Loading [MathJax]/jax/output/SVG/jax.js
Research article

Differential Harnack estimates for the semilinear parabolic equation with three exponents on Rn

  • Received: 20 September 2024 Revised: 26 November 2024 Accepted: 09 January 2025 Published: 16 January 2025
  • In this paper, we thought about the positive solutions to the semilinear parabolic equation with three exponents, and obtained several differential Harnack estimates of the positive solutions to the equation. As applications of the main theorems, we found blow-up solutions for the equation and classical Harnack inequalities. Our results generalize some recent works in this direction.

    Citation: Fanqi Zeng, Wenli Geng, Ke An Liu, Boya Wang. Differential Harnack estimates for the semilinear parabolic equation with three exponents on Rn[J]. Electronic Research Archive, 2025, 33(1): 142-157. doi: 10.3934/era.2025008

    Related Papers:

    [1] Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129
    [2] Guifen Liu, Wenqiang Zhao . Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $. Electronic Research Archive, 2021, 29(6): 3655-3686. doi: 10.3934/era.2021056
    [3] Yong Zhou, Jia Wei He, Ahmed Alsaedi, Bashir Ahmad . The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $. Electronic Research Archive, 2022, 30(8): 2981-3003. doi: 10.3934/era.2022151
    [4] Junsheng Gong, Jiancheng Liu . A Liouville-type theorem of a weighted semilinear parabolic equation on weighted manifolds with boundary. Electronic Research Archive, 2025, 33(4): 2312-2324. doi: 10.3934/era.2025102
    [5] Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057
    [6] Changling Xu, Tianliang Hou . Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations. Electronic Research Archive, 2020, 28(2): 897-910. doi: 10.3934/era.2020047
    [7] Weiwei Qi, Yongkun Li . Weyl almost anti-periodic solution to a neutral functional semilinear differential equation. Electronic Research Archive, 2023, 31(3): 1662-1672. doi: 10.3934/era.2023086
    [8] Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021
    [9] Anh Tuan Nguyen, Chao Yang . On a time-space fractional diffusion equation with a semilinear source of exponential type. Electronic Research Archive, 2022, 30(4): 1354-1373. doi: 10.3934/era.2022071
    [10] Changmu Chu, Shan Li, Hongmin Suo . Existence of a positive radial solution for semilinear elliptic problem involving variable exponent. Electronic Research Archive, 2023, 31(5): 2472-2482. doi: 10.3934/era.2023125
  • In this paper, we thought about the positive solutions to the semilinear parabolic equation with three exponents, and obtained several differential Harnack estimates of the positive solutions to the equation. As applications of the main theorems, we found blow-up solutions for the equation and classical Harnack inequalities. Our results generalize some recent works in this direction.



    The differential Harnack estimate is a fundamental and powerful technique in the study of partial differential equations on Rn (see [1,2]). Gaussian bounds for the heat kernel follow immediately from the differential Harnack estimate. The Hölder continuity is also a direct consequence of the differential Harnack estimate. Numerous other conclusions about the fundamental geometry of space can also be deduced by differential Harnack estimates. Many mathematicians have paid attention to the study on this topic (see, for example, [3,4,5] and the references therein).

    In this paper, we consider differential Harnack estimates for the following Cauchy problem:

    {tf(x,t)=Δf+h1(x,t)fp+h2(x,t)fq+h3(x,t)fsinRn×[0,),f(x,0)=f0(x)inRn, (1.1)

    where the functions h1, h2, and h3 are C2 in x and C0 in t with h1>0, h2>0, and h3>0, and p, q, and s are positive constants with pqs>1. Equation (1.1) arises from many classical equations (see [6,7,8]) and there are many questions related to Eq (1.1) (see [9,10]).

    Now, let us recall some relevant work with the above Eq (1.1). In the case where h1(x,t)=1 and h2(x,t)=h3(x,t)=0, Eq (1.1) reduces to the endangered species equation. Cao et al. [8] proved a differential Harnack estimate for positive solutions of the Cauchy problem for the endangered species equation. In the case where h1(x,t)=c, h2(x,t)=c, h3(x,t)=0, p=1, and q=2, Eq (1.1) reduces to the Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) equation. Cao et al. [9] proved a differential Harnack estimate for positive solutions of the Fisher-KPP equation on an n-dimensional Riemannian manifold M with non-negative Ricci curvature, where c is a positive constant. If h1(x,t)=1, h2(x,t)=1, h3(x,t)=0, p=3, and q=1, then Eq (1.1) reduces to the parabolic Allen-Cahn equation. Bǎileşteanu [6] proved a differential Harnack estimate for the solution of the parabolic Allen-Cahn equation on a closed n-dimensional manifold. When h1(x,t)=a, h2(x,t)=b, h3(x,t)=0, p=1, and q=3, where a and b are two constants, Eq (1.1) reduces to the Newell-Whitehead-Segel equation. The differential Harnack estimate for the Newell-Whitehead-Segel equation was obtained by the authors in [7]. Hou [10] proved a differential Harnack estimate for positive solutions of equation (1.1) when h3(x,t)=0. For more results on differential Harnack estimates of Eq (1.1), see [11,12,13,14,15].

    The motivation of this article is to develop some differential Harnack estimates for positive solutions to Eq (1.1) on Rn. The method we employ is the parabolic maxinum principle. We are now ready to state our main results.

    Theorem 1.1. Assume that f(x,t) is a positive solution of Eq (1.1) and u=lnf. If α, β, c, d, k, a, and hi(i=1,2,3) satisfy

    α2β0,α>0, (1.2)
    {α(p1)+2βpcmax{(p1)nα24(αβ),α(p1)+βp},α(q1)+2βqdmax{(q1)nα24(αβ),α(q1)+βq},α(s1)+2βskmax{(s1)nα24(αβ),α(s1)+βs}, (1.3)
    cdkβ,anα22(αβ)>0, (1.4)

    and

    (tΔ)hi0,Δhi0,i=1,2,3, (1.5)

    then we have

    H0αΔu+β|u|2+ch1eu(p1)+dh2eu(q1)+kh3eu(s1)+at0 (1.6)

    for all t.

    Remark 1.1. (1) Compared with the previous work established in [7,8,11], here we do not assume the coefficients of equations are constant, and therefore our results can be regarded as an extension of several classical estimates.

    (2) When h3(x,t)=0, the estimate (1.6) above can be reduced to the formulas (1.6) in Theorem 1.1 of [10]. Hence the above Theorem 1.1 generalizes the result in [10].

    As applications of this estimate (1.6), we derive the blow-up of the solutions for Eq (1.1) and a classical Harnack inequality by integrating along space-time paths.

    Corollary 1.2. Let f be a positive solution of equation (1.1) with hi(i=1,2,3) satisfying (1.5), and c is a constant satisfying 0<n(p1)c<2 and cdk1. Then f blows up in finite time provided that

    f(x0,t0)(4n(2c)h1(x0,t0))1p1 (1.7)

    at some point (x0,t0).

    Corollary 1.3. Let f be a positive solution of Eq (1.1) with hi(i=1,2,3) satisfying (1.5) and u=lnf. Let γ(t)=(x(t),t), t[t1,t2], be a space-time curve joining two given points (x1,t1), (x2,t2)Rn×[0,) with 0<t1<t2. Assume further that a=nα22(αβ)nα. Then we get

    f(x1,t1)f(x2,t2)(t2t1)nexp[|x2x1|22(t2t1)]. (1.8)

    We also get the following differential Harnack estimate, which is different from (1.6).

    Theorem 1.4. Assume f(x,t) is a positive solution of Eq (1.1) and u=lnf. If ˜α, ˜β, ˜c, ˜d, ˜k, ˜a, m, and hi(i=1,2,3) satisfy

    ˜α2˜β0,m>0, (1.9)
    {˜α(p1)+2˜βp˜cmax{(p1)n˜α24(˜α˜β),˜α(p1)+˜βp},˜α(q1)+2˜βq˜dmax{(q1)n˜α24(˜α˜β),˜α(q1)+˜βq},˜α(s1)+2˜βs˜kmax{(s1)n˜α24(˜α˜β),˜α(s1)+˜βs}, (1.10)
    ˜c˜d˜k˜β,˜anm˜α22(˜α˜β)>0, (1.11)

    and

    (tΔ)hi0,Δhi0,i=1,2,3, (1.12)

    then we have

    ˜H0˜αΔu+˜β|u|2+˜ch1eu(p1)+˜dh2eu(q1)+˜kh3eu(s1)+˜a1emt0 (1.13)

    for all t.

    Remark 1.2. (1) When h1(x,t)=eγt with a constant γ and h2(x,t)=h3(x,t)=0, Theorem 1.4 reduces to Theorem 1 in [14]. Hence the above Theorem 1.4 generalizes the result in [14].

    (2) The case of n=1, p=2, and h2=h3=0 was studied by Hamilton in [16]. Particularly, we apply Theorem 1.4 with n=1 and p=2, and by picking ˜α=1, ˜β=0, h1=1, h2=h3=0, ˜a=m2, and ˜c=14, we conclude that

    uxx+14eu+m2(1emt)0,

    yielding

    ft+m2(1emt)ff2xf+34f2.

    If m is small enough, the estimate in [16] will be improved.

    Corollary 1.5. Let f be a positive solution of Eq (1.1) with hi(i=1,2,3) satisfying (1.12) and u=lnf. Let τ(t)=(x(t),t), t[t1,t2], be a space-time curve joining two given points (x1,t1), (x2,t2)Rn×[0,) with 0<t1<t2. Assume further that ˜a=nm˜α22(˜α˜β)nm˜α. Then we get

    f(x1,t1)f(x2,t2)(emt21emt11)nexp[|x2x1|22(t2t1)]. (1.14)

    The paper is structured as follows. In Section 2, we prove Theorem 1.1, Corollary 1.2 and Corollary 1.3. In Section 3, we prove Theorem 1.4 and Corollary 1.5.

    Using the parabolic maximum principle, we will first derive our differential Harnack estimate in this section. We always write ut for the partial derivative of u with respect to t and omit the time variable t for simplicity.

    Let f(x,t)C(Rn×[0,)) be a positive solution of (1.1) and u=lnf. Substituting f=eu into Eq (1.1), we have

    ut=Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1). (2.1)

    Based on this observation, a Harnack quantity H is defined as

    H:=αΔu+β|u|2+ch1eu(p1)+dh2eu(q1)+kh3eu(s1)+ϕ, (2.2)

    where α, β, c, d, kR and ϕ:Rn×[0,)[0,) will be determined later. To support our primary findings, we first assert and prove a technical lemma.

    Lemma 2.1. u=lnf and H are defined as in (2.2). Assume that f(x,t) is a positive solution of Eq (1.1). Then we have

    Ht=ΔH+2Hu+(p1)h1eu(p1)H+(q1)h2eu(q1)H+(s1)h3eu(s1)H+2(αβ)|u|2+[α(p1)+βcp](p1)h1eu(p1)|u|2+[α(q1)+βdq](q1)h2eu(q1)|u|2+[α(s1)+βks](s1)h3eu(s1)|u|2+[(αc)Δh1+2(α(p1)+βcp)h1u+c(h1)th1(p1)ϕ]eu(p1)+[(αd)Δh2+2(α(q1)+βdq)h2u+d(h2)th2(q1)ϕ]eu(q1)+[(αk)Δh3+2(α(s1)+βks)h3u+k(h3)th3(s1)ϕ]eu(s1)+[(cd)(pq)]h1h2eu(p1)eu(q1)+[(ck)(ps)]h1h3eu(p1)eu(s1)+[(dk)(qs)]h2h3eu(q1)eu(s1)2ϕuΔϕ+ϕt. (2.3)

    Proof. Using (2.1), we can compute the following evolution equations:

    Ht=α(Δu)t+β(|u|2)t+c(h1eu(p1))t+d(h2eu(q1))t+k(h3eu(s1))t+ϕt,
    (Δu)t=Δ(ut)=Δ(Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1))=Δ(Δu)+Δ|u|2+Δ(h1eu(p1))+Δ(h2eu(q1))+Δ(h3eu(s1))

    and

    (|u|2)t=2(ut)u=2(Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1))u=Δ|u|22|u|2+2|u|2u+2(h1eu(p1))u+2(h2eu(q1))u+2(h3eu(s1))u,

    where we applied the formula

    Δ|u|2=2uΔu+2|u|2. (2.4)

    Hence we get

    Ht=α[Δ(Δu)+Δ|u|2+Δ(h1eu(p1))+Δ(h2eu(q1))+Δ(h3eu(s1))]+β[Δ|u|22|u|2+2|u|2u+2(h1eu(p1))u+2(h2eu(q1))u+2(h3eu(s1))u]+ceu(p1)(h1)t+ch1(p1)eu(p1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+deu(q1)(h2)t+dh2(q1)eu(q1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+keu(s1)(h3)t+kh3(s1)eu(s1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+ϕt. (2.5)

    A direct calculation gives

    ΔH=Δ(αΔu+β|u|2+ch1eu(p1)+dh2eu(q1)+kh3eu(s1)+ϕ)=αΔ(Δu)+βΔ|u|2+cΔ(h1eu(p1))+dΔ(h2eu(q1))+kΔ(h3eu(s1))+Δϕ (2.6)

    and

    H=(αΔu+β|u|2+ch1eu(p1)+dh2eu(q1)+kh3eu(s1)+ϕ)=αΔu+β|u|2+c(h1eu(p1))+d(h2eu(q1))+k(h3eu(s1))+ϕ. (2.7)

    Using (2.4), (2.6), and (2.5), we obtain

    Ht=ΔH+2(αβ)|u|2+2αuΔu+(αc)Δ(h1eu(p1))+(αd)Δ(h2eu(q1))+(αk)Δ(h3eu(s1))+β[2|u|2u+2(h1eu(p1))u+2(h2eu(q1))u+2(h3eu(s1))u]Δϕ+ceu(p1)(h1)t+ch1(p1)eu(p1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+deu(q1)(h2)t+dh2(q1)eu(q1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+keu(s1)(h3)t+kh3(s1)eu(s1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+ϕt. (2.8)

    By (2.8) and (2.7), we get

    Ht=ΔH+2(αβ)|u|2+2Hu+(αc)Δ(h1eu(p1))+(αd)Δ(h2eu(q1))+(αk)Δ(h3eu(s1))+2(βc)(h1eu(p1))u+2(βd)(h2eu(q1))u+2(βk)(h3eu(s1))uΔϕ2ϕu+ceu(p1)(h1)t+ch1(p1)eu(p1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+deu(q1)(h2)t+dh2(q1)eu(q1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+keu(s1)(h3)t+kh3(s1)eu(s1)[Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)]+ϕt. (2.9)

    Direct computations show that

    {Δ(h1eu(p1))=eu(p1)Δh1+2(p1)eu(p1)h1u+h1(p1)2eu(p1)|u|2+h1(p1)eu(p1)Δu,Δ(h2eu(q1))=eu(q1)Δh2+2(q1)eu(q1)h2u+h2(q1)2eu(q1)|u|2+h2(q1)eu(q1)Δu,Δ(h3eu(s1))=eu(s1)Δh3+2(s1)eu(s1)h3u+h3(s1)2eu(s1)|u|2+h3(s1)eu(s1)Δu (2.10)

    and

    {(h1eu(p1))u=eu(p1)h1u+(p1)h1eu(p1)|u|2,(h2eu(q1))u=eu(q1)h2u+(q1)h2eu(q1)|u|2,(h3eu(s1))u=eu(s1)h3u+(s1)h3eu(s1)|u|2. (2.11)

    Substituting (2.10) and (2.11) into (2.9), we get (2.3). This completes the proof of Lemma 2.1.

    We can now validate Theorem 1.1.

    Proof of Theorem 1.1. Define the n-rectangle R:=Πni=1[pi,qi]Rn, and set

    ϕR(x,t)=at+nk=1(b(xkpk)2+b(qkxk)2) (2.12)

    for t>0, a>0, b>0, and x=(x1,...,xn)R, while ϕR+ as xipi, qi or t0.

    The corresponding Harnack quantity is

    HR=αΔu+β|u|2+ch1eu(p1)+dh2eu(q1)+kh3eu(s1)+ϕR(x,t).

    Note that HRH0 as RRn, and HR>0 for small t.

    So as to obtain a contradiction, assume that there is a first time t0 and point x0R such that HR(x0,t0)=0. Then at (x0,t0), we have

    (HR)t0,HR=0,ΔHR0

    and

    Δu=1α(β|u|2+ch1eu(p1)+dh2eu(q1)+kh3eu(s1)+ϕR).

    Then using Lemma 2.1 and the Cauchy-Schwarz inequality |u|21n(Δu)2, we can get

    02(αβ)nα2(β|u|2+ch1eu(p1)+dh2eu(q1)+kh3eu(s1)+ϕR)2+[α(p1)+βcp](p1)h1eu(p1)|u|2+[α(q1)+βdq](q1)h2eu(q1)|u|2+[α(s1)+βks](s1)h3eu(s1)|u|2+[(αc)Δh1+2(α(p1)+βcp)h1u+c(h1)th1(p1)ϕR]eu(p1)+[(αd)Δh2+2(α(q1)+βdq)h2u+d(h2)th2(q1)ϕR]eu(q1)+[(αk)Δh3+2(α(s1)+βks)h3u+k(h3)th3(s1)ϕR]eu(s1)+[(cd)(pq)]h1h2eu(p1)eu(q1)+[(ck)(ps)]h1h3eu(p1)eu(s1)+[(dk)(qs)]h2h3eu(q1)eu(s1)2ϕRuΔϕR+(ϕR)t.

    Setting X=eu(p1), Y=eu(q1), Z=eu(s1), and W=|u|2, and using

    2h1u2|h1|212|u|2,
    2h2u12|h2|22|u|2,

    and

    2h3u|h3|2|u|2,

    we arrive at

    02(αβ)nα2(c2h21X2+d2h22Y2+k2h23Z2+β2W2)+[(α(p1)+βcp)(11h1(p1))+4(αβ)βcn(p1)α2](p1)h1XW+[(α(q1)+βdq)(11h2(q1))+4(αβ)βdn(q1)α2](q1)h2YW+[(α(s1)+βks)(11h3(s1))+4(αβ)βkn(s1)α2](s1)h3ZW+[(αc)Δh14(α(p1)+βcp)|h1|2+c(h1)t+(4(αβ)cnα2(p1))h1ϕR]X+[(αd)Δh24(α(q1)+βdq)|h2|2+d(h2)t+(4(αβ)dnα2(q1))h2ϕR]Y+[(αk)Δh34(α(s1)+βks)|h3|2+k(h3)t+(4(αβ)knα2(s1))h3ϕR]Z+[(cd)(pq)+4(αβ)cdnα2]h1h2XY+[(ck)(ps)+4(αβ)cknα2]h1h3XZ+[(dk)(qs)+4(αβ)dknα2]h2h3YZ2ϕRuΔϕR+(ϕR)t+2(αβ)nα2ϕ2R+4(αβ)βϕRnα2W. (2.13)

    By demonstrating that the right-hand side of (2.13) is positive, we can then obtain a contradiction. The assumption of (1.3) in Theorem 1.1 implies

    {cmax{(p1)nα24(αβ),α(p1)+βp},dmax{(q1)nα24(αβ),α(q1)+βq},kmax{(s1)nα24(αβ),α(s1)+βs}. (2.14)

    By (2.14), we get

    c(p1)nα24(αβ),d(q1)nα24(αβ),k(s1)nα24(αβ), (2.15)

    and by rewriting (2.15), we obtain

    4(αβ)cnα2(p1)0,4(αβ)dnα2(q1)0,4(αβ)knα2(s1)0, (2.16)

    and

    4(αβ)c(p1)nα21,4(αβ)d(q1)nα21,4(αβ)k(s1)nα21. (2.17)

    Using (2.14), we have

    cα(p1)+βp,dα(q1)+βq,kα(s1)+βs, (2.18)

    and by rewriting (2.18), we obtain

    α(p1)+βcp0,α(q1)+βdq0,α(s1)+βks0. (2.19)

    By combining (2.19) and (2.16), we get

    α(p1)+βcp0,4(αβ)cnα2(p1)0,
    α(q1)+βdq0,4(αβ)dnα2(q1)0, (2.20)
    α(s1)+βks0,4(αβ)knα2(s1)0.

    The requirement of (1.3) in Theorem 1.1 also suggests

    {α(p1)+2βpc,α(q1)+2βqd,α(s1)+2βsk. (2.21)

    Then, combining (2.21) and (2.17), we have

    α(p1)+βcp+4(αβ)βcn(p1)α2α(p1)+2βcp0,
    α(q1)+βdq+4(αβ)βdn(q1)α2α(q1)+2βdq0, (2.22)
    α(s1)+βks+4(αβ)βkn(s1)α2α(s1)+2βks0.

    Rewriting (2.22), we obtain

    (α(p1)+βcp)(11h1(p1))+4(αβ)βcn(p1)α20,
    (α(q1)+βdq)(11h2(q1))+4(αβ)βdn(q1)α20, (2.23)
    (α(s1)+βks)(11h3(s1))+4(αβ)βkn(s1)α20.

    Note the inequality

    4(αβ)βϕRnα2W2ϕRunα2|ϕR|24(αβ)βϕR.

    Combining (1.2), (1.4), (1.5), (2.20), and (2.23) and removing a number of non-negative terms from the right side of (2.13), we have

    0(ϕR)tΔϕRnα2|ϕR|24(αβ)βϕR+2(αβ)nα2ϕ2R. (2.24)

    By (2.12), we can compute

    ΔϕR=nk=1(6b(xkpk)4+6b(qkxk)4), (2.25)
    |ϕR|2=nk=1(2b(xkpk)32b(qkxk)3)2,

    and

    |ϕR|2ϕR=nk=1(2b(xkpk)3ϕR2b(qkxk)3ϕR)2nk=1(4b(xkpk)4+4b(qkxk)4). (2.26)

    For the sake of simplicity, we set

    A:=2(αβ)nα2>0,B:=nα24(αβ)β>0.

    To arrive at a contradiction, we need

    Aϕ2RΔϕRB|ϕR|2ϕR+(ϕR)t>0. (2.27)

    Next, plugging (2.12), (2.25), and (2.26) into the left-hand side of (2.27), we get

    A[at+nk=1(b(xkpk)2+b(qkxk)2)]2[nk=1(6b(xkpk)4+6b(qkxk)4)]B[nk=1(2b(xkpk)3ϕR2b(qkxk)3ϕR)2]at2Aa2at2+(Ab26b4bB)[nk=1(1(xkpk)4+1(qkxk)4)]. (2.28)

    By (1.4), we have Aa2a0. To prove (2.27), we need

    Ab2b(6+4B)>0.

    In summary, a and b satisfy

    anα22(αβ),bnα22(αβ)[6+nα2(αβ)β].

    Then, we can demonstrate that the inequality on the right side is positive. Thus, there is a contradiction.

    We obtain ϕRat, HRH0 if RRn, assuming that the solution is present in the complete space Rn. This suggests H00 and completes the proof.

    Proof of Corollary 1.2. We pick α=2, β=1, a=2n, and c such that 0<n(p1)c<2 and cdkβ in Theorem 1.1. Since u=lnf, we get

    Δu=fΔf|f|2f2, (2.29)
    |u|2=|f|2f2. (2.30)

    By substituting (2.29) and (2.30) into (1.6), we can calculate

    2Δff|f|2f2+ch1fp1+dh2fq1+kh3fs1+2nt0,

    and then

    2Δf|f|2f+ch1fp+dh2fq+kh3fs+2ntf0. (2.31)

    Noting

    ft=Δf+h1fp+h2fq+h3fs, (2.32)

    by (2.31) and (2.32), we have

    2ft|f|2f+2ntf(2c)h1fp+(2d)h2fq+(2k)h3fs.

    Furthermore, we observe that

    2ft+2ntf(2c)h1fp+(2d)h2fq+(2k)h3fs,

    which implies that

    2(1f)t=21f2ft1f2(2ntf+(2c)h1fp+(2d)h2fq+(2k)h3fs)=1f(2n(2d)th2fq1(2k)th3fs1t(2c)h1fp1)=1f2p(2n(2d)th2fq1(2k)th3fs1tfp1(2c)h1)1f2p(2ntfp1(2c)h1). (2.33)

    We might presume that f(4n(2c)h1))1p1 at the origin x0=0 for t0=1, and hence we have

    1fp1(2c)h14n,
    2ntfp1(2c)h12t. (2.34)

    Therefore, for t1, we obtain

    2(1f)t(0,t)1f2p(2ntfp1(2c)h1)(2c)h1f2p(0,t)(12t1)<0,

    such that f(0,t) is strictly increasing when f(0,t) is finite.

    (i) If p>2, then fp2(0,t)fp2(0,1) for t1 and (2.33) simplifies to

    2(1f)t(0,t)2ntf(0,1)(2c)h1fp2(0,1). (2.35)

    (ii) If 1<p2, it is easy to obtain that

    2p1[(1f)p1]t(0,t)=2f2p(1f)t(0,t)2ntfp1(0,1)(2c)h1. (2.36)

    Therefore, there is δ>0 such that when t is sufficiently large, the right-hand side of (2.35) and (2.36) are smaller than δ<0, and therefore 1f0 in finite time. This completes the proof.

    Proof of Corollary 1.3. We obtain H00 by the differential Harnack estimate (1.6), which indicates that

    Δu1α(β|u|2ch1eu(p1)dh2eu(q1)kh3eu(s1)at).

    Then, combined with (2.1), we calculate the evolution of u along γ, i.e.,

    (u(x(t),t))t=u˙x+ut=u˙x+Δu+|u|2+h1eu(p1)+h2eu(q1)+h3eu(s1)u˙x+|u|2(1βα)aαt+(1cα)h1eu(p1)+(1dα)h2eu(q1)+(1kα)h3eu(s1)|u|2(12βα)12|˙x|2aαt+(1cα)h1eu(p1)+(1dα)h2eu(q1)+(1kα)h3eu(s1)12|˙x|2aαt,

    where we have used the assumption α2β and kdcα.

    Hence we have

    (u(x(t),t))t12|˙x|2+aαt12|˙x|2+nt. (2.37)

    Integrating the previously mentioned quality (2.37) along γ, and taking the infimum of all such space-time pathways, we get

    t2t1d(u(x(t),t))infγ(t)=(x(t),t)t2t1(12|˙x|2+nt)dt,

    and then

    u(x1,t1)u(x2,t2)infγ(t)=(x(t),t)t2t1(12|˙x|2+nt)dt.

    Using u=lnf, we have

    f(x1,t1)f(x2,t2)exp[infγ(t)=(x(t),t)t2t1(12|˙x|2+nt)dt].

    Hence we can arrive at (1.8). This finishes the proof.

    Estimating the following Harnack quantity is our main method of research:

    ˜H:=˜αΔu+˜β|u|2+˜ch1eu(p1)+˜dh2eu(q1)+˜kh3eu(s1)+θ, (3.1)

    where ˜α, ˜β, ˜c, ˜d, ˜kR and θ:Rn×[0,)[0,) will be determined later. We now derive the derivation of ˜H in t.

    Next, similar to the proof of Lemma 2.1, we can get Lemma 3.1.

    Lemma 3.1. Suppose that f(x,t) is a positive solution of (1.1), u=lnf, and the definition of ˜H is stated in (3.1). Then we obtain

    ˜Ht=Δ˜H+2˜Hu+(p1)h1eu(p1)˜H+(q1)h2eu(q1)˜H+(s1)h3eu(s1)˜H+2(˜α˜β)|u|2+[˜α(p1)+˜β˜cp](p1)h1eu(p1)|u|2+[˜α(q1)+˜β˜dq](q1)h2eu(q1)|u|2+[˜α(s1)+˜β˜ks](s1)h3eu(s1)|u|2+[(˜α˜c)Δh1+2(˜α(p1)+˜β˜cp)h1u+˜c(h1)th1(p1)ϕ]eu(p1)+[(˜α˜d)Δh2+2(˜α(q1)+˜β˜dq)h2u+˜d(h2)th2(q1)ϕ]eu(q1)+[(˜α˜k)Δh3+2(˜α(s1)+˜β˜ks)h3u+˜k(h3)th3(s1)ϕ]eu(s1)+[(˜c˜d)(pq)]h1h2eu(p1)eu(q1)+[(˜c˜k)(ps)]h1h3eu(p1)eu(s1)+[(˜d˜k)(qs)]h2h3eu(q1)eu(s1)2θuΔθ+θt. (3.2)

    Proof of Theorem 1.4. Define the n-rectangle R:=Πni=1[pi,qi]Rn, and set

    θR(x,t)=˜a1emt+nk=1(˜b(xkpk)2+˜b(qkxk)2) (3.3)

    for t>0, ˜a>0, ˜b>0, mn˜α22(˜α˜β)[6+n˜α2(˜α˜β)˜β], and x=(x1,...,xn)R, while θR+ as xipi, qi or t0.

    The corresponding Harnack quantity is defined as

    ˜HR=˜αΔu+˜β|u|2+˜ch1eu(p1)+˜dh2eu(q1)+˜kh3eu(s1)+θR(x,t).

    Note that ˜HR˜H0 as RRn, and ˜HR>0 for small t.

    In order to obtain a contradiction, assume that there is a first time t0 and point x0R such that ˜HR(x0,t0)=0. Then at (x0,t0), we have

    (˜HR)t0,˜HR=0,Δ˜HR0,

    and

    Δu=1˜α(˜β|u|2+˜ch1eu(p1)+˜dh2eu(q1)+˜kh3eu(s1)+θR).

    Similar to the proof of (2.13), we can obtain

    02(˜α˜β)n˜α2(˜c2h21X2+˜d2h22Y2+˜k2h23Z2+˜β2W2)+[(˜α(p1)+˜β˜cp)(11h1(p1))+4(˜α˜β)˜β˜cn(p1)˜α2](p1)h1XW+[(˜α(q1)+˜β˜dq)(11h2(q1))+4(˜α˜β)˜β˜dn(q1)˜α2](q1)h2YW+[(˜α(s1)+˜β˜ks)(11h3(s1))+4(˜α˜β)˜β˜kn(s1)˜α2](s1)h3ZW+[(˜α˜c)Δh14(˜α(p1)+˜β˜cp)|h1|2+˜c(h1)t+(4(˜α˜β)˜cn˜α2(p1))h1θR]X+[(˜α˜d)Δh24(˜α(q1)+˜β˜dq)|h2|2+˜d(h2)t+(4(˜α˜β)˜dn˜α2(q1))h2θR]Y+[(˜α˜k)Δh34(˜α(s1)+˜β˜ks)|h3|2+˜k(h3)t(4(˜α˜β)˜kn˜α2(s1))h3θR]Z+[(˜c˜d)(pq)+4(˜α˜β)˜c˜dn˜α2]h1h2XY+[(˜c˜k)(ps)+4(˜α˜β)˜c˜kn˜α2]h1h3XZ+[(˜d˜k)(qs)+4(˜α˜β)˜d˜kn˜α2]h2h3YZ2θRuΔθR+(θR)t+2(˜α˜β)n˜α2θ2R+4(˜α˜β)˜βθRn˜α2W, (3.4)

    where X=eu(p1), Y=eu(q1), Z=eu(s1), and W=|u|2.

    By demonstrating that the right-hand side of (3.4) is positive, we can then obtain a contradiction. Similar to the proof of (2.24), we can get

    0(θR)tΔθRn˜α2|θR|24(˜α˜β)˜βθR+2(˜α˜β)n˜α2θ2R. (3.5)

    For the sake of simplicity, we set

    ˜A:=2(˜α˜β)n˜α2>0,˜B:=n˜α24(˜α˜β)˜β>0.

    In order to obtain a contradiction, we need

    ˜Aθ2RΔθR˜B|θR|2θR+(θR)t>0. (3.6)

    Next, similar to the calculation of (2.29), we can get

    ˜A[˜a1emt+nk=1(˜b(xkpk)2+˜b(qkxk)2)]2[nk=1(6˜b(xkpk)4+6˜b(qkxk)4)]˜B[nk=1(2˜b(xkpk)3θR2˜b(qkxk)3θR)2]m˜a(1emt)2emt˜A˜a2emtm˜a(1emt)2emt+(˜A˜b26˜b4˜b˜B)[nk=1(1(xkpk)4+1(qkxk)4)].

    By (1.9), we have ˜A˜a2emtm˜a0. To prove (3.6), we need

    ˜A˜b2˜b(6+4˜B)>0.

    In summary, ˜a and ˜b satisfy

    ˜anm˜α22(˜α˜β),˜bn˜α22(˜α˜β)[6+n˜α2(˜α˜β)˜β].

    Then, we can demonstrate that the inequality on the right side is positive. Thus, we obtain a contradiction.

    Assuming that the solution exists in the whole space Rn, we get θR˜a1emt, ˜HR˜H0 if RRn. This implies ˜H00 and completes the proof.

    Proof of Corollary 1.5. Corollary 1.5 follows immediately from Theorem 1.4 by using a similar method to that in the proof of Corollary 1.3. We omit the proof of Corollary 1.5.

    In this paper, some new types of differential Harnack estimates were established for positive solutions of the semilinear parabolic equation with three exponents on Rn. Additionally, as applications, we found the blow-up of the solutions and classical Harnack inequalities for this equation. Our results generalize some known results.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by NSFC (No. 12101530) and the Natural Science Foundation of Henan Province (No. 232300420363).

    The authors declare there is no conflict of interest.



    [1] R. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom., 37 (1993), 225–243. https://doi.org/10.4310/jdg/1214453430 doi: 10.4310/jdg/1214453430
    [2] J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., 100 (1991), 233-256. https://doi.org/10.1016/0022-1236(91)90110-Q doi: 10.1016/0022-1236(91)90110-Q
    [3] P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201. https://doi.org/10.1007/BF02399203 doi: 10.1007/BF02399203
    [4] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17 (1964), 101–134. https://doi.org/10.1002/cpa.3160170106 doi: 10.1002/cpa.3160170106
    [5] J. Moser, Correction to: "A Harnack inequality for parabolic differential equations", Comm. Pure Appl. Math., 20 (1967), 231–236.
    [6] M. Bǎileşteanu, A Harnack inequality for the parabolic Allen-Cahn equation, Ann. Global Anal. Geom., 51 (2017), 367–378. https://doi.org/10.1007/s10455-016-9540-2 doi: 10.1007/s10455-016-9540-2
    [7] D. Booth, J. Burkart, X. Cao, M. Hallgren, Z. Munro, J. Snyder, et al., A differential Harnack inequality for the Newell-Whitehead-Segel equation, Anal. Theory Appl., 35 (2019), 192–204. https://doi.org/10.4208/ata.OA-0005 doi: 10.4208/ata.OA-0005
    [8] X. Cao, M. Cerenzia, D. Kazaras, Harnack estimate for the endangered species equation, Proc. Amer. Math. Soc., 143 (2015), 4537–4545. https://doi.org/10.1090/S0002-9939-2015-12576-2 doi: 10.1090/S0002-9939-2015-12576-2
    [9] X. Cao, B. Liu, I. Pendleton, A. Ward, Differential Harnack estimates for Fisher's equation, Pacific J. Math., 290 (2017), 273–300. https://doi.org/10.2140/pjm.2017.290.273 doi: 10.2140/pjm.2017.290.273
    [10] S. Hou, L. Zou, Harnack estimate for a semilinear parabolic equation, Sci. China Math., 60 (2017), 833–840. https://doi.org/10.1007/s11425-016-0270-6 doi: 10.1007/s11425-016-0270-6
    [11] A. Abolarinwa, A. Osilagun, S. Azami, A Harnack inequality for a class of 1D nonlinear reaction-diffusion equations and applications to wave solutions, Int. J. Geom. Methods Mod. Phys., 21 (2024), 2450111. https://doi.org/10.1142/S0219887824501111 doi: 10.1142/S0219887824501111
    [12] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124. https://doi.org/10.1090/proc/14297 doi: 10.1090/proc/14297
    [13] G. Huang, Z. Huang, H. Li, Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds, Ann. Global Anal. Geom., 43 (2013), 209–232. https://doi.org/10.1007/s10455-012-9342-0 doi: 10.1007/s10455-012-9342-0
    [14] H. Wu, C. Kong, Differential Harnack estimate of solutions to a class of semilinear parabolic equation, Math. Inequal. Appl., 25 (2022), 397–405. https://doi.org/10.7153/mia-2022-25-24 doi: 10.7153/mia-2022-25-24
    [15] H. Wu, L. Min, Differential Harnack estimate for a semilinear parabolic equation on hyperbolic space, Appl. Math. Lett., 50 (2015), 69–77. https://doi.org/10.1016/j.aml.2015.06.002 doi: 10.1016/j.aml.2015.06.002
    [16] R. Hamilton, Li-Yau estimates and their Harnack inequalities, Adv. Lect. Math., 17 (2011), 329–362.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(624) PDF downloads(26) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog