Research article

Robustness analysis of a multimodal comprehensive transportation network from the perspectives of infrastructure and operation: A case study

  • Published: 03 April 2025
  • The development of a multimodal comprehensive transportation network (CTN) is crucial for enhancing connectivity and resilience in a regional transportation system. While China has established an extensive transportation infrastructure, the robustness of multimodal transportation systems remains insufficiently explored. Existing research primarily examines transportation networks from a single aspect, focusing either on infrastructure attributes or operational characteristics, while largely neglecting their interactions and disparities. To address this gap, this study analyzed the robustness of CTN from two perspectives, including a comprehensive transportation infrastructure network (CINet) and comprehensive transportation operation network (CONet). Based on complex network theory, optimized modeling methods of the networks were proposed. Utilizing multi-source data, statistical characteristics and robustness were comparatively explored in CINet, CONet, and their single-mode networks including highway, railway, navigation, and airway/airline (HINet, RINet, NINet, AINet, HONet, RONet, NONet, AONet) networks of Jiangsu Province. The results reveal that: 1) In Jiangsu, all the networks are not scale-free. All infrastructure networks (INets), except for AINet, do not exhibit small-world properties, while all the operation networks (ONets) are small-world. 2) All the networks are more robust to random attack than other strategies. CINet demonstrates the highest robustness among INets, whereas surprisingly, RONet is the most robust among ONets. Generally, INets exhibit superior robustness compared to ONets. 3) As the number of optimized hubs increases, the network robustness is much stronger, especially under calculated attacks. The improvements of $ IRC $ and $ IRR $ reach 4.55% and 114.56% in CINet, while reaching 4.10% and 99.24% in CONet, respectively, indicating a significant effect of optimized hub designs in network robustness enhancement. 4) When optimizing the same hubs, network robustness enhancement is more pronounced in CONet than in CINet. These findings highlight the importance of optimized hubs to multimodal comprehensive transportation systems, and provide guidance for network planning and management.

    Citation: Jialiang Xiao, Yongtao Zheng, Wei Wang, Xuedong Hua. Robustness analysis of a multimodal comprehensive transportation network from the perspectives of infrastructure and operation: A case study[J]. Electronic Research Archive, 2025, 33(4): 1902-1945. doi: 10.3934/era.2025086

    Related Papers:

  • The development of a multimodal comprehensive transportation network (CTN) is crucial for enhancing connectivity and resilience in a regional transportation system. While China has established an extensive transportation infrastructure, the robustness of multimodal transportation systems remains insufficiently explored. Existing research primarily examines transportation networks from a single aspect, focusing either on infrastructure attributes or operational characteristics, while largely neglecting their interactions and disparities. To address this gap, this study analyzed the robustness of CTN from two perspectives, including a comprehensive transportation infrastructure network (CINet) and comprehensive transportation operation network (CONet). Based on complex network theory, optimized modeling methods of the networks were proposed. Utilizing multi-source data, statistical characteristics and robustness were comparatively explored in CINet, CONet, and their single-mode networks including highway, railway, navigation, and airway/airline (HINet, RINet, NINet, AINet, HONet, RONet, NONet, AONet) networks of Jiangsu Province. The results reveal that: 1) In Jiangsu, all the networks are not scale-free. All infrastructure networks (INets), except for AINet, do not exhibit small-world properties, while all the operation networks (ONets) are small-world. 2) All the networks are more robust to random attack than other strategies. CINet demonstrates the highest robustness among INets, whereas surprisingly, RONet is the most robust among ONets. Generally, INets exhibit superior robustness compared to ONets. 3) As the number of optimized hubs increases, the network robustness is much stronger, especially under calculated attacks. The improvements of $ IRC $ and $ IRR $ reach 4.55% and 114.56% in CINet, while reaching 4.10% and 99.24% in CONet, respectively, indicating a significant effect of optimized hub designs in network robustness enhancement. 4) When optimizing the same hubs, network robustness enhancement is more pronounced in CONet than in CINet. These findings highlight the importance of optimized hubs to multimodal comprehensive transportation systems, and provide guidance for network planning and management.



