Research article Special Issues

Ergodic stationary distribution and extinction of stochastic pertussis model with immune and Markov switching

  • Published: 06 May 2025
  • Temperature, humidity, and other environmental factors can influence the spread of diseases. To investigate the impact of environmental perturbations and state changes on pertussis, this study established a random pertussis model with immunity and Markov switching. This stochastic model presented a global positive solution. Subsequently, using Itô's lemma and Lyapunov function, we concluded that the disease will become extinct. Then, a critical value $ \mathcal R_{0}^e $ was introduced. It was established that the stochastic model with Markov switching has an ergodic stationary distribution when $ \mathcal R_{0}^e > 1 $, which implies that this infectious disease will persist and remain prevalent. Some examples are presented to further substantiate our theoretical conclusions.

    Citation: Jia Chen, Yuming Chen, Qimin Zhang. Ergodic stationary distribution and extinction of stochastic pertussis model with immune and Markov switching[J]. Electronic Research Archive, 2025, 33(5): 2736-2761. doi: 10.3934/era.2025121

    Related Papers:

  • Temperature, humidity, and other environmental factors can influence the spread of diseases. To investigate the impact of environmental perturbations and state changes on pertussis, this study established a random pertussis model with immunity and Markov switching. This stochastic model presented a global positive solution. Subsequently, using Itô's lemma and Lyapunov function, we concluded that the disease will become extinct. Then, a critical value $ \mathcal R_{0}^e $ was introduced. It was established that the stochastic model with Markov switching has an ergodic stationary distribution when $ \mathcal R_{0}^e > 1 $, which implies that this infectious disease will persist and remain prevalent. Some examples are presented to further substantiate our theoretical conclusions.



    加载中


    [1] R. M. Jena, S. Chakraverty, S. K. Jena, Analysis of the dynamics of phytoplankton nutrient and whooping cough models with nonsingular kernel arising in the biological system, Chaos, Solitons Fractals, 141 (2020), 110373. https://doi.org/10.1016/j.chaos.2020.110373 doi: 10.1016/j.chaos.2020.110373
    [2] G. Rozhnova, A. Nunes, Modeling the long-term dynamics of pre-vaccination pertussis, J. R. Soc. Interface, 9 (2012), 2959–2970. https://doi.org/10.1098/rsif.2012.0432 doi: 10.1098/rsif.2012.0432
    [3] D. M. Skowronski, G. D. Serres, D. MacDonald, W. Wu, C. Shaw, J. Macnabb, et al., The changing age and seasonal proflie of pertussis in Canada, J. Infect. Dis., 185 (2002), 1448–1453. https://doi.org/10.1086/340280 doi: 10.1086/340280
    [4] H. E. D. Melker, J. F. P. Schellekens, S. E. Neppelenbroek, F. R. Mooi, H. C. R$\ddot{u}$mke, M. A. E. Conyn-van Spaendonck, Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data, Emerging Infect. Dis., 6 (2000), 348–357. https://doi.org/10.3201/eid0604.000404 doi: 10.3201/eid0604.000404
    [5] A. Mughal, Y. F. Kazi, H. A. Bukhari, M. Ali, Pertussis resurgence among vaccinated children in Khairpur, Sindh, Pakistan, Public Health, 126 (2012), 518–522. https://doi.org/10.1016/j.puhe.2012.02.001 doi: 10.1016/j.puhe.2012.02.001
    [6] T. Tan, T. Dalby, K. Forsyth, S. A. Scott, U. Heininger, D. Hozbor, et al., Pertussis across the globe: recent epidemiologic trends from 2000 to 2013, Prediatr Infect Dis. J., 34 (2015), e222–e232. https://doi.org/10.1097/INF.0000000000000795 doi: 10.1097/INF.0000000000000795
    [7] J. Zhang, J. Deng, Y. Yang, Pertussis vaccination in Chinese children with increasing reported pertussis cases, Lancet Infect. Dis., 22 (2022), 21–22. https://doi.org/10.1016/S1473-3099(21)00752-0 doi: 10.1016/S1473-3099(21)00752-0
    [8] C. R. Maclntyre, J. C. D. Sousa, U. Heininger, P. Kardos, A. Konstantopoulos, D. Middleton, et al., Public health management of pertussis in adults: Practical challenges and future strategies, Hum. Vaccines Immunother., 20 (2024), 2377904. https://doi.org/10.1080/21645515.2024.2377904 doi: 10.1080/21645515.2024.2377904
    [9] K. H. T. Yeung, P. Duclos, E. A. S. Nelson, D. R. C. W. Hutubessy, An update of the global burden of pertussis in children younger than 5 years: a modelling study, Lancet Infect. Dis., 17 (2017), 974–980. https://doi.org/10.1016/S1473-3099(17)30390-0 doi: 10.1016/S1473-3099(17)30390-0
    [10] J. S. Lavine, A. A. King, O. N. Bjørnstad, Natural immune boosting in pertussis dynamics and the potential for long-trem vaccine failure, PNAS, 108 (2011), 7259–7264. https://doi.org/10.1073/pnas.1014394108 doi: 10.1073/pnas.1014394108
    [11] Y. Chen, J. Li, S. Zou, Global dynamics of an epidemic model with relapse and nonlinear incidence, Math. Method. Appl. Sci., 42 (2019), 1283–1291. https://doi.org/10.1002/mma.5439 doi: 10.1002/mma.5439
    [12] X. Tian, W. Wang, Dynamical analysis of age-structured pertussis model with cover infection, Math. Method. Appl. Sci., 43 (2020), 1631–1645. https://doi.org/10.1002/mma.5989 doi: 10.1002/mma.5989
    [13] Q. Han, An age-structured model for pertussis transmission with multiple infections studying the effects of childhood DTaP and adolescent Tdap vaccines, J. Biol. Syst., 30 (2022), 761–797. https://doi.org/10.1142/S0218339022500280 doi: 10.1142/S0218339022500280
    [14] M. Safan, M. Kretzschmar, K. P. Hadeler, Vaccination based control of infections in SIRS models with reinfection: special reference to pertussis, J. Math. Biol., 67 (2013), 1083–1110. https://doi.org/10.1007/s00285-012-0582-1 doi: 10.1007/s00285-012-0582-1
    [15] R. Águas, G. Gonçalves, M. G. M. Gomes, Pertussis: increasing disease as a consequence of reducing transmission, Lancet Infect Dis., 6 (2006), 112–117. https://doi.org/10.1016/s1473-3099(06)70384-x doi: 10.1016/s1473-3099(06)70384-x
    [16] A. Din, Y. Li, A. Omame, A stochastic stability analysis of an HBV –COVID-19 co-infection model in resource limitation settings, Waves Random Complex Media, (2022), 1–33. https://doi.org/10.1080/17455030.2022.2147598
    [17] Y. Zhang, H. Bambrick, K. Mengersen, S. Tong, L. Fenf, G. Liu, et al., Association of weather variability with resurging pertussis infections among different age groups: A non-linear approach, Sci. Total Environ., 719 (2020), 137510. https://doi.org/10.1016/j.scitotenv.2020.137510 doi: 10.1016/j.scitotenv.2020.137510
    [18] X. Mao, Stochastic differential equations and applications, in Stochastic Differential Equations, Springer, 77 (1997), 75–148. https://doi.org/10.1007/978-3-642-11079-5_2
    [19] G. P. Sahu, J. Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, J. Math. Anal. Appl., 421 (2015), 1651–1672. https://doi.org/10.1016/j.jmaa.2014.08.019 doi: 10.1016/j.jmaa.2014.08.019
    [20] N. Gunasekaran, R. Vadivel, G. Zhai, S. Vinoth, Finite-time stability analysis and control of stochastic SIR epidemic model: A study of COVID-19, Biomed. Signal Process. Control, 86 (2023), 105123. https://doi.org/10.1016/j.bspc.2023.105123 doi: 10.1016/j.bspc.2023.105123
    [21] Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Lett., 73 (2017), 8–15. https://doi.org/10.1016/j.aml.2017.04.021 doi: 10.1016/j.aml.2017.04.021
    [22] R. Z. Has'miniskii, Stochastic Stability of Differential Equations, Springer Science and Business Media, 2011.
    [23] B. Han, D. Jiang, H. Tasawar, A. Ahmed, A. Bashir, Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation, Chaos, Solitons Fractals, 140 (2020), 110238. https://doi.org/10.1016/j.chaos.2020.110238 doi: 10.1016/j.chaos.2020.110238
    [24] L. Zu, D. Jiang, D. O'Regan, T. Hayat, B. Ahmad, Ergodic property of a lotka-volterra predator-prey model with white noise higher order perturbation under regime switching, Appl. Math. Comput., 330 (2018), 93–102. https://doi.org/10.1016/j.amc.2018.02.035 doi: 10.1016/j.amc.2018.02.035
    [25] B. Zhou, B. Han, D. Jiang, T. Hayat, A. Alsaedi, Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity underdr diecrete Markov switching, Appl. Math. Comput., 410 (2021), 126388. https://doi.org/10.1016/j.amc.2021.126388 doi: 10.1016/j.amc.2021.126388
    [26] G. R. Ghorbani, S. M. Zahraei, M. Moosazadeh, M. Afshari, F. Doosti, Comparing seasonal pattern of laboratory confirmed cases of pertussis with clinically suspected cases, Osong Public Health Res. Perspect., 7 (2016), 131–137. https://doi.org/10.1016/j.phrp.2016.02.004 doi: 10.1016/j.phrp.2016.02.004
    [27] H. T. H. Nguyen, P. Rohani, Noise, nonlinearity and seasonality: the epidemics of whooping cough revisited, J. R. Soc. Interface, 5 (2008), 403–413. https://doi.org/10.1098/rsif.2007.1168 doi: 10.1098/rsif.2007.1168
    [28] X. Chen, X. Li, Y. Ma, C. Yuan, The threshold of stochastic tumor-immnue model with regime swithing, J. Math. Anal. Appl., 522 (2023), 126956. https://doi.org/10.1016/j.jmaa.2022.126956 doi: 10.1016/j.jmaa.2022.126956
    [29] G. Lan, S. Yuan, B. Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J. Franklin Inst., 358 (2021), 2405–2433. https://doi.org/10.1016/j.jfranklin.2021.01.015 doi: 10.1016/j.jfranklin.2021.01.015
    [30] T. Caraballo, M. E. Fatini, M. E. Khaliff, R. Geriach, R. Pettersson, Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel, Chaos, Solitons Fractals, 133 (2020), 109643. http://dx.doi.org/10.1016/j.chaos.2020.109643 doi: 10.1016/j.chaos.2020.109643
    [31] T. Khan, A. Khan, Z. Gui, The extinction and persistence of the stochastic hepatitis B epidemic model, Chaos, Solitons Fractals, 108 (2018), 123–128. https://doi.org/10.1016/j.chaos.2018.01.036 doi: 10.1016/j.chaos.2018.01.036
    [32] B. Zhou, D. Jiang, B. Han, T. Hayat, Ergodic stationary distribution and practical application of a hybrid stochastic cholera transmission model with waning vaccine-induced immunity under nonlinear regime switching, Math. Methods Appl. Sci., 45 (2022), 423–455. https://doi.org/10.1002/mma.7785 doi: 10.1002/mma.7785
    [33] A. C. Lowen, S. Mubareka, J. Steel, P. Palese, Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathog., 3 (2007), e151. https://doi.org/10.1371/journal.ppat.0030151 doi: 10.1371/journal.ppat.0030151
    [34] T. D. Tuong, N. N. Nguyen, Characterization of long-term behavior of stochastic NP ecological model under regime switching, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105497. https://doi.org/10.1016/j.cnsns.2020.105497 doi: 10.1016/j.cnsns.2020.105497
    [35] D. Greenhalgh, Y. Liang, X. Mao, Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching, Physica A, 462 (2016), 684–704. https://doi.org/10.1016/j.physa.2016.06.125 doi: 10.1016/j.physa.2016.06.125
    [36] X. Li, D. Jiang, X. Mao, Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427–448. https://doi.org/10.1016/j.cam.2009.06.021 doi: 10.1016/j.cam.2009.06.021
    [37] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamical behavior of stochastic multigroup S-DI-A epidemic models for the transmission of HIV, J. Franklin Inst., 355 (2018), 5830–5865. https://doi.org/10.1016/j.jfranklin.2018.05.047 doi: 10.1016/j.jfranklin.2018.05.047
    [38] Y. Zhao, S. Yuan, T. Zhang, The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching, Commun. Nonlinear Sci. Numer. Simul., 37 (2016), 131–142. https://doi.org/10.1016/j.cnsns.2016.01.013 doi: 10.1016/j.cnsns.2016.01.013
    [39] A. Omame, M. Abbas, A. Din, Global asymptotic stability, extinction and ergodic stationary distribution in a stochastic model for dual variants of SARS-CoV-2, Math. Comput. Simul., 204 (2023), 302–336. https://doi.org/10.1016/j.matcom.2022.08.012 doi: 10.1016/j.matcom.2022.08.012
    [40] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [41] K. Mamis, M. Farazmand, Modeling correlated uncertainties in stochastic compartmental models, Math. Biosci., 374 (2024), 109226. https://doi.org/10.1016/j.mbs.2024.109226 doi: 10.1016/j.mbs.2024.109226
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(987) PDF downloads(75) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog