Through tilting objects, we construct complete cotorsion pairs for specific hereditary abelian categories, such as the category of modules that are finitely generated over a finite-dimensional hereditary algebra as well as the category of coherent sheaves over weighted projective lines. We prove that a complete cotorsion pair exists in the category of coherent sheaves over a weighted projective curve $ \mathbb{X} $ if and only if $ \mathbb{X} $ is a weighted projective line. We also characterize the canonical tilting cotorsion pair for any weighted projective line and obtain Hovey triples in the category of vector bundles over a weighted projective line.
Citation: Rongmin Zhu, Tiwei Zhao. The construction of tilting cotorsion pairs for hereditary abelian categories[J]. Electronic Research Archive, 2025, 33(5): 2719-2735. doi: 10.3934/era.2025120
Through tilting objects, we construct complete cotorsion pairs for specific hereditary abelian categories, such as the category of modules that are finitely generated over a finite-dimensional hereditary algebra as well as the category of coherent sheaves over weighted projective lines. We prove that a complete cotorsion pair exists in the category of coherent sheaves over a weighted projective curve $ \mathbb{X} $ if and only if $ \mathbb{X} $ is a weighted projective line. We also characterize the canonical tilting cotorsion pair for any weighted projective line and obtain Hovey triples in the category of vector bundles over a weighted projective line.
| [1] | J. Serrin, Cotorsion theories for abelian groups, in Symposia Mathematica, Academic Press, New York, 23 (1979), 11–32. |
| [2] |
J. Gillespie, Model structures on exact categories, J. Pure Appl. Algebra, 215 (2011), 2892–2902. https://doi.org/10.1016/j.jpaa.2011.04.010 doi: 10.1016/j.jpaa.2011.04.010
|
| [3] |
O. Iyama, Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172 (2008), 117–168. https://doi.org/10.1007/s00222-007-0096-4 doi: 10.1007/s00222-007-0096-4
|
| [4] |
Y. Hu, P. Zhou, Recollements arising from cotorsion pairs on extriangulated categories, Front. Math. China, 16 (2021), 937–955. https://doi.org/10.1007/s11464-021-0953-2 doi: 10.1007/s11464-021-0953-2
|
| [5] |
M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z., 241 (2002), 553–592. https://doi.org/10.1007/s00209-002-0431-9 doi: 10.1007/s00209-002-0431-9
|
| [6] |
J. Gillespie, The flat model structure on $ \mathbf{Ch}\;(\mathbf{R}) $, Trans. Am. Math. Soc., 356 (2004), 3369–3390. https://doi.org/10.1090/S0002-9947-04-03416-6 doi: 10.1090/S0002-9947-04-03416-6
|
| [7] |
H. Holm, P. Jørgensen, Cotorsion pairs in categories of quiver representations, Kyoto J. Math., 59 (2019), 575–606. https://doi.org/10.1215/21562261-2018-0018 doi: 10.1215/21562261-2018-0018
|
| [8] |
R. Zhu, Y. Peng, N. Ding, Recollements associated to cotorsion pairs over upper triangular matrix rings, Publ. Math. Debrecen., 98 (2021), 83-113. https://doi.org/10.5486/pmd.2021.8791 doi: 10.5486/pmd.2021.8791
|
| [9] | J. Š$ \overset{'}{\mathop{\text{t}}}\, $ovíček, Exact model categories, approximation theory, and cohomology of quasi-coherent sheaves, in Advances in Representation Theory of Algebras, (2013), 297–367. https://doi.org/10.4171/125-1/10 |
| [10] |
L. Angeleri Hügel, J. Šaroch, J. Trlifaj, On the telescope conjecture for module categories, J. Pure Appl. Algebra, 212 (2008), 297–310. https://doi.org/10.1016/j.jpaa.2007.05.027 doi: 10.1016/j.jpaa.2007.05.027
|
| [11] | R. Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, 2$^{nd}$ edition, Berlin-Boston, 2012. https://doi.org/10.1515/9783110218114 |
| [12] | J. Trlifaj, Infinite dimensional tilting modules and cotorsion pairs, in Handbook of Tilting Theory, Cambridge University Press, (2007), 279–321. https://doi.org/10.1017/CBO9780511735134 |
| [13] |
L. Angeleri Hügel, A key module over pure-semisimple hereditary rings, J. Algebra, 307 (2007), 361–376. https://doi.org/10.1016/j.jalgebra.2006.06.025 doi: 10.1016/j.jalgebra.2006.06.025
|
| [14] |
D. Happel, A characterization of hereditary categories with tilting object, Invent. Math., 144 (2001), 381–398. https://doi.org/10.1007/s002220100135 doi: 10.1007/s002220100135
|
| [15] | W. Geigle, H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in Representation of Algebras, and Vector Bundles, Lecture Notes in Mathematics, 1273 (1987), 265–297. https://doi.org/10.1007/BFb0078849 |
| [16] | M. Hovey, Model Categories, American Mathematical Soc., 1999. https://doi.org/10.1090/surv/063/01 |
| [17] | H. Lenzing, Hereditary Categories, 2006. Available from: https://warwick.ac.uk/. |
| [18] |
L. Angeleri Hügel, J. Šaroch, J. Trlifaj, Approximations and Mittag-Leffler conditions the applications, Isr. J. Math., 226 (2018), 757–780. https://doi.org/10.1007/s11856-018-1711-3 doi: 10.1007/s11856-018-1711-3
|
| [19] |
J. P. Serre, Faisceaux algébriques cohérents, Ann. Math., 61 (1955), 197–278. https://doi.org/10.2307/1969915 doi: 10.2307/1969915
|
| [20] | H. Lenzing, The algebraic theory of fuchsian singularties, in Advances in Representation Theory of Algebras, 761 (2021), 171–190. https://doi.org/10.1090/conm/761/15315 |
| [21] | H. Krause, Homological Theory of Representations, Cambridge University Press, 2021. https://doi.org/10.1017/9781108979108 |
| [22] | H. Lenzing, H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in Representations of algebras (Ottawa, ON, 1992), 14 (1993), 313–337. |
| [23] |
M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math., 86 (1991), 111–152. https://doi.org/10.1016/0001-8708(91)90037-8 doi: 10.1016/0001-8708(91)90037-8
|
| [24] |
R. Takahashi, Contravariantly finite resolving subcategories over commutative rings, Am. J. Math., 133 (2011), 417–436. https://doi.org/10.1353/ajm.2011.0011 doi: 10.1353/ajm.2011.0011
|
| [25] | M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, J. Integer Sequences, 18 (2015), 1–24. |
| [26] | H. Lenzing, Representations of finite-dimensional algebras and singularity theory, in Trends in Ring Theory (Miskolc, 1996), 22 (1998), 71–97. https://doi.org/10.1109/22.660982 |
| [27] | C. M. Ringel, Tame Algebras and Integral Quadratic Forms, in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1984. https://doi.org/10.1007/BFb0072870 |
| [28] |
D. Kussin, H. Lenzing, H. Meltzer, Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math., 237 (2013), 194–251. https://doi.org/10.1016/j.aim.2013.01.006 doi: 10.1016/j.aim.2013.01.006
|
| [29] |
M. Auslander, Ø. Solberg, Relative homology and representation theory 1: Relative homology and homologically finite subcategories, Commun. Algebra, 21 (1993), 2995–3031. https://doi.org/10.1080/00927879308824717 doi: 10.1080/00927879308824717
|
| [30] |
H. Enomoto, Classifying exact categories via Wakamatsu tilting, J. Algebra, 485 (2017), 1–44. https://doi.org/10.1016/j.jalgebra.2017.04.024 doi: 10.1016/j.jalgebra.2017.04.024
|
| [31] |
M. Kalck, O. Iyama, M. Wemyss, D. Yang, Frobenius categories, Gorenstein algebras and rational surface singularities, Compos. Math., 151 (2015), 502–534. https://doi.org/10.1112/S0010437X14007647 doi: 10.1112/S0010437X14007647
|