    加载中


    [1] L. F. Xiong, Analysis of Cascading Failure Propagation Mechanism in Comprehensive Transportation Infrastructure Network, Ph.D thesis, Southwest Jiaotong University, 2019.
    [2] J. Y. Guo, Approach to Passenger Flow Regulation of Urban Mass Transit Network, Ph.D. thesis, Beijing Jiaotong University, 2016.
    [3] V. Nicolosi, M. Augeri, M. D'Apuzzo, A. Evangelisti, D. Santilli, A probabilistic approach to the evaluation of seismic resilience in road asset management, Int. J. Dis. Risk Sci., 13 (2022), 114–124. https://doi.org/10.1007/s13753-022-00395-5 doi: 10.1007/s13753-022-00395-5
    [4] O. Fröidh, Perspectives for a future high-speed train in the Swedish domestic travel market. J. Transp. Geogr., 4 (2008), 16:268–277. https://doi.org/10.1016/j.jtrangeo.2007.09.005 doi: 10.1016/j.jtrangeo.2007.09.005
    [5] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, S. S. Manna, Small-world properties of the Indian railway network. Phys. Rev. E, 67 (2003). http://dx.doi.org/10.1103/PhysRevE.67.036106 doi: 10.1103/PhysRevE.67.036106
    [6] C. von Ferber, T. Holovatch, Y. Holovatch, V. Palchykov, Network harness: Metropolis public transport, Phys. A, 380 (2007), 585–591. https://doi.org/10.1016/J.PHYSA.2007.02.101 doi: 10.1016/J.PHYSA.2007.02.101
    [7] Z. X. Wu, H. K. W. Lam, Network equilibrium model for congested multi-mode transport network with elastic demand, J. Adv. Transp., 37 (2003), 295–318. https://doi.org/10.1002/atr.5670370304 doi: 10.1002/atr.5670370304
    [8] C. Cao, Y. Su, Transportation infrastructure and regional resource allocation, Cities, 155 (2024), 105433. https://doi.org/10.1016/j.cities.2024.105433 doi: 10.1016/j.cities.2024.105433
    [9] R. Liu, Measurement of Economic Growth Effect of High-speed Transportation Network in Urban Agglomerations—Taking the Pearl River Delta as an example, Ph.D thesis, Yunnan University of Finance and Economics, 2021.
    [10] N. Zhang, A. Alipour, Multi-scale robustness model for highway networks under flood events, Transp. Res. D-Tr. E., 83 (2020), 102281. https://doi.org/10.1016/j.trd.2020.102281 doi: 10.1016/j.trd.2020.102281
    [11] W. H. Zhu, S. D. Wang, S. L. Liu, X. Y. Gao, P. C. Zhang, L. X. Zhang, Reliability and robustness assessment of highway networks under multi-hazard scenarios: a case study in Xinjiang, China, China, Sustainability, 15 (2023), 5379. https://doi.org/10.3390/su15065379 doi: 10.3390/su15065379
    [12] G. Vani, H. Maoh, Characterizing the nature of a multi-regional trucking network using the network robustness index: An application to Ontario, Canada, Appl. Spat. Anal. Policy, 16 (2023), 383–407. https://doi.org/10.1007/s12061-022-09484-w doi: 10.1007/s12061-022-09484-w
    [13] M. Ouyang, C. Liu, M. Xu, Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions, Reliab. Eng. Syst. Saf., 190 (2019), 106506. https://doi.org/10.1016/j.ress.2019.106506 doi: 10.1016/j.ress.2019.106506
    [14] Y. H. Yang, Y. X. Liu, M. X. Zhou, F. X. Li, C. Sun, Robustness assessment of urban rail transit based on complex network theory: A case study of the Beijing Subway, Saf. Sci., 79 (2015), 149–162. https://doi.org/10.1016/j.ssci.2015.06.006 doi: 10.1016/j.ssci.2015.06.006
    [15] F. Ma, W. J. Shi, K. F. Yuen, Q. P. Sun, X. B. Xu, Y. J. Wang, et al., Exploring the robustness of public transportation for sustainable cities: A double-layered network perspective, J. Clean. Prod., 265 (2020), 121747. https://doi.org/10.1016/j.jclepro.2020.121747 doi: 10.1016/j.jclepro.2020.121747
    [16] S. Wandelt, Y. F. Xu, X. Q. Sun, Measuring node importance in air transportation systems: On the quality of complex network estimations, Reliab. Eng. Syst. Saf., 240 (2023), 109596. https://doi.org/10.1016/j.ress.2023.109596 doi: 10.1016/j.ress.2023.109596
    [17] V. Latora, M. Marchiori, Is Boston subway a small-world network?, Phys. A, 314 (2002), 109–113. https://doi.org/10.1016/S0378-4371(02)01089-0 doi: 10.1016/S0378-4371(02)01089-0
    [18] J. Sienkiewicz, J. A. Hołyst, Statistical analysis of 22 public transport networks in Poland, Phys. Rev. E, 72 (2005), 046127. https://doi.org/10.1103/PhysRevE.72.046127 doi: 10.1103/PhysRevE.72.046127
    [19] G. Domenico, M. Ernesto, Compared analysis of metro networks supported by graph theory, Networks Spat. Econ., 5 (2005), 395–414. https://doi.org/10.1007/s11067-005-6210-5 doi: 10.1007/s11067-005-6210-5
    [20] Y. Wang, O. Zhao, L. M. Zhang, Modeling urban rail transit system resilience under natural disasters: A two-layer network framework based on link flow, Reliab. Eng. Syst. Saf., 241 (2024). https://doi.org/10.1016/j.ress.2023.109619 doi: 10.1016/j.ress.2023.109619
    [21] M. T. Trobajo, M. V. Carriegos, Spanish airport network structure: Topological characterization, Comput. Math. Methods, 2022 (2022), 4952613. https://doi.org/10.1155/2022/4952613 doi: 10.1155/2022/4952613
    [22] M. Zanin, S. Wandelt, An overview of network structures and node importance in the global aviation system from the year 2011 to 2022, J. Air. Transp. Res. Soc., 1 (2023), 63–80. https://doi.org/10.59521/5E2DDEC9FAD4593B doi: 10.59521/5E2DDEC9FAD4593B
    [23] K. Sugishita, K. Arisawa, S. Hanaoka, Delay propagation patterns in Japan's domestic air transport network, Transp. Res. Interdiscip. Perspect., 27 (2024), 101235. https://doi.org/10.1016/j.trip.2024.101235 doi: 10.1016/j.trip.2024.101235
    [24] N. Anna, D. June, Supernetworks: Decision-Making for the Information Age, England: Edward Publishing, Incorporated, 2002.
    [25] S. C. Dafermos, The traffic assignment problem for multiclass-user transportation networks, Transp. Sci., 6 (1972), 73–87. https://doi.org/10.1287/trsc.6.1.73 doi: 10.1287/trsc.6.1.73
    [26] M. Beuthe, B. Jourquin, J. F. Geerts, C. K. à Ndjang'Ha, Freight transportation demand elasticities: a geographic multimodal transportation network analysis, Transp. Res. Part E: Logist. Transp. Rev., 37 (2001), 253–266. https://doi.org/10.1016/S1366-5545(00)00022-3 doi: 10.1016/S1366-5545(00)00022-3
    [27] P. Xu. Intercity multi-modal traffic assignment model and algorithm for urban agglomeration considering the whole travel process, in IOP Conference Series: Earth and Environmental Science, 189 (2018), 6. https://doi.org/10.1088/1755-1315/189/6/062016
    [28] H. Y. Ding, Research on Urban Multi-Modal Public Transit Network Fast Construction Method and Assignment Model, Ph.D thesis, Southeast University, 2018.
    [29] Y. Luo, D. L. Qian, Construction of subway and bus transport networks and analysis of the network topology characteristics, J. Transp. Syst. Eng. Inf. Technol., 15 (2015), 39–44. https://doi.org/10.16097/j.cnki.1009-6744.2015.05.006 doi: 10.16097/j.cnki.1009-6744.2015.05.006
    [30] X. H. Li, J. Y. Guo, C. Gao, Network-based transportation system analysis: A case study in a mountain city, Chaos, Solitons Fractals, 107 (2018), 256–265. https://doi.org/10.1016/j.chaos.2018.01.010 doi: 10.1016/j.chaos.2018.01.010
    [31] X. Feng, S. W. He, G. Y. Li, J. S. Chi, Transfer network of high-speed rail and aviation: Structure and critical components, Phys. A, 581 (2021), 126197. https://doi.org/10.1016/j.physa.2021.126197 doi: 10.1016/j.physa.2021.126197
    [32] X. Q. Huang, J. X. Gao, S. V. Buldyrev, S. Havlin, H. E. Stanley, Robustness of interdependent networks under targeted attack, Phys. Rev. E, 83 (2011), 065101. https://doi.org/10.1103/PhysRevE.83.065101 doi: 10.1103/PhysRevE.83.065101
    [33] B. Berche, C. V. Ferber, T. Holovatch, Y. Holovatch, Resilience of public transport networks against attacks, Eur. Phys. J. B, 71 (2009), 125–137. https://doi.org/10.1140/epjb/e2009-00291-3 doi: 10.1140/epjb/e2009-00291-3
    [34] Y. S. Chen, X. Y. Wang, X. W. Song, J. L. Jia, Y. Y. Chen, W. L. Shang, Resilience assessment of multimodal urban transport networks, J. Circuits Syst. Comput., 31 (2022), 18. https://doi.org/10.1142/S0218126622503108 doi: 10.1142/S0218126622503108
    [35] L. Ge, S. Voß, L. Xie, Robustness and disturbances in public transport, Publ. Transp., 14 (2022), 191–261. https://doi.org/10.1007/s12469-022-00301-8 doi: 10.1007/s12469-022-00301-8
    [36] X. L. Hu, J. Huang, F. Shi, A robustness assessment with passenger flow data of high-speed rail network in China, Chaos, Solitons Fractals, 165 (2022), 112792. https://doi.org/10.1016/j.chaos.2022.112792 doi: 10.1016/j.chaos.2022.112792
    [37] R. S. Yang, W. Sun, M. L. Le, H. Y. Zhang, The Chinese aviation network: An empirical temporal analysis on its structural properties and robustness, Appl. Sci., 13 (2023), 11627. https://doi.org/10.3390/app132111627 doi: 10.3390/app132111627
    [38] X. Qu, H. Lin, Y. Liu, Envisioning the future of transportation: Inspiration of ChatGPT and large models, Commun. Transp. Res., 3 (2023), 100103. https://doi.org/10.1016/j.commtr.2023.100103 doi: 10.1016/j.commtr.2023.100103
    [39] Y. Fei, P. Shi, Y. Liu, L. Wang, Critical roles of control engineering in the development of intelligent and connected vehicles, J. Int. Connected Veh., 7 (2024), 79–85. https://doi.org/10.26599/JICV.2023.9210040 doi: 10.26599/JICV.2023.9210040
    [40] S. Y. Kuang, Y. Liu, X. Wang, X. H. Wu, Y. T. Wei, Harnessing multimodal large language models for traffic knowledge graph generation and decision-making, Commun. Transp. Res., 4 (2024), 100146. https://doi.org/10.1016/j.commtr.2024.100146 doi: 10.1016/j.commtr.2024.100146
    [41] Y. Liu, F. Y. Wu, Z. Y. Liu, K. Wang, F. Y. Wang, X. B. Qu, Can language models be used for real-world urban-delivery route optimization, The Innovation, 4 (2023), 6. https://doi.org/10.1016/j.xinn.2023.100520 doi: 10.1016/j.xinn.2023.100520
    [42] Z. C. Chen, C. J. Zheng, T. T. Tao, Y. Y. Wang, Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion, Reliab. Eng. Syst. Saf., 248 (2024), 110171. https://doi.org/10.1016/j.ress.2024.110171 doi: 10.1016/j.ress.2024.110171
    [43] Z. L. Ma, D. W. Hu, S. I. J. Chien, J. Liu, Y. Liu, K. Wu, Robustness of urban rail transit networks considering cascade failure under attacks: A case study of Nanjing, China, ASCE-ASME J. Risk U. A, 11 (2025), 04024093. https://doi.org/10.1061/AJRUA6.RUENG-1324 doi: 10.1061/AJRUA6.RUENG-1324
    [44] T. Li, L. L. Rong, K. S. Yan, Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China, Transp. Res. Part A Policy Pract., 127 (2019), 55–70. https://doi.org/10.1016/j.tra.2019.07.008 doi: 10.1016/j.tra.2019.07.008
    [45] Y. Chen, J. E. Wang, F. J. Jin, Robustness of China's air transport network from 1975 to 2017, Phys. A, 539 (2020), 122876. https://doi.org/10.1016/j.physa.2019.122876 doi: 10.1016/j.physa.2019.122876
    [46] S. Wandelt, X. Shi, X. Q. Sun, Estimation and improvement of transportation network robustness by exploiting communities, Reliab. Eng. Syst. Saf., 206 (2021), 107307. https://doi.org/10.1016/j.ress.2020.107307 doi: 10.1016/j.ress.2020.107307
    [47] Z. Xin, F. Niu, Structure and robustness of China's railway transport network, Transp. Lett., 15 (2023), 375–385. https://doi.org/10.1080/19427867.2022.2053280 doi: 10.1080/19427867.2022.2053280
    [48] V. H. Tran, S. A. Cheong, N. D. Bui, Complex network analysis of the robustness of the hanoi, vietnam bus network, J. Syst. Sci. Complex, 32 (2019), 1251–1263. https://doi.org/10.1007/s11424-019-7431-x doi: 10.1007/s11424-019-7431-x
    [49] Y. T. Zheng, J. L. Xiao, X. D. Hua, W. Wang, H. Chen, A comparative analysis of the robustness of multimodal comprehensive transportation network considering mode transfer: A case study, Electron. Res. Arch., 31 (2023), 5362–5395. https://doi.org/10.3934/era.2023272 doi: 10.3934/era.2023272
    [50] T. Li, L. L. Rong, A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China, Transp. Res. Part A Policy Pract., 132 (2020), 666–681. https://doi.org/10.1016/j.tra.2019.12.019 doi: 10.1016/j.tra.2019.12.019
    [51] Y. Zhou, J. Wang, G. Q. Huang, Efficiency and robustness of weighted air transport networks, Transp. Res. Part E: Logist. Transp. Rev., 122 (2019), 14–26. https://doi.org/10.1016/j.tre.2018.11.008 doi: 10.1016/j.tre.2018.11.008
    [52] J. C. Jiang, L. X. Wu, J. Q. Yu, M. J. S. Wang, K. Hui, Z.X. Zhang, et al., Robustness of bilayer railway-aviation transportation network considering discrete cross-layer traffic flow assignment, Transp. Res. D-Tr. E, 127 (2024), 104071. https://doi.org/10.1016/j.trd.2024.104071 doi: 10.1016/j.trd.2024.104071
    [53] J. H. Zhang, Y. Zhou, S. L. Wang, Q. J. Min, Critical station identification and robustness analysis of urban rail transit networks based on comprehensive vote-rank algorithm, Chaos, Solitons Fractals, 178 (2024), 114379. https://doi.org/10.1016/j.chaos.2023.114379 doi: 10.1016/j.chaos.2023.114379
    [54] Y. F. Zhang, S. T. Ng, Robustness of urban railway networks against the cascading failures induced by the fluctuation of passenger flow, Reliab. Eng. Syst. Saf., 219 (2022), 108227. https://doi.org/10.1016/j.ress.2021.108227 doi: 10.1016/j.ress.2021.108227
    [55] Z. Z. Liu, H. Chen, E. Z. Liu, W. Y. Hu, Exploring the resilience assessment framework of urban road network for sustainable cities, Phys. A, 586 (2022), 126465. https://doi.org/10.1016/j.physa.2021.126465 doi: 10.1016/j.physa.2021.126465
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1254) PDF downloads(100) Cited by(3)

Article outline

Figures and Tables

Figures(28)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog