    [64] Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Delivery Rev 45: 89-121. doi: 10.1016/S0169-409X(00)00103-4
    [65] Chatzidaki MD, Mitsou E, Yaghmur A, et al. (2015) Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants. Colloid Surf A Doi: 10.1016/j.colsurfa.2015.03.060.
    [66] Yaghmur A., Aserin A, Garti N (2002) Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols. Colloids Surf A 209:71-81. doi: 10.1016/S0927-7757(02)00168-1
    [67] Chevalier Y, Zemb T (1990) The Structure of Micelles and Microemulsions. Rep Prog Phys 53: 279-371. doi: 10.1088/0034-4885/53/3/002
    [68] Strey R (1994) Microemulsion microstructure and interfacial curvature. Colloid Polym Sci 272: 1005-1019. doi: 10.1007/BF00658900
    [69] Gradzielski M (2008) Recent developments in the characterisation of microemulsions. Curr Opin Colloid Interface Sci 13: 263-269. doi: 10.1016/j.cocis.2007.10.006
    [70] Belkoura L, Stubenrauch C, Strey R (2004) Freeze fracture direct imaging: A new freeze fracture method for specimen preparation in cryo-transmission electron microscopy. Langmuir 20: 4391-4399. doi: 10.1021/la0303411
    [71] Won YY, Brannan AK, Davis HT, et al. (2002) Cryogenic transmission electron microscopy (cryo-TEM) of micelles and vesicles formed in water by polyethylene oxide-based block copolymers. J Phys Chem B 106: 3354-3364. doi: 10.1021/jp013639d
    [72] Subramaniam S, Milne JL (2004) Three-dimensional electron microscopy at molecular resolution. Annu Rev Biophys Biomol Struct 33: 141-155. doi: 10.1146/annurev.biophys.33.110502.140339
    [73] Milne JLS, Borgnia MJ, Bartesaghi A, et al. (2013) Cryo-electron microscopy--a primer for the non-microscopist. FEBS J 280: 28-45. doi: 10.1111/febs.12078
    [74] Lengyel J, Milne JLS, Subramaniam S (2008) Electron tomography in nanoparticle imaging and analysis. Nanomedicine 3: 125-131. doi: 10.2217/17435889.3.1.125
    [75] Hoenger A, Bouchet-Marquis C (2011) Cellular tomography. Adv Protein Chem Struct Biol 82: 67-90. doi: 10.1016/B978-0-12-386507-6.00003-8
    [76] Hurbain I, Sachse M (2011) The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell 103: 405-420. doi: 10.1042/BC20110015
    [77] Milne JL, Subramaniam S (2009) Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 7: 666-675. doi: 10.1038/nrmicro2183
    [78] Tocheva EI, Li Z, Jensen GJ (2010) Electron cryotomography. Cold Spring Harb Perspect Biol 2: a003442.
    [79] Pierson J, Vos M, McIntosh JR, et al. (2011) Perspectives on electron cryo-tomography of vitreous cryo-sections. J Electron Microsc (Tokyo) 60 Suppl 1: S93-100.
    [80] Subramaniam S, Bartesaghi A, Liu J, et al. (2007) Electron tomography of viruses. Curr Opin Struct Biol 17: 596-602. doi: 10.1016/j.sbi.2007.09.009
    [81] Yahav T, Maimon T, Grossman E, et al. (2011) Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 21: 670-677. doi: 10.1016/j.sbi.2011.07.004
    [82] Wisedchaisri G, Reichow SL, Gonen T (2011) Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19: 1381-1393. doi: 10.1016/j.str.2011.09.001
    [83] Orlova EV, Saibil HR (2011) Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 111: 7710-7748. doi: 10.1021/cr100353t
    [84] Frank J (2009) Single-particle reconstruction of biological macromolecules in electron microscopy—30 years. Q Rev Biophys 42: 139-158. doi: 10.1017/S0033583509990059
  • This article has been cited by:

    1. XIAOBO HOU, XUETING TIAN, Conditional intermediate entropy and Birkhoff average properties of hyperbolic flows, 2024, 44, 0143-3857, 2257, 10.1017/etds.2023.110
    2. Peng Sun, Ergodic measures of intermediate entropies for dynamical systems with the approximate product property, 2025, 465, 00018708, 110159, 10.1016/j.aim.2025.110159
    3. Yi Shi, Xiaodong Wang, Measures of intermediate pressures for geometric Lorenz attractors, 2025, 436, 00220396, 113280, 10.1016/j.jde.2025.113280
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(15220) PDF downloads(2750) Cited by(51)

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog