
Breast cancer has a very high incidence rate worldwide, and effective screening and early diagnosis are particularly important. In this paper, two improved You Only Look Once version 8 (YOLOv8) models, the YOLOv8-GHOST and YOLOv8-P2 models, are proposed to address the difficulty of distinguishing lesions from normal tissues in mammography images. The YOLOv8-GHOST model incorporates GHOSTConv and C3GHOST modules into the original YOLOv8 model to capture richer feature information while using only 57% of the number of parameters required by the original model. The YOLOv8-P2 algorithm significantly reduces the number of necessary parameters by streamlining the number of channels in the feature map. This paper proposes the YOLOv8-GHOST-P2 model by combining the above two improvements. Experiments conducted on the MIAS and DDSM datasets show that the new models achieved significantly improved computational efficiency while maintaining high detection accuracy. Compared with the traditional YOLOv8 method, the three new models improved and achieved F1 scores of 98.38%, 98.8%, and 98.57%, while the number of parameters reduced by 42.9%, 46.64%, and 2.8%. These improvements provide a more efficient and accurate tool for clinical breast cancer screening and lay the foundation for subsequent studies. Future work will explore the potential applications of the developed models to other medical image analysis tasks.
Citation: Yihua Lan, Yingjie Lv, Jiashu Xu, Yingqi Zhang, Yanhong Zhang. Breast mass lesion area detection method based on an improved YOLOv8 model[J]. Electronic Research Archive, 2024, 32(10): 5846-5867. doi: 10.3934/era.2024270
[1] | Ruizhi Yang, Dan Jin . Dynamics in a predator-prey model with memory effect in predator and fear effect in prey. Electronic Research Archive, 2022, 30(4): 1322-1339. doi: 10.3934/era.2022069 |
[2] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[3] | Wenbin Zhong, Yuting Ding . Spatiotemporal dynamics of a predator-prey model with a gestation delay and nonlocal competition. Electronic Research Archive, 2025, 33(4): 2601-2617. doi: 10.3934/era.2025116 |
[4] | Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128 |
[5] | Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang . Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator. Electronic Research Archive, 2023, 31(4): 2120-2138. doi: 10.3934/era.2023109 |
[6] | Fengrong Zhang, Ruining Chen . Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215 |
[7] | Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304 |
[8] | San-Xing Wu, Xin-You Meng . Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation. Electronic Research Archive, 2025, 33(2): 995-1036. doi: 10.3934/era.2025045 |
[9] | Jiange Dong, Xianyi Li . Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting. Electronic Research Archive, 2022, 30(10): 3930-3948. doi: 10.3934/era.2022200 |
[10] | Chen Wang, Ruizhi Yang . Hopf bifurcation analysis of a pine wilt disease model with both time delay and an alternative food source. Electronic Research Archive, 2025, 33(5): 2815-2839. doi: 10.3934/era.2025124 |
Breast cancer has a very high incidence rate worldwide, and effective screening and early diagnosis are particularly important. In this paper, two improved You Only Look Once version 8 (YOLOv8) models, the YOLOv8-GHOST and YOLOv8-P2 models, are proposed to address the difficulty of distinguishing lesions from normal tissues in mammography images. The YOLOv8-GHOST model incorporates GHOSTConv and C3GHOST modules into the original YOLOv8 model to capture richer feature information while using only 57% of the number of parameters required by the original model. The YOLOv8-P2 algorithm significantly reduces the number of necessary parameters by streamlining the number of channels in the feature map. This paper proposes the YOLOv8-GHOST-P2 model by combining the above two improvements. Experiments conducted on the MIAS and DDSM datasets show that the new models achieved significantly improved computational efficiency while maintaining high detection accuracy. Compared with the traditional YOLOv8 method, the three new models improved and achieved F1 scores of 98.38%, 98.8%, and 98.57%, while the number of parameters reduced by 42.9%, 46.64%, and 2.8%. These improvements provide a more efficient and accurate tool for clinical breast cancer screening and lay the foundation for subsequent studies. Future work will explore the potential applications of the developed models to other medical image analysis tasks.
Recently, using Solodov and Svaiter's projection technique [1], several conjugate gradient methods for solving large-scale unconstrained optimization problems have been extended to solve nonlinear equations with convex constraints (see, [2,3,4,5,6,7,8,9] and the references therein). Due to its simplicity, low storage requirement, and applications, the method has been of interest to various research communities [10,11,12,13,14]. As known, the Fletcher-Reeves (FR) [15], Conjugate Descent (CD) [16] and Dai-Yuan (DY) [17] conjugate gradient methods have strong convergence properties, but due to jamming, they do not do well in practice. Having said that, the Hestenes-Stiefel (HS) [18], Polak-Ribiére-Polyak (PRP) [19,20], and Liu-Storey (LS) [21] conjugate gradient methods do not necessarily converge, but they often work better than FR, CD and DY. In [22], in order to combine the numerical efficiency of the LS method and the strong convergence of the FR method, Djordjević proposed a hybrid LS-FR conjugate gradient method for solving the unconstrained optimization problem. In her work, the conjugate gradient parameter was computed as a convex combination of the LS and FR conjugate gradient parameter. The hybridization parameter for the convex combination was obtained in such a way that the direction of the proposed method satisfies the condition of the Newton direction but also at the same time, it satisfies the famous Dai-Liao conjugacy condition.
In an attempt to extend the LS-FR method of Djordjević to solve monotone nonlinear equations with convex constraints, Ibrahim et al. [23] proposed a derivative-free hybrid LS-FR conjugate gradient method with a conjugate gradient parameter computed as a convex combination of derivative-free LS and FR conjugate gradient parameter. The hybridization parameter of the convex combination in their work was obtained to satisfy the famous conjugacy condition. Numerical results show that the method is efficient for solving nonlinear monotone equations with convex constraints. It is noteworthy to state that, several conditions were imposed on the hybridization parameter used in [23] in order for the hybridization parameter to take values within the interval (0,1).
Our motivation is the following: Can we extend the LS-FR method proposed by Djordjević to construct an efficient hybrid gradient-free projection algorithm where the hybridization parameter has no condition imposed on it and the hybridization parameter will always take values in the interval [0,1])? In this paper, we give a positive answer to this question. The remainder of the paper is organized as follows. In Section 2, we describe the algorithm and some properties. In Section 3, we analyze the global convergence of the method. Numerical example and application are presented in Section 4 and 5 respectively.
Consider the following unconstrained optimization problem
minimizeg(z),z∈Rn, | (2.1) |
where g:Rn→R is a continuously differentiable function whose gradient at zk is denoted by f(zk):=∇(zk). Given any starting point z0∈Rn, the algorithm in [22] is to generate a sequence of approximation {zk} to the minimum z∗ of g, in which
zk+1=zk+tkjk,k≥0, | (2.2) |
where tk>0 is the steplength which is computed by a certain line search and jk is the search direction defined by
jk={−f(zk)+βkjk−1if k>0,−f(zk)if k=0, | (2.3) |
with βk defined by
βk=(1−θk)f(zk)Tyk−1−f(zk−1)Tjk−1+θk‖f(zk)‖2‖f(zk−1)‖2,yk−1=f(zk)−f(zk−1). | (2.4) |
where θk is a hybridization parameter chosen to satisfy the Dai-Liao's condition, that is, {for t>0,}
jTkyk−1=−tsTk−1f(zk), |
where sk−1=zk+1−zk.
Motivated by (2.3) and (2.4), we propose a gradient free projection algorithm for solving the following nonlinear equation with convex constraints:
ρ(z)=0,z∈Ω | (2.5) |
where Ω⊆Rn is a nonempty closed convex set, and ρ:Rn→Rn is a continuous mapping. Our propose gradient-free projection iterative method first generates a trial point say {ck} using the relation:
ck=zk+tkjk,tk>0, | (2.6) |
the search direction jk is computed by
jk={−ρ(zk)if k=0,−πkρ(zk)+βkwk−1if k>0, | (2.7) |
where βk is computed
βk:=(1−θk)ρ(zk)Tyk−1−ρ(zk−1)Tjk−1+θk‖ρ(zk)‖2‖ρ(zk−1)‖2,θk:=‖yk−1‖2yTk−1w∗k−1,w∗k−1:=wk−1+(max{0,−wTk−1yk−1‖yk−1‖2}+1)yk−1,yk−1:=ρ(zk)−ρ(zk−1),wk−1:=ck−1−zk−1, |
and πk is obtained to satisfy the descent condition, that is, for α>0,
jTkρ(zk)≤−α‖ρ(zk)‖2. | (2.8) |
For k=0, (2.8) obviously holds. For k∈N, we have
ρ(zk)Tjk≤−(πk−βkρ(zk)Twk−1‖ρ(zk−1)‖2)‖ρ(zk)‖2. | (2.9) |
To satisfy (2.8), we only need that
πk≥l+βkρ(zk)Twk−1‖ρ(zk−1)‖2,l>0. | (2.10) |
In this paper, we choose πk as
πk=l+βkρ(zk)Twk−1‖ρ(zk−1)‖2. | (2.11) |
It is important to note that, θk has the following property:
yTk−1w∗k−1≥max{yTk−1wk−1,‖yk−1‖2}≥‖yk−1‖2>0. |
Thus,
θk=‖yk−1‖2yTk−1w∗k−1∈(0,1),∀k.
The definition of w∗k−1 is from the ideas of Li and Fukushima [24,25]. The definition of θk was originally proposed by Birgin and Martinez [26] and similar idea can be found in [27,28] and other optimization literature. The proposed algorithm is described immediately after recalling the definition of the projection operator.
Definition 2.1. Let Ω⊆Rn be a nonempty closed convex set. Then for any x∈Rn, its projection onto Ω, denoted by PΩ[x], is defined by
PΩ[x]:=argmin{‖x−y‖ :y∈Ω}. |
The projection operator PΩ has a well-known property, that is, for any x,y∈Rn the following nonexpansive property hold
‖PΩ(x)−PΩ(y)‖≤‖x−y‖,∀x,y∈Rn. | (2.12) |
Algorithm 1: |
Input. Choose an initial point z0∈Ω, Initialize the variables: τ∈(0,1),η∈(0,2) Tol>0, κ>0,l>0. Set k=0. |
Step 0. Compute ρ(zk). If ‖ρ(zk)‖≤Tol, stop. Otherwise, compute jk by (2.7) |
Step 1. Determine the steplength tk=max{τm|m=0,1,2,⋯} such that |
−ρ(zk+τmjk)Tjk⟩≥κτm‖jk‖2. (2.13) |
Step 2. Compute the trial point ck=zk+tkjk. |
Step 3. If ck∈Ω and ‖ρ(ck)‖≤Tol, stop. Otherwise, compute |
zk+1=PΩ[zk−ημkρ(ck)] (2.14) |
where |
μk=ρ(ck)T(zk−ck)‖ρ(ck)‖2. |
Step 4. Set k:=k+1 and go to step 1. |
In what follows, we assume that ρ satisfies the following assumptions.
Assumption 1. The solution set Ω∗ is nonempty.
Assumption 2. The mapping ρ is Lipschitz continuous on Rn. That is,
‖ρ(x)−ρ(y)‖≤L‖x−y‖,∀x,y∈Rn. |
Assumption 3. For any y∈Ω∗ and x∈Rn, it holds that
ρ(x)T(x−y)≥0. | (3.1) |
Lemma 3.1. Suppose that Assumption 1 holds. Then there exists a step-size tk satisfying the line search (2.13) for k≥0.
Proof. Assume there exist k0≥0 such that (2.13) fails to hold for any i≥0, that is
−⟨ρ(zk0+τijk0),jk0⟩<κτi‖jk0‖2,∀i≥1. |
Applying the continuity property of ρ and letting i→∞ yields
−ρ(zk0)Tjk0≤0, |
which negates (2.8). Hence proved.
Lemma 3.2. Suppose Assumption 1-3 is satisfied and the sequences {zk,ck,tk,jk} are generated by Algorithm 1. Then
tk≥min{1,τ(L+κ)‖ρ(zk)‖2‖jk‖2}. |
Proof. Note that from (2.13), if tk≠1, then ˉtk=τ−1tk does not satisfy (2.13), that is,
−ρ(zk+τ−1tkjk)Tjk<κτ−1tk‖jk‖2. | (3.2) |
Combining the above inequality with the descent condition (2.8), we have
‖ρ(zk)‖2=−ρ(zk)Tjk=(ρ(zk+τ−1tk)−ρ(zk))Tjk−ρ(zk+τ−1tk)Tjk≤τ−1tkL‖jk‖2+τ−1tkκ‖jk‖2=τ−1tk(L+κ)‖jk‖2. | (3.3) |
Since ρ satisfies Assumption 2 then, (3.3) holds. Thus, from (3.3),
tk≥min{1,τ(L+κ)‖ρ(zk)‖2‖jk‖2}. | (3.4) |
This proves Lemma 3.2.
Lemma 3.3. Suppose that Assumptions 1-3 hold and let {zk} and {ck} be the sequences generated by Algorithm 1. Then, ρ(ck) is an ascent direction of the function ‖z−z∗‖2 at the point zk, where z∗∈Ω∗.
Proof. At zk, the function 12‖x−z∗‖2 has a gradient of zk−z∗. By the weakly monotonicity property (3.1), it can be seen that
ρ(ck)T(zk−z∗)=ρ(ck)T(zk+ck−ck−z∗)=ρ(ck)T(ck−z∗)+ρ(ck)T(zk−ck)=ρ(ck)T(zk−ck)≥κt2k‖jk‖2=κ‖zk−ck‖2>0. | (3.5) |
The inequality above, i.e., (3.5) points out that −ρ(ck) is a descent direction of the function ‖z−z∗‖ at the iteration point zk.
Lemma 3.4. Let Assumption 1-3 hold and the sequence {zk} be generated by Algorithm 1. Suppose that z∗ is a solution of problem (2.5) with ρ(z∗)=0. Then there exists a positive δ>0 such that
‖ρ(zk)‖≤δ. | (3.6) |
Proof. Remember, by using the well-known property of PΩ, we can deduce that for any z∗∈Ω∗,
‖zk+1−z∗‖2=‖PΩ[zk−ημkρ(ck)]−z∗‖2≤‖zk−ημkρ(ck)−z∗‖2=‖zk−z∗‖−2ημkρ(ck)T(zk−z∗)+η2μ2k‖ρ(ck)‖2=‖zk−z∗‖−2ηρ(ck)T(zk−ck)‖ρ(ck)‖2ρ(ck)T(zk−z∗)+η2(ρ(ck)T(zk−ck)‖ρ(ck)‖)2≤‖zk−z∗‖−2ηρ(ck)T(zk−ck)‖ρ(ck)‖2ρ(ck)T(zk−ck)+η2(ρ(ck)T(zk−ck)‖ρ(ck)‖)2=‖zk−z∗‖2−η(2−η)(ρ(ck)T(zk−ck)‖ρ(ck)‖)2 | (3.7) |
≤‖zk−z∗‖2. | (3.8) |
From inequality (3.8) we see that {‖zk−z∗‖} is a decreasing sequence and hence {zk} is bounded. That is,
‖zk‖≤a0,a0>0. | (3.9) |
Furthermore, we obtain
‖zk+1−z∗‖≤‖zk−z∗‖≤‖zk−1−z∗‖≤⋯‖z0−z∗‖. | (3.10) |
Using the Lipchitz continuity of ρ, we have
‖ρ(zk)‖=‖ρ(zk)−ρ(z∗)‖≤L‖zk−z∗‖≤L‖z0−z∗‖. | (3.11) |
Setting δ=L‖z0−z∗‖ proves Lemma 3.4.
Lemma 3.5. Suppose Assumption 1-3 hold and the sequence {zk} and {ck} are generated by Algorithm 1. Then,
(a) {ck} is bounded
(b) limk→∞‖zk−ck‖=0
(c) limk→∞‖zk−zk+1‖=0.
Proof. (a) From (3.10), we know that the sequence {zk} is bounded. So by (3.5), we have
ρ(ck)T(zk−ck)≥κ‖zk−ck‖2. | (3.12) |
By (3.1) and (3.6) we have
ρ(ck)T(zk−ck)=(ρ(ck)−ρ(zk))T(zk−ck)+ρ(zk)T(zk−ck)≤‖ρ(zk)‖‖zk−ck‖≤δ‖zk−ck‖. |
Combined with (3.12), it is easy to deduce that
‖zk−ck‖≤δκ. |
Then, we obtain,
‖ck‖≤δκ+‖zk‖ |
Thus {ck} is bounded due to {zk} boundedness.
(b) From inequality (3.7), we get
‖zk+1−z∗‖≤‖zk−z∗‖2−η(2−η)[ρ(ck)T(zk−ck)]2‖ρ(ck)‖2≤‖zk−z∗‖2−η(2−η)κ2‖zk−ck‖4‖ρ(ck)‖2, |
which means
η(2−η)‖zk−ck‖4≤‖ρ(ck)‖2κ2(‖zk−z∗‖2−‖zk+1−z∗‖2). |
Since the mapping ρ is continuous, and the {ck} is bounded, we know that {‖ρ(ck)‖} is bounded. Therefore a positive δ1>0 exists, such that ‖ρ(ck)‖≤δ1 and moreover
η(2−η)∞∑k=0‖zk−ck‖4≤δ21κ2∞∑k=0(‖zk−z∗‖2−‖zk−z∗‖2)=δ21κ2‖z0−z∗‖2<+∞. |
Hence,
limk→∞tk‖jk‖=limk→∞‖zk−ck‖=0. | (3.13) |
Using the property of the projection operator, i.e., (2.12), we have
‖zk−zk+1‖=‖zk−PΩ[zk−ημkρ(ck)]‖≤‖zk−(zk−ημkρ(ck))‖=‖ημkρ(ck)‖≤η‖zk−ck‖. |
The global convergence result for Algorithm 1 is established via the following theorem.
Theorem 3.6. Suppose Assumption 1-3 is satisfied and the sequences {zk} are generated by the Algorithm 1. Then we
lim infk→∞‖ρ(zk)‖=0. | (3.14) |
Proof. Suppose (3.14) does not hold, meaning there exist a constant ε0>0 such that
‖ρ(zk)‖≥ε0k≥0. | (3.15) |
By (2.8), we know
‖ρ(zk)‖‖jk‖≥−ρ(zk)Tjk≥α‖ρ(zk)‖2, |
which implies
‖jk‖≥α‖ρ(zk)‖≥ε0,∀k≥0. | (3.16) |
By (2.3), we have
‖jk‖=‖−πkρ(zk)+βkwk−1‖=‖−(c+βkρ(zk)Twk−1‖ρ(zk−1)‖2)ρ(zk)+((1−θk)ρ(zk)Tyk−1−ρ(zk−1)Tjk−1+θk‖ρ(zk)‖2‖ρ(zk−1)‖2)wk−1‖≤l‖ρ(zk)‖+|βk|‖wk−1‖+(‖ρ(zk)‖|ρ(zk−1)Tjk−1|‖yk−1‖+‖ρ(zk)‖2‖ρ(zk−1)‖2)‖wk−1‖≤l‖ρ(zk)‖+2(‖ρ(zk)‖|ρ(zk−1)Tjk−1|‖yk−1‖+‖ρ(zk)‖2‖ρ(zk−1)‖2)‖wk−1‖≤l‖ρ(zk)‖+2(‖ρ(zk)‖α‖ρ(zk−1)‖2tk−1‖jk−1‖+‖ρ(zk)‖2‖ρ(zk−1)‖2)tk−1‖jk−1‖≤lδ+2δε20(tk−1‖jk−1‖)2+2δ2ε20tk−1‖jk−1‖ |
for all k∈N. Since (3.13) holds, it follows that for every ε1>0 there exist k0 such that tk−1‖jk−1‖<ε1 for every k>k0. Choosing ε1=ε0 and ℓ0=max{‖j0‖,‖j1‖,⋯,‖jk0‖,ℓ01} where ℓ01=δ(c+2+2δ/ε0), it holds that
‖jk‖≤ℓ0 | (3.17) |
for every k∈N. Integrating with (3.4),(3.15),(3.16) and (3.17), we know that for any k sufficiently large
tk‖jk‖≥min{1,τ(L+κ)‖ρ(zk)‖2‖jk‖2}‖jk‖=min{‖jk‖,τ(L+κ)‖ρ(zk)‖2‖jk‖}≥min{ε0,τε20(L+κ)ℓ0} |
The last inequality yields a contradiction with (b) in Lemma 3.5. Consequently, (3.14) holds. The proof is completed.
The Dolan and Moré performance profile [29] is used in this section to evaluate the efficiency of the proposed algorithm on a set of test problems with varying dimensions and initial points. Comparison is made with algorithm of the same class proposed in [30]. All codes were written in MATLAB environment and compiled on a HP laptop (CPU Corei3-2.5 GHz, RAM 8 GB) with Windows 10 operating system.
● Algo.1: The new method (Algorithm 1).
● Algo.2: MFRM method proposed in [30].
The parameters for Algo.1 are chosen as: τ=0.9,κ=10−4,η=1.2. While parameters for Algo.2 are set as reported in [30]. All iterative procedure are terminated whenever ‖ρ(zk)‖<10−6. The experiment is carried out on nine different problems with dimensions ranging from n=1000,5000,10,000,50,000,100,000 using seven different initial points: z1=(0.1,⋯,0.1)T,z2=(0.2,⋯,0.2)T,z3=(0.5,⋯,0.5)T,z4=(1.2,⋯,1.2)T,z5=(1.5,⋯,1.5)T,z6=(2,⋯,2)T and z7=rand(n,1). The test problems considered are listed the below where the mapping ρ(z)=(ρ1(z),ρ2(z),⋯,ρn(z))T
Problem 1 [31] Exponential Function.
ρ1(z)=ez1−1,ρi(z)=ezi+zi−1,for i=2,3,...,n,and Ω=Rn+. |
Problem 2 [31] Modified Logarithmic Function.
ρi(z)=ln(zi+1)−zin,for i=1,2,3,...,n,and Ω={z∈Rn:n∑i=1zi≤n,zi>−1,i=1,2,⋯,n}. |
Problem 3 [32]
ρi(z)=min(min(|zi|,z2i),max(|zi|,z3i))for i=2,3,...,n,and Ω=Rn+. |
Problem 4 [31] Strictly Convex Function I.
ρi(z)=ezi−1,for i=1,2,...,n,and Ω=Rn+. |
Problem 5 [31] Strictly Convex Function II.
ρi(z)=inezi−1,for i=1,2,...,n,and Ω=Rn+. |
Problem 6 [33] Tridiagonal Exponential Function.
ρ1(z)=z1−ecos(h(z1+z2)),ρi(z)=zi−ecos(h(zi−1+zi+zi+1)),for i=2,...,n−1,ρn(z)=zn−ecos(h(zn−1+zn)),h=1n+1 |
Problem 7 [34] Nonsmooth Function.
ρi(z)=zi−sin|zi−1|,i=1,2,3,...,n,and Ω={z∈Rn:n∑i=1zi≤n,zi≥−1,i=1,2,⋯,n}. |
Problem 8 [31] The Trig exp function
ρ1(z)=3z31+2z2−5+sin(z1−z2)sin(z1+z2)ρi(z)=3z3i+2zi+1−5+sin(zi−zi+1)sin(zi+zi+1)+4zi−zi−1ezi−1−zi−3fori=2,3,...,n−1ρn(z)=zn−1ezn−1−zn−4zn−3,where h=1m+1 and Ω=Rn+.. |
Problem 9 [35]
ti=n∑i=1z2i,c=10−5ρi(z)=2c(zi−1)+4(ti−0.25)zi,i=1,2,3,...,n.and Ω=Rn+. |
Figures 1-3 presents the results of the comparisons of the mentioned methods. Figure 1 shows the graph of the two methods where the performance measure is the total number of iterations. In the figure, we see that the Algo.1 obtain the most wins with the probability around 78 % and the Algo.2 method is in the second place. Figure 2 shows the performance of the considered methods relative to the total number of function evaluation. Graph of this measure shows that Algo.1 has better performance in comparison with Algo.2. In Figure 3 the performance measure is the CPU running time. The CPU running time figure also indicates that Algo.1 outperforms Algo.2. From the presented figures, it is clear that Algo.1 is the most efficient in solving the considered test problems. A detailed result of the numerical experiment for the test problems is reported in Table 2-10 in the appendix section.
The restoration of images is a process in which a distorted or damaged image is restored to its original form. Having an algorithm that can perform such function with high restoration efficiency is of importance. We consider the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) as a metric for measuring the restoration efficiency. SNR, PSNR and SSIM's larger values reflect better quality of the restored images and indicate that the restored images are closer to the original. Consider the following disturbed or incomplete observation
b=ρz+ω, | (5.1) |
where z∈Rn,b∈Rk is the observation data, ρ∈Rk×n(k<<n) is a linear operator and ω∈Rk is an error term. Our goal in this section is to recover the unknown vector z. A well-known approach for obtaining z is by solving the following ℓ1-regularization problem
minz∈Rn{σ‖z‖1+12‖ρz−b‖22} | (5.2) |
where the regularization term σ is positive, ‖⋅‖1, and ‖⋅‖2 are the ℓ1-norm and ℓ2-norm respectively. See (Refs. [36,37,38,39,40]) for various algorithms for solving (5.2). For a comprehensive procedure on how to use our proposed algorithm to solve (5.2), see [41,42].
To assess the efficiency of Algo.1 in restoring the images degraded using a Gaussian blur kernel of standard deviation 0.1, we compare its performance with the modified Fletcher-Reeves conjugate Gradient method proposed in [30]. The algorithm is referred to as Algo.2. Four test images with different sizes are considered in this experiment. The images are labelled as A, B, C and D. The algorithms are implemented based on the following
● All codes were written and implemented in Matlab environment.
● Same starting point and stopping condition (with Tol=10−5) for all the algorithms.
● Parameters for Algo.1, are chosen as η=1,τ=0.55,κ=10−4. Parameters for Algo.2 are chosen as reported in the application section of [30].
● The linear operator ρ in the experiment is choosen as the Gaussian matrix generated by the command rand(k,n) in MATLAB.
● The signal-to-noise ratio (SNR) is defined as
SNR:=20×log10(‖z‖‖˜z−z‖), |
where ˜z is recovered vector. The definition of the peak-to-signal and the structural similarity index (SSIM) ratio (PSNR) can be found in [43] and [44], respectively.
Algo.1 | Algo.2 | |||||
Test Image | SNR | PSNR | SSIM | SNR | PSNR | SSIM |
A | 16.74 | 19.03 | 0.765 | 16.66 | 18.95 | 0.760 |
B | 16.65 | 21.98 | 0.911 | 16.59 | 21.93 | 0.910 |
C | 20.93 | 22.76 | 0.913 | 20.87 | 22.70 | 0.912 |
D | 18.80 | 21.71 | 0.931 | 18.68 | 21.58 | 0.929 |
Figure 4 has four columns labelled ORI, BNI, RA1 and RA2. Images on the column labelled ORI are the original images, images on the column labelled BNI are the blurred and noisy images. RA1 are the images restored by Algo.1 and RA2 are images restored by Algo.2. Table 1 provides the SNR, PSNR and SSIM values for Algo.1 and Algo.2. It can be seen that Algo.1 has the highest SNR, PSNR and SSIM in all the images used for the experiment. This indicates that Algo.1 is more effective than Algo.2 in restoring blurred and noisy images.
"The authors acknowledge the support provided by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart research Innovation Cluster (CLASSIC), Faculty of Science, KMUTT. The first author was supported by the Petchra Pra Jom Klao Doctoral Scholarship, Academic for Ph.D. Program at KMUTT (Grant No.16/2561)."
The authors declare that they have no conflict of interest.
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 3 | 11 | 0.020026 | 0 | 32 | 128 | 0.15285 | 5.77E-07 |
z2 | 2 | 7 | 0.022233 | 0 | 23 | 92 | 0.046757 | 1.03E-07 | |
z3 | 3 | 11 | 0.028924 | 0.00E+00 | 43 | 172 | 0.085067 | 3.24E-07 | |
z4 | 2 | 7 | 0.01272 | 0.00E+00 | 28 | 112 | 0.042162 | 8.50E-07 | |
z5 | 2 | 7 | 0.012594 | 0 | 38 | 152 | 0.082875 | 7.44E-07 | |
z6 | 2 | 7 | 0.006795 | 0.00E+00 | 34 | 136 | 0.061034 | 4.36E-07 | |
z7 | 29 | 116 | 0.098046 | 3.71E-08 | 62 | 248 | 0.1162 | 3.84E-07 | |
5000 | z1 | 2 | 7 | 0.1681 | 0 | 16 | 64 | 0.097823 | 4.98E-07 |
z2 | 2 | 7 | 0.07673 | 0 | 27 | 108 | 0.16998 | 5.89E-08 | |
z3 | 2 | 7 | 0.019262 | 0.00E+00 | 34 | 136 | 0.43167 | 8.96E-07 | |
z4 | 2 | 7 | 0.041163 | 0.00E+00 | 43 | 172 | 0.24401 | 4.77E-07 | |
z5 | 2 | 7 | 0.035437 | 0.00E+00 | 36 | 144 | 0.28409 | 4.72E-07 | |
z6 | 2 | 7 | 0.031377 | 0 | 25 | 100 | 0.1577 | 8.50E-07 | |
z7 | 68 | 272 | 1.5225 | 2.22E-08 | NaN | NaN | NaN | NaN | |
10000 | z1 | 2 | 7 | 0.067548 | 0 | 7 | 28 | 0.080462 | 7.04E-07 |
z2 | 2 | 7 | 0.02502 | 0 | 24 | 96 | 0.9236 | 2.84E-07 | |
z3 | 2 | 7 | 0.037267 | 0.00E+00 | 21 | 84 | 0.82591 | 6.94E-07 | |
z4 | 2 | 7 | 0.027143 | 0 | 38 | 152 | 0.97602 | 5.16E-07 | |
z5 | 2 | 7 | 0.070627 | 0 | 28 | 112 | 0.46927 | 8.68E-07 | |
z6 | 2 | 7 | 0.052355 | 0 | 25 | 100 | 0.28425 | 8.52E-07 | |
z7 | 107 | 428 | 9.536 | 3.42E-08 | NaN | NaN | NaN | NaN | |
50000 | z1 | 2 | 7 | 0.35904 | 0 | 7 | 28 | 0.29707 | 2.32E-07 |
z2 | 2 | 7 | 0.24819 | 0 | 15 | 60 | 1.212 | 2.10E-07 | |
z3 | 2 | 7 | 0.21212 | 0.00E+00 | 7 | 28 | 0.33872 | 7.76E-07 | |
z4 | 2 | 7 | 0.265 | 0.00E+00 | 24 | 96 | 1.2315 | 7.36E-07 | |
z5 | 2 | 7 | 0.22679 | 0.00E+00 | 21 | 84 | 0.98662 | 9.19E-07 | |
z6 | 2 | 7 | 0.46048 | 0.00E+00 | 8 | 32 | 0.44742 | 4.62E-07 | |
z7 | 353 | 1412 | 85.8011 | 1.12E-11 | NaN | NaN | NaN | NaN | |
100000 | z1 | 2 | 7 | 0.26127 | 0 | 7 | 28 | 0.66487 | 2.45E-07 |
z2 | 2 | 7 | 0.42916 | 0 | 14 | 56 | 1.9555 | 4.72E-07 | |
z3 | 2 | 7 | 0.29924 | 0.00E+00 | 7 | 28 | 0.65463 | 8.36E-07 | |
z4 | 2 | 7 | 0.47753 | 0 | 28 | 112 | 4.5812 | 5.94E-07 | |
z5 | 2 | 7 | 0.28228 | 0.00E+00 | 17 | 68 | 2.0596 | 5.23E-07 | |
z6 | 2 | 7 | 0.45284 | 0.00E+00 | 8 | 32 | 1.4187 | 3.26E-07 | |
z7 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 7 | 22 | 0.047242 | 1.58E-09 | 4 | 12 | 0.075993 | 5.17E-07 |
z2 | 7 | 22 | 0.011612 | 2.12E-09 | 5 | 15 | 0.01685 | 6.04E-09 | |
z3 | 6 | 19 | 0.008748 | 7.52E-09 | 5 | 15 | 0.009081 | 4.37E-07 | |
z4 | 8 | 25 | 0.008643 | 1.95E-09 | 6 | 18 | 0.009114 | 1.52E-07 | |
z5 | 6 | 19 | 0.010119 | 8.43E-09 | 7 | 21 | 0.013185 | 1.10E-09 | |
z6 | 9 | 28 | 0.009592 | 1.04E-09 | 7 | 21 | 0.014685 | 1.74E-08 | |
z7 | 44 | 169 | 0.043234 | 9.47E-07 | 69 | 261 | 0.22456 | 6.30E-07 | |
5000 | z1 | 6 | 20 | 0.062266 | 2.97E-07 | 4 | 12 | 0.012773 | 1.75E-07 |
z2 | 6 | 20 | 0.031005 | 4.05E-07 | 5 | 15 | 0.019072 | 6.27E-10 | |
z3 | 6 | 19 | 0.022469 | 9.12E-10 | 5 | 15 | 0.03412 | 1.42E-07 | |
z4 | 7 | 23 | 0.048441 | 3.74E-07 | 6 | 18 | 0.040398 | 3.94E-08 | |
z5 | 6 | 19 | 0.032782 | 1.42E-09 | 6 | 18 | 0.030696 | 4.05E-07 | |
z6 | 7 | 22 | 0.038421 | 7.12E-09 | 7 | 21 | 0.02232 | 2.36E-09 | |
z7 | 45 | 169 | 0.32315 | 1.74E-07 | 75 | 290 | 0.68505 | 9.20E-07 | |
10000 | z1 | 5 | 16 | 0.065175 | 9.23E-09 | 4 | 12 | 0.05281 | 1.21E-07 |
z2 | 6 | 21 | 0.072794 | 3.06E-07 | 5 | 15 | 0.055137 | 2.79E-10 | |
z3 | 6 | 19 | 0.036537 | 4.32E-10 | 5 | 15 | 0.038347 | 9.73E-08 | |
z4 | 7 | 24 | 0.054625 | 2.82E-07 | 6 | 18 | 0.057504 | 2.56E-08 | |
z5 | 6 | 20 | 0.09281 | 7.38E-10 | 6 | 18 | 0.053546 | 2.93E-07 | |
z6 | 7 | 22 | 0.098951 | 4.21E-09 | 7 | 21 | 0.05207 | 1.24E-09 | |
z7 | 34 | 133 | 0.35652 | 8.45E-07 | 75 | 286 | 1.1715 | 8.81E-07 | |
50000 | z1 | 7 | 26 | 1.0892 | 1.84E-07 | 4 | 12 | 0.072347 | 6.32E-08 |
z2 | 9 | 34 | 0.57121 | 3.87E-07 | 5 | 16 | 0.17135 | 6.75E-11 | |
z3 | 6 | 21 | 0.17777 | 5.88E-07 | 5 | 15 | 0.30908 | 4.87E-08 | |
z4 | 10 | 37 | 0.79714 | 3.60E-07 | 6 | 18 | 0.30538 | 1.11E-08 | |
z5 | 7 | 25 | 0.14544 | 1.16E-07 | 6 | 18 | 0.17986 | 1.84E-07 | |
z6 | 8 | 28 | 0.24313 | 7.93E-07 | 7 | 21 | 0.11731 | 4.01E-10 | |
z7 | 36 | 141 | 1.1389 | 1.07E-07 | 87 | 326 | 3.3093 | 3.83E-07 | |
100000 | z1 | 7 | 26 | 0.35609 | 2.56E-07 | 4 | 12 | 0.23409 | 5.40E-08 |
z2 | 9 | 34 | 0.43666 | 5.47E-07 | 5 | 16 | 0.3152 | 4.27E-11 | |
z3 | 6 | 21 | 0.31721 | 7.65E-07 | 5 | 15 | 0.28597 | 4.05E-08 | |
z4 | 10 | 37 | 0.53074 | 5.09E-07 | 6 | 18 | 0.23003 | 8.15E-09 | |
z5 | 7 | 25 | 0.27827 | 1.55E-07 | 6 | 18 | 0.45582 | 1.80E-07 | |
z6 | 9 | 32 | 0.5333 | 1.09E-07 | 7 | 22 | 0.2709 | 2.71E-10 | |
z7 | 31 | 121 | 1.7511 | 5.10E-07 | 81 | 306 | 6.1345 | 9.16E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 2 | 6 | 0.007199 | 0 | 2 | 6 | 0.026849 | 0 |
z2 | 2 | 6 | 0.00552 | 0 | 2 | 6 | 0.003173 | 0 | |
z3 | 2 | 6 | 0.006377 | 0 | 2 | 6 | 0.006714 | 0 | |
z4 | 3 | 11 | 0.017561 | 0.00E+00 | 2 | 6 | 0.005403 | 0 | |
z5 | 3 | 11 | 0.007556 | 0.00E+00 | 2 | 6 | 0.009761 | 0 | |
z6 | 3 | 11 | 0.008376 | 0 | 2 | 6 | 0.003285 | 0 | |
z7 | 16 | 49 | 0.043387 | 2.91E-07 | 2 | 6 | 0.005238 | 0 | |
5000 | z1 | 2 | 6 | 0.024798 | 0 | 2 | 6 | 0.037672 | 0 |
z2 | 2 | 6 | 0.017882 | 0 | 2 | 6 | 0.016857 | 0 | |
z3 | 2 | 6 | 0.014761 | 0 | 2 | 6 | 0.016971 | 0 | |
z4 | 3 | 11 | 0.021926 | 0.00E+00 | 2 | 6 | 0.024599 | 0 | |
z5 | 3 | 11 | 0.019501 | 0.00E+00 | 2 | 6 | 0.12878 | 0 | |
z6 | 3 | 11 | 0.099645 | 0 | 2 | 6 | 0.016172 | 0 | |
z7 | 21 | 65 | 0.26663 | 8.91E-07 | 2 | 6 | 0.068901 | 0 | |
10000 | z1 | 2 | 6 | 0.053329 | 0 | 2 | 6 | 0.039629 | 0 |
z2 | 2 | 6 | 0.036889 | 0 | 2 | 6 | 0.029941 | 0 | |
z3 | 2 | 6 | 0.02419 | 0 | 2 | 6 | 0.022097 | 0 | |
z4 | 3 | 11 | 0.046062 | 0.00E+00 | 2 | 6 | 0.015668 | 0 | |
z5 | 3 | 11 | 0.17699 | 0.00E+00 | 2 | 6 | 0.1442 | 0 | |
z6 | 3 | 11 | 0.056058 | 0 | 2 | 6 | 0.080865 | 0 | |
z7 | 19 | 58 | 0.42057 | 1.22E-07 | 2 | 6 | 0.052839 | 0 | |
50000 | z1 | 2 | 6 | 0.11901 | 0 | 2 | 6 | 0.27419 | 0 |
z2 | 2 | 6 | 0.10804 | 0 | 2 | 6 | 0.228 | 0 | |
z3 | 2 | 6 | 0.15799 | 0 | 2 | 6 | 0.083129 | 0 | |
z4 | 3 | 11 | 0.27797 | 0.00E+00 | 2 | 6 | 0.09131 | 0 | |
z5 | 3 | 11 | 0.21594 | 0.00E+00 | 2 | 6 | 0.047357 | 0 | |
z6 | 3 | 11 | 0.16137 | 0 | 2 | 6 | 0.049002 | 0 | |
z7 | 21 | 64 | 1.156 | 3.21E-07 | 2 | 6 | 0.12806 | 0 | |
100000 | z1 | 2 | 6 | 0.21976 | 0 | 2 | 6 | 0.15418 | 0 |
z2 | 2 | 6 | 0.19397 | 0 | 2 | 6 | 0.44568 | 0 | |
z3 | 2 | 6 | 0.17969 | 0 | 2 | 6 | 0.79033 | 0 | |
z4 | 3 | 11 | 0.30701 | 0.00E+00 | 2 | 6 | 0.20222 | 0 | |
z5 | 3 | 11 | 0.72994 | 0.00E+00 | 2 | 6 | 0.20959 | 0 | |
z6 | 3 | 11 | 0.36806 | 0 | 2 | 6 | 0.26684 | 0 | |
z7 | 22 | 67 | 1.8809 | 2.86E-07 | 2 | 6 | 0.23472 | 0 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 2 | 7 | 0.007686 | 0 | 8 | 31 | 0.025113 | 1.65E-07 |
z2 | 2 | 7 | 0.004973 | 0 | 7 | 28 | 0.007628 | 2.32E-07 | |
z3 | 2 | 7 | 0.004693 | 0.00E+00 | 8 | 32 | 0.009827 | 7.42E-07 | |
z4 | 2 | 7 | 0.005652 | 0.00E+00 | 9 | 35 | 0.012267 | 1.62E-07 | |
z5 | 2 | 7 | 0.007206 | 0.00E+00 | 7 | 28 | 0.012782 | 3.92E-07 | |
z6 | 2 | 7 | 0.005871 | 0.00E+00 | 8 | 32 | 0.016455 | 3.68E-07 | |
z7 | 22 | 87 | 0.030189 | 0.00E+00 | 71 | 284 | 0.045157 | 1.91E-07 | |
5000 | z1 | 2 | 7 | 0.01789 | 0 | 8 | 31 | 0.035804 | 3.68E-07 |
z2 | 2 | 7 | 0.083644 | 0 | 7 | 28 | 0.056219 | 5.20E-07 | |
z3 | 2 | 7 | 0.019787 | 0.00E+00 | 9 | 36 | 0.028182 | 1.66E-07 | |
z4 | 2 | 7 | 0.02077 | 0 | 9 | 35 | 0.028652 | 3.61E-07 | |
z5 | 2 | 7 | 0.023139 | 0 | 7 | 28 | 0.09901 | 8.76E-07 | |
z6 | 2 | 7 | 0.045152 | 0 | 8 | 32 | 0.046074 | 8.22E-07 | |
z7 | 77 | 308 | 0.88375 | 2.85E-07 | 51 | 204 | 0.12808 | 9.55E-07 | |
10000 | z1 | 2 | 7 | 0.025792 | 0 | 8 | 32 | 0.043945 | 5.20E-07 |
z2 | 2 | 7 | 0.020051 | 0 | 7 | 27 | 0.050306 | 7.35E-07 | |
z3 | 2 | 7 | 0.025936 | 0.00E+00 | 9 | 36 | 0.039643 | 2.35E-07 | |
z4 | 2 | 7 | 0.03822 | 0 | 9 | 35 | 0.041378 | 5.11E-07 | |
z5 | 2 | 7 | 0.03849 | 0 | 8 | 32 | 0.13231 | 1.24E-07 | |
z6 | 2 | 7 | 0.031354 | 0.00E+00 | NaN | NaN | NaN | NaN | |
z7 | 101 | 404 | 3.4918 | 4.06E-09 | NaN | NaN | NaN | NaN | |
50000 | z1 | 2 | 7 | 0.091176 | 0 | 9 | 34 | 0.23565 | 0 |
z2 | 2 | 7 | 0.090561 | 0 | NaN | NaN | NaN | NaN | |
z3 | 2 | 7 | 0.13857 | 0.00E+00 | 9 | 35 | 0.12604 | 5.25E-07 | |
z4 | 2 | 7 | 0.10731 | 0.00E+00 | 10 | 38 | 0.426 | 0 | |
z5 | 2 | 7 | 0.14284 | 0.00E+00 | 8 | 31 | 0.47179 | 2.77E-07 | |
z6 | 2 | 7 | 0.29418 | 0.00E+00 | 9 | 35 | 0.21126 | 2.60E-07 | |
z7 | 110 | 439 | 8.6871 | 0 | 44 | 176 | 1.2526 | 3.55E-07 | |
100000 | z1 | 2 | 7 | 0.20371 | 0 | 9 | 36 | 0.2659 | 1.65E-07 |
z2 | 2 | 7 | 0.26727 | 0 | 8 | 30 | 0.48604 | 0 | |
z3 | 2 | 7 | 0.1588 | 0.00E+00 | 9 | 35 | 0.35032 | 7.42E-07 | |
z4 | 2 | 7 | 0.20624 | 0.00E+00 | 10 | 39 | 0.34301 | 1.62E-07 | |
z5 | 2 | 7 | 0.19404 | 0.00E+00 | NaN | NaN | NaN | NaN | |
z6 | 2 | 7 | 0.21718 | 0.00E+00 | 9 | 35 | 0.31142 | 3.68E-07 | |
z7 | 111 | 444 | 18.0039 | 6.11E-08 | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 34 | 127 | 0.026467 | 1.62E-07 | 71 | 263 | 0.16103 | 3.21E-07 |
z2 | 36 | 140 | 0.026972 | 7.43E-07 | 62 | 235 | 0.052281 | 1.13E-07 | |
z3 | 52 | 205 | 0.16096 | 2.58E-07 | 50 | 194 | 0.088863 | 3.72E-07 | |
z4 | 96 | 378 | 0.55079 | 4.35E-07 | NaN | NaN | NaN | NaN | |
z5 | 123 | 492 | 0.48012 | 3.96E-07 | NaN | NaN | NaN | NaN | |
z6 | 196 | 784 | 1.0967 | 6.21E-07 | NaN | NaN | NaN | NaN | |
z7 | 115 | 459 | 0.34961 | 2.89E-07 | NaN | NaN | NaN | NaN | |
5000 | z1 | 59 | 232 | 0.68163 | 2.32E-07 | 63 | 231 | 0.30231 | 3.90E-07 |
z2 | 50 | 188 | 0.29441 | 6.42E-07 | 72 | 282 | 0.18091 | 7.31E-07 | |
z3 | 179 | 709 | 2.2218 | 2.91E-07 | 60 | 232 | 0.14861 | 1.47E-07 | |
z4 | 171 | 684 | 2.9204 | 2.99E-07 | NaN | NaN | NaN | NaN | |
z5 | 297 | 1187 | 5.9983 | 3.31E-07 | NaN | NaN | NaN | NaN | |
z6 | 420 | 1680 | 9.6236 | 1.67E-07 | NaN | NaN | NaN | NaN | |
z7 | 187 | 744 | 3.4767 | 8.43E-07 | NaN | NaN | NaN | NaN | |
10000 | z1 | 77 | 300 | 1.3784 | 1.39E-07 | 75 | 283 | 0.27114 | 2.35E-07 |
z2 | 74 | 283 | 1.5399 | 1.34E-07 | 55 | 208 | 0.20873 | 3.12E-07 | |
z3 | 214 | 843 | 5.0625 | 9.68E-07 | 67 | 259 | 0.65684 | 2.52E-07 | |
z4 | 253 | 1012 | 8.4598 | 5.48E-07 | NaN | NaN | NaN | NaN | |
z5 | 383 | 1531 | 15.2491 | 1.45E-07 | NaN | NaN | NaN | NaN | |
z6 | 575 | 2300 | 24.956 | 4.27E-07 | NaN | NaN | NaN | NaN | |
z7 | 323 | 1291 | 9.6152 | 2.90E-07 | NaN | NaN | NaN | NaN | |
50000 | z1 | 135 | 534 | 12.3192 | 9.85E-07 | 65 | 253 | 1.9331 | 1.74E-07 |
z2 | 342 | 1357 | 46.7469 | 1.53E-07 | 94 | 369 | 4.3154 | 4.77E-07 | |
z3 | 326 | 1294 | 39.8986 | 4.97E-07 | NaN | NaN | NaN | NaN | |
z4 | 504 | 2016 | 82.9841 | 3.45E-07 | NaN | NaN | NaN | NaN | |
z5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z6 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z7 | 602 | 2403 | 97.0953 | 6.65E-07 | NaN | NaN | NaN | NaN | |
100000 | z1 | 164 | 645 | 25.8558 | 1.87E-07 | NaN | NaN | NaN | NaN |
z2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z3 | 400 | 1590 | 126.0758 | 7.38E-07 | NaN | NaN | NaN | NaN | |
z4 | 636 | 2544 | 240.5206 | 3.57E-07 | NaN | NaN | NaN | NaN | |
z5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z6 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z7 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 9 | 36 | 0.17935 | 8.25E-07 | 9 | 36 | 0.0153 | 8.24E-07 |
z2 | 9 | 36 | 0.03051 | 7.93E-07 | 9 | 36 | 0.048509 | 7.93E-07 | |
z3 | 9 | 36 | 0.027967 | 6.99E-07 | 9 | 36 | 0.017521 | 6.98E-07 | |
z4 | 9 | 36 | 0.015472 | 4.79E-07 | 9 | 36 | 0.014811 | 4.78E-07 | |
z5 | 9 | 36 | 0.007122 | 3.84E-07 | 9 | 36 | 0.016431 | 3.83E-07 | |
z6 | 9 | 36 | 0.010164 | 2.27E-07 | 9 | 36 | 0.009737 | 2.26E-07 | |
z7 | 9 | 36 | 0.020191 | 7.23E-07 | 9 | 36 | 0.017515 | 7.06E-07 | |
5000 | z1 | 10 | 40 | 0.048118 | 1.85E-07 | 10 | 40 | 0.082844 | 1.85E-07 |
z2 | 10 | 40 | 0.097072 | 1.78E-07 | 10 | 40 | 0.050343 | 1.78E-07 | |
z3 | 10 | 40 | 0.032297 | 1.57E-07 | 10 | 40 | 0.10792 | 1.57E-07 | |
z4 | 10 | 40 | 0.043942 | 1.07E-07 | 10 | 40 | 0.076199 | 1.07E-07 | |
z5 | 9 | 36 | 0.043841 | 8.61E-07 | 9 | 36 | 0.037916 | 8.61E-07 | |
z6 | 9 | 36 | 0.033263 | 5.08E-07 | 9 | 36 | 0.069375 | 5.08E-07 | |
z7 | 10 | 40 | 0.037194 | 1.58E-07 | 10 | 40 | 0.047672 | 1.58E-07 | |
10000 | z1 | 10 | 40 | 0.082406 | 2.62E-07 | 10 | 40 | 0.076648 | 2.62E-07 |
z2 | 10 | 40 | 0.068947 | 2.52E-07 | 10 | 40 | 0.15678 | 2.52E-07 | |
z3 | 10 | 40 | 0.058721 | 2.22E-07 | 10 | 40 | 0.13597 | 2.22E-07 | |
z4 | 10 | 40 | 0.078257 | 1.52E-07 | 10 | 40 | 0.08399 | 1.52E-07 | |
z5 | 10 | 40 | 0.062069 | 1.22E-07 | 10 | 40 | 0.07822 | 1.22E-07 | |
z6 | 9 | 36 | 0.053275 | 7.18E-07 | 9 | 36 | 0.1205 | 7.18E-07 | |
z7 | 10 | 40 | 0.057688 | 2.24E-07 | 10 | 40 | 0.080168 | 2.23E-07 | |
50000 | z1 | 10 | 40 | 0.22352 | 5.85E-07 | 10 | 39 | 0.38243 | 5.85E-07 |
z2 | 10 | 40 | 0.27436 | 5.63E-07 | 10 | 39 | 0.41361 | 5.63E-07 | |
z3 | 10 | 40 | 0.23122 | 4.96E-07 | 10 | 39 | 0.30721 | 4.96E-07 | |
z4 | 10 | 40 | 0.21192 | 3.40E-07 | 10 | 39 | 0.43086 | 3.40E-07 | |
z5 | 10 | 40 | 0.23892 | 2.72E-07 | 10 | 38 | 0.29829 | 1.26E-15 | |
z6 | 10 | 40 | 0.29017 | 1.61E-07 | 10 | 38 | 0.51415 | 6.28E-16 | |
z7 | 10 | 40 | 0.25616 | 5.01E-07 | 10 | 39 | 0.29756 | 5.00E-07 | |
100000 | z1 | 10 | 40 | 0.82944 | 8.28E-07 | 10 | 39 | 1.1183 | 8.28E-07 |
z2 | 10 | 40 | 0.47168 | 7.96E-07 | 10 | 38 | 0.6117 | 6.28E-16 | |
z3 | 10 | 40 | 0.49749 | 7.01E-07 | 10 | 38 | 0.81145 | 6.28E-16 | |
z4 | 10 | 40 | 0.52125 | 4.80E-07 | 10 | 38 | 0.79886 | 0 | |
z5 | 10 | 40 | 0.69499 | 3.85E-07 | 10 | 38 | 0.60219 | 0 | |
z6 | 10 | 40 | 0.47656 | 2.27E-07 | 10 | 38 | 0.72864 | 0 | |
z7 | 10 | 40 | 0.49578 | 7.07E-07 | 10 | 39 | 0.80741 | 7.07E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 5 | 20 | 0.046544 | 3.24E-07 | 5 | 20 | 0.008647 | 3.24E-07 |
z2 | 5 | 20 | 0.009418 | 1.43E-07 | 5 | 20 | 0.013849 | 1.43E-07 | |
z3 | 5 | 20 | 0.038932 | 1.68E-08 | 4 | 16 | 0.015388 | 5.81E-08 | |
z4 | 6 | 24 | 0.01166 | 9.16E-09 | 6 | 24 | 0.010967 | 3.39E-08 | |
z5 | 6 | 24 | 0.010929 | 1.23E-08 | 6 | 24 | 0.0107 | 4.99E-08 | |
z6 | 6 | 23 | 0.01937 | 1.04E-07 | 6 | 23 | 0.014025 | 6.55E-08 | |
z7 | 26 | 104 | 0.032336 | 8.36E-09 | 36 | 144 | 0.12555 | 5.34E-08 | |
5000 | z1 | 5 | 20 | 0.029586 | 7.25E-07 | 5 | 20 | 0.041107 | 7.25E-07 |
z2 | 5 | 20 | 0.027892 | 3.20E-07 | 5 | 20 | 0.038182 | 3.20E-07 | |
z3 | 5 | 20 | 0.035333 | 3.75E-08 | 4 | 16 | 0.12123 | 1.30E-07 | |
z4 | 6 | 24 | 0.032225 | 2.05E-08 | 6 | 24 | 0.05211 | 7.58E-08 | |
z5 | 6 | 24 | 0.026546 | 2.75E-08 | 6 | 24 | 0.038675 | 1.12E-07 | |
z6 | 6 | 23 | 0.032529 | 2.32E-07 | 6 | 23 | 0.081384 | 1.46E-07 | |
z7 | 34 | 136 | 0.24122 | 3.59E-08 | 41 | 164 | 0.29917 | 1.14E-07 | |
10000 | z1 | 6 | 24 | 0.043879 | 5.12E-09 | 6 | 24 | 0.079589 | 5.12E-09 |
z2 | 5 | 20 | 0.036531 | 4.52E-07 | 5 | 20 | 0.1417 | 4.52E-07 | |
z3 | 5 | 20 | 0.050902 | 5.31E-08 | 4 | 16 | 0.045901 | 1.84E-07 | |
z4 | 6 | 24 | 0.054078 | 2.90E-08 | 6 | 24 | 0.059807 | 1.07E-07 | |
z5 | 6 | 24 | 0.052048 | 3.89E-08 | 6 | 24 | 0.099213 | 1.58E-07 | |
z6 | 6 | 23 | 0.04894 | 3.28E-07 | 6 | 23 | 0.054029 | 2.07E-07 | |
z7 | 41 | 164 | 0.30793 | 3.45E-08 | 45 | 180 | 0.92444 | 3.64E-07 | |
50000 | z1 | 6 | 24 | 0.14 | 1.15E-08 | 6 | 24 | 0.26027 | 1.15E-08 |
z2 | 6 | 24 | 0.14343 | 5.06E-09 | 6 | 24 | 0.60276 | 5.06E-09 | |
z3 | 5 | 20 | 0.15201 | 1.19E-07 | 4 | 16 | 0.17247 | 4.11E-07 | |
z4 | 6 | 24 | 0.34794 | 6.48E-08 | 6 | 24 | 0.22999 | 2.40E-07 | |
z5 | 6 | 24 | 0.15433 | 8.70E-08 | 6 | 24 | 0.38048 | 3.53E-07 | |
z6 | 6 | 23 | 0.1425 | 7.35E-07 | 6 | 23 | 0.2271 | 4.63E-07 | |
z7 | 29 | 116 | 1.295 | 9.41E-09 | 44 | 176 | 2.2436 | 7.06E-07 | |
100000 | z1 | 6 | 24 | 0.39791 | 1.62E-08 | 6 | 24 | 0.94834 | 1.62E-08 |
z2 | 6 | 24 | 0.47548 | 7.15E-09 | 6 | 24 | 0.43453 | 7.15E-09 | |
z3 | 5 | 20 | 0.48174 | 1.68E-07 | 4 | 16 | 0.29517 | 5.81E-07 | |
z4 | 6 | 24 | 0.26721 | 9.16E-08 | 6 | 24 | 0.55119 | 3.39E-07 | |
z5 | 6 | 24 | 0.28512 | 1.23E-07 | 6 | 24 | 0.61073 | 4.99E-07 | |
z6 | 7 | 27 | 0.5385 | 5.19E-09 | 6 | 23 | 0.42035 | 6.55E-07 | |
z7 | 29 | 116 | 1.6021 | 1.19E-08 | 41 | 164 | 3.9953 | 9.23E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 66 | 264 | 0.934 | 3.48E-07 | NaN | NaN | NaN | NaN |
z2 | 101 | 404 | 0.99428 | 4.28E-07 | 41 | 164 | 0.75214 | 4.29E-07 | |
z3 | 40 | 160 | 0.40127 | 3.33E-07 | NaN | NaN | NaN | NaN | |
z4 | 39 | 156 | 0.5071 | 5.07E-07 | 39 | 156 | 0.71207 | 3.83E-07 | |
z5 | 36 | 144 | 0.61923 | 4.69E-07 | 35 | 140 | 1.4123 | 4.07E-07 | |
z6 | 4 | 14 | 0.071864 | NaN | 4 | 14 | 0.059454 | NaN | |
z7 | 23 | 89 | 0.48051 | NaN | NaN | NaN | NaN | NaN | |
5000 | z1 | 52 | 208 | 2.7649 | 2.91E-07 | NaN | NaN | NaN | NaN |
z2 | 44 | 176 | 2.1027 | 3.54E-07 | NaN | NaN | NaN | NaN | |
z3 | 42 | 168 | 2.1325 | 2.95E-07 | NaN | NaN | NaN | NaN | |
z4 | 37 | 148 | 2.0738 | 3.41E-07 | NaN | NaN | NaN | NaN | |
z5 | 16 | 60 | 0.64982 | NaN | NaN | NaN | NaN | NaN | |
z6 | 20 | 76 | 0.98188 | NaN | NaN | NaN | NaN | NaN | |
z7 | 301 | 1202 | 18.7543 | 4.37E-07 | NaN | NaN | NaN | NaN | |
10000 | z1 | 77 | 303 | 9.6495 | 3.64E-07 | NaN | NaN | NaN | NaN |
z2 | 71 | 284 | 8.0859 | 3.74E-07 | NaN | NaN | NaN | NaN | |
z3 | 62 | 248 | 7.1755 | 3.27E-07 | NaN | NaN | NaN | NaN | |
z4 | 48 | 192 | 4.1575 | 4.42E-07 | NaN | NaN | NaN | NaN | |
z5 | 15 | 55 | 0.93456 | NaN | NaN | NaN | NaN | NaN | |
z6 | 123 | 490 | 12.4072 | 3.88E-07 | NaN | NaN | NaN | NaN | |
z7 | 307 | 1226 | 35.579 | 3.46E-07 | NaN | NaN | NaN | NaN | |
50000 | z1 | 24 | 89 | 8.5017 | NaN | NaN | NaN | NaN | NaN |
z2 | 89 | 355 | 45.0395 | 4.34E-07 | NaN | NaN | NaN | NaN | |
z3 | 65 | 260 | 28.4752 | 3.57E-07 | NaN | NaN | NaN | NaN | |
z4 | 431 | 1718 | 135.7493 | 3.88E-07 | NaN | NaN | NaN | NaN | |
z5 | 6 | 21 | 2.1067 | NaN | NaN | NaN | NaN | NaN | |
z6 | 6 | 21 | 1.8349 | NaN | NaN | NaN | NaN | NaN | |
z7 | 7 | 24 | 1.8872 | NaN | NaN | NaN | NaN | NaN | |
100000 | z1 | 34 | 130 | 31.5135 | NaN | NaN | NaN | NaN | NaN |
z2 | 5 | 17 | 1.9076 | NaN | NaN | NaN | NaN | NaN | |
z3 | 87 | 332 | 64.5816 | 3.00E-07 | NaN | NaN | NaN | NaN | |
z4 | 76 | 303 | 68.3533 | 4.49E-07 | NaN | NaN | NaN | NaN | |
z5 | 5 | 17 | 2.2305 | NaN | NaN | NaN | NaN | NaN | |
z6 | 5 | 17 | 2.5293 | NaN | NaN | NaN | NaN | NaN | |
z7 | 6 | 21 | 3.1078 | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 10 | 34 | 0.032445 | 1.06E-07 | 10 | 34 | 0.005932 | 1.06E-07 |
z2 | 10 | 34 | 0.008239 | 1.06E-07 | 10 | 34 | 0.010335 | 1.06E-07 | |
z3 | 10 | 34 | 0.0073 | 1.06E-07 | 10 | 34 | 0.008407 | 1.06E-07 | |
z4 | 10 | 34 | 0.008495 | 1.06E-07 | 10 | 34 | 0.010614 | 1.06E-07 | |
z5 | 10 | 34 | 0.00772 | 1.06E-07 | 10 | 34 | 0.00775 | 1.06E-07 | |
z6 | 10 | 34 | 0.011383 | 1.06E-07 | 10 | 35 | 0.009311 | 1.06E-07 | |
z7 | 67 | 213 | 0.024778 | 9.71E-07 | 10 | 34 | 0.008864 | 1.06E-07 | |
5000 | z1 | 7 | 25 | 0.022534 | 6.89E-08 | 7 | 25 | 0.027033 | 6.89E-08 |
z2 | 7 | 25 | 0.032305 | 6.89E-08 | 7 | 25 | 0.02838 | 6.89E-08 | |
z3 | 7 | 25 | 0.026468 | 6.89E-08 | 7 | 25 | 0.068469 | 6.89E-08 | |
z4 | 7 | 25 | 0.034453 | 6.89E-08 | 7 | 26 | 0.037886 | 6.89E-08 | |
z5 | 7 | 25 | 0.021703 | 6.89E-08 | 7 | 26 | 0.037186 | 6.89E-08 | |
z6 | 7 | 25 | 0.027352 | 6.89E-08 | 7 | 26 | 0.077955 | 6.89E-08 | |
z7 | 20 | 66 | 0.061189 | 9.72E-07 | 7 | 25 | 0.037992 | 6.89E-08 | |
10000 | z1 | 6 | 22 | 0.07498 | 8.13E-08 | 6 | 22 | 0.054682 | 8.13E-08 |
z2 | 6 | 22 | 0.047478 | 8.13E-08 | 6 | 22 | 0.21797 | 8.13E-08 | |
z3 | 6 | 22 | 0.052347 | 8.13E-08 | 6 | 22 | 0.081579 | 8.13E-08 | |
z4 | 6 | 22 | 0.047644 | 8.13E-08 | 6 | 23 | 0.085064 | 8.13E-08 | |
z5 | 6 | 22 | 0.068304 | 8.13E-08 | 6 | 23 | 0.19028 | 8.13E-08 | |
z6 | 6 | 22 | 0.042771 | 8.13E-08 | 6 | 23 | 0.15365 | 8.13E-08 | |
z7 | 12 | 41 | 0.074071 | 9.08E-07 | 6 | 22 | 0.056989 | 8.13E-08 | |
50000 | z1 | 5 | 19 | 0.22112 | 1.41E-07 | 5 | 19 | 0.60662 | 1.41E-07 |
z2 | 5 | 19 | 0.21638 | 1.41E-07 | 5 | 19 | 0.33244 | 1.41E-07 | |
z3 | 5 | 19 | 0.22186 | 1.41E-07 | 5 | 20 | 0.8389 | 1.41E-07 | |
z4 | 5 | 19 | 0.37207 | 1.41E-07 | 5 | 20 | 0.63139 | 1.41E-07 | |
z5 | 5 | 19 | 0.36107 | 1.41E-07 | 5 | 20 | 1.046 | 1.41E-07 | |
z6 | 5 | 19 | 0.27063 | 1.41E-07 | 5 | 20 | 1.4673 | 1.41E-07 | |
z7 | 59 | 235 | 2.7862 | 4.11E-07 | 5 | 19 | 0.57234 | 1.41E-07 | |
100000 | z1 | 6 | 23 | 0.93893 | 2.10E-07 | 6 | 23 | 1.3525 | 2.10E-07 |
z2 | 6 | 23 | 0.60445 | 2.10E-07 | 6 | 24 | 1.5313 | 2.10E-07 | |
z3 | 6 | 23 | 0.71683 | 2.10E-07 | 6 | 24 | 1.6022 | 2.10E-07 | |
z4 | 6 | 23 | 0.57114 | 2.10E-07 | 6 | 24 | 1.7882 | 2.10E-07 | |
z5 | 6 | 23 | 0.57099 | 2.10E-07 | 6 | 24 | 1.878 | 2.10E-07 | |
z6 | 6 | 23 | 0.69104 | 2.10E-07 | 6 | 24 | 1.9634 | 2.10E-07 | |
z7 | 34 | 135 | 4.3899 | 4.52E-07 | 6 | 23 | 1.4688 | 2.10E-07 |
[1] |
X. Pei, R. Zhou, Current status and future of Chinese medicine diagnosis and treatment of breast cancer (in Chinese), Beijing Tradit. Chin. Med., 42 (2023), 704–707. https://doi.org/10.16025/j.1674-1307.2023.07.001 doi: 10.16025/j.1674-1307.2023.07.001
![]() |
[2] | E. Mahoro, M. A. Akhloufi, Breast masses detection on mammograms using recent one-shot deep object detectors, in 2023 5th International Conference on Bio-engineering for Smart Technologies (BioSMART), IEEE, (2023), 1–4. https://doi.org/10.1109/BioSMART58455.2023.10162036 |
[3] | A. Intasam, Y. Promworn, A. Juhong, S. Thanasitthichai, S. Khwayotha, T. Jiranantanakorn, et al., Optimizing the hyperparameter tuning of yolov5 for breast cancer detection, in 2023 9th International Conference on Engineering, Applied Sciences, and Technology (ICEAST), IEEE, (2023), 184–187. https://doi.org/10.1109/ICEAST58324.2023.10157611 |
[4] | X. Gao, B. Braden, S. Taylor, W. Pang, Towards real-time detection of squamous pre-cancers from oesophageal endoscopic videos, in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), IEEE, (2019), 1606–1612. https://doi.org/10.1109/ICMLA.2019.00264 |
[5] |
Y. Yang, J. Wang, Research on breast cancer pathological image classification method based on wavelet transform and YOLOv8, J. X-Ray Sci. Technol., 32 (2024), 677–687. https://doi.org/10.3233/XST-230296 doi: 10.3233/XST-230296
![]() |
[6] |
M. A. Al-Antari, S. Han, T. Kim, Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms, Comput. Methods Programs Biomed., 196 (2020), 105584. https://doi.org/10.1016/j.cmpb.2020.105584 doi: 10.1016/j.cmpb.2020.105584
![]() |
[7] | M. A. Al-masni, M. A. Al-antari, J. M. Park, G. Gi, T. Y. Kim, P. Rivera, et al., Detection and classification of the breast abnormalities in digital mammograms via regional convolutional neural network, in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, (2017), 1230–1233. https://doi.org/10.1109/EMBC.2017.8037053 |
[8] | R. K. Kassahun, M. Molinara, A. Bria, C. Marrocco, F Tortorella, Breast mass detection and classification using transfer learning on OPTIMAM dataset through RadImageNet weights, in International Conference on Image Analysis and Processing, Springer, (2024), 71–82. https://doi.org/10.1007/978-3-031-51026-7_7 |
[9] | F. Touazi, D. Gaceb, M. Chirane, S. Hrzallah, Two-stage approach for semantic image segmentation of breast cancer: Deep learning and mass detection in mammographic images, in 6th International Workshop on Informatics & Data-Driven Medicine (IDDM), CEUR Workshop Proceedings, (2023), 62–76. https://doi.org/10.1109/iciprob54042.2022.9798724 |
[10] | W. Ouyang, P. Luo, X. Zeng, S. Qiu, Y. Tian, H. Li, et al., Deepid-net: Multi-stage and deformable deep convolutional neural networks for object detection, preprint, arXiv: 1409.3505. |
[11] | C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2015), 1–9. https://doi.org/10.1109/CVPR.2015.7298594 |
[12] | S. Cheng, G. Shang, L. Zhang, Handwritten digit recognition based on improved VGG16 network, in Tenth International Conference on Graphics and Image Processing (ICGIP 2018), (2019), 110693B. https://doi.org/10.1117/12.2524281 |
[13] | B. Zoph, Q. V. Le, Neural architecture search with reinforcement learning, preprint, arXiv: 1611.01578. |
[14] | D. Cai, X. Sun, N. Zhou, X. Han, J. Yao, Efficient mitosis detection in breast cancer histology images by RCNN, in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, (2019), 919–922. https://doi.org/10.1109/ISBI.2019.8759461 |
[15] |
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2016), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 doi: 10.1109/TPAMI.2016.2577031
![]() |
[16] |
T. Mahmood, M. Arsalan, M. Owais, M. B. Lee, K. R. Park, Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs, J. Clin. Med., 9 (2020), 749. https://doi.org/10.3390/jcm9030749 doi: 10.3390/jcm9030749
![]() |
[17] | J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, preprint, arXiv: 1506.02640. |
[18] | S. R. Sindhu, J. George, S. Skaria, V. V. Varun, Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans, in Medical Imaging 2018: Computer-Aided Diagnosis, SPIE, 10575 (2018), 347–355. https://doi.org/10.1117/12.2293699 |
[19] |
H. M. Ünver, E. Ayan, Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm, Diagnostics, 9 (2019), 72. https://doi.org/10.3390/diagnostics9030072 doi: 10.3390/diagnostics9030072
![]() |
[20] | J. Sobek, J. R. M. Inojosa, B. J. M. Inojosa, S. M. Rassoulinejad-Mousavi, G, M. Conte, F. Lopez-Jimenez, et al., MedYOLO: A medical image object detection framework, J. Digit. Imaging. Inform. Med., (2024), 1–9. https://doi.org/10.1007/s10278-024-01138-2 |
[21] | K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C. Xu, Ghostnet: More features from cheap operations, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2020), 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165 |
[22] | J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, et al., Mammographic Image Analysis Society (MIAS) database v1.21, Apollo-University of Cambridge Repository, 2015. https://doi.org/10.17863/CAM.105113 |
[23] |
M. Heath, K. Bowyer, D. Kopans, P. K. Jr, R. Moore, K. Chang, et al., Current status of the digital database for screening mammography, Digital Mammography, 13 (1998), 457–460. https://doi.org/10.1007/978-94-011-5318-8_75 doi: 10.1007/978-94-011-5318-8_75
![]() |
1. | Xin Du, Quansheng Liu, Yuanhong Bi, Bifurcation analysis of a two–dimensional p53 gene regulatory network without and with time delay, 2023, 32, 2688-1594, 293, 10.3934/era.2024014 | |
2. | Huazhou Mo, Yuanfu Shao, Stability and bifurcation analysis of a delayed stage-structured predator–prey model with fear, additional food, and cooperative behavior in both species, 2025, 2025, 2731-4235, 10.1186/s13662-025-03879-y |
Algo.1 | Algo.2 | |||||
Test Image | SNR | PSNR | SSIM | SNR | PSNR | SSIM |
A | 16.74 | 19.03 | 0.765 | 16.66 | 18.95 | 0.760 |
B | 16.65 | 21.98 | 0.911 | 16.59 | 21.93 | 0.910 |
C | 20.93 | 22.76 | 0.913 | 20.87 | 22.70 | 0.912 |
D | 18.80 | 21.71 | 0.931 | 18.68 | 21.58 | 0.929 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 3 | 11 | 0.020026 | 0 | 32 | 128 | 0.15285 | 5.77E-07 |
z2 | 2 | 7 | 0.022233 | 0 | 23 | 92 | 0.046757 | 1.03E-07 | |
z3 | 3 | 11 | 0.028924 | 0.00E+00 | 43 | 172 | 0.085067 | 3.24E-07 | |
z4 | 2 | 7 | 0.01272 | 0.00E+00 | 28 | 112 | 0.042162 | 8.50E-07 | |
z5 | 2 | 7 | 0.012594 | 0 | 38 | 152 | 0.082875 | 7.44E-07 | |
z6 | 2 | 7 | 0.006795 | 0.00E+00 | 34 | 136 | 0.061034 | 4.36E-07 | |
z7 | 29 | 116 | 0.098046 | 3.71E-08 | 62 | 248 | 0.1162 | 3.84E-07 | |
5000 | z1 | 2 | 7 | 0.1681 | 0 | 16 | 64 | 0.097823 | 4.98E-07 |
z2 | 2 | 7 | 0.07673 | 0 | 27 | 108 | 0.16998 | 5.89E-08 | |
z3 | 2 | 7 | 0.019262 | 0.00E+00 | 34 | 136 | 0.43167 | 8.96E-07 | |
z4 | 2 | 7 | 0.041163 | 0.00E+00 | 43 | 172 | 0.24401 | 4.77E-07 | |
z5 | 2 | 7 | 0.035437 | 0.00E+00 | 36 | 144 | 0.28409 | 4.72E-07 | |
z6 | 2 | 7 | 0.031377 | 0 | 25 | 100 | 0.1577 | 8.50E-07 | |
z7 | 68 | 272 | 1.5225 | 2.22E-08 | NaN | NaN | NaN | NaN | |
10000 | z1 | 2 | 7 | 0.067548 | 0 | 7 | 28 | 0.080462 | 7.04E-07 |
z2 | 2 | 7 | 0.02502 | 0 | 24 | 96 | 0.9236 | 2.84E-07 | |
z3 | 2 | 7 | 0.037267 | 0.00E+00 | 21 | 84 | 0.82591 | 6.94E-07 | |
z4 | 2 | 7 | 0.027143 | 0 | 38 | 152 | 0.97602 | 5.16E-07 | |
z5 | 2 | 7 | 0.070627 | 0 | 28 | 112 | 0.46927 | 8.68E-07 | |
z6 | 2 | 7 | 0.052355 | 0 | 25 | 100 | 0.28425 | 8.52E-07 | |
z7 | 107 | 428 | 9.536 | 3.42E-08 | NaN | NaN | NaN | NaN | |
50000 | z1 | 2 | 7 | 0.35904 | 0 | 7 | 28 | 0.29707 | 2.32E-07 |
z2 | 2 | 7 | 0.24819 | 0 | 15 | 60 | 1.212 | 2.10E-07 | |
z3 | 2 | 7 | 0.21212 | 0.00E+00 | 7 | 28 | 0.33872 | 7.76E-07 | |
z4 | 2 | 7 | 0.265 | 0.00E+00 | 24 | 96 | 1.2315 | 7.36E-07 | |
z5 | 2 | 7 | 0.22679 | 0.00E+00 | 21 | 84 | 0.98662 | 9.19E-07 | |
z6 | 2 | 7 | 0.46048 | 0.00E+00 | 8 | 32 | 0.44742 | 4.62E-07 | |
z7 | 353 | 1412 | 85.8011 | 1.12E-11 | NaN | NaN | NaN | NaN | |
100000 | z1 | 2 | 7 | 0.26127 | 0 | 7 | 28 | 0.66487 | 2.45E-07 |
z2 | 2 | 7 | 0.42916 | 0 | 14 | 56 | 1.9555 | 4.72E-07 | |
z3 | 2 | 7 | 0.29924 | 0.00E+00 | 7 | 28 | 0.65463 | 8.36E-07 | |
z4 | 2 | 7 | 0.47753 | 0 | 28 | 112 | 4.5812 | 5.94E-07 | |
z5 | 2 | 7 | 0.28228 | 0.00E+00 | 17 | 68 | 2.0596 | 5.23E-07 | |
z6 | 2 | 7 | 0.45284 | 0.00E+00 | 8 | 32 | 1.4187 | 3.26E-07 | |
z7 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 7 | 22 | 0.047242 | 1.58E-09 | 4 | 12 | 0.075993 | 5.17E-07 |
z2 | 7 | 22 | 0.011612 | 2.12E-09 | 5 | 15 | 0.01685 | 6.04E-09 | |
z3 | 6 | 19 | 0.008748 | 7.52E-09 | 5 | 15 | 0.009081 | 4.37E-07 | |
z4 | 8 | 25 | 0.008643 | 1.95E-09 | 6 | 18 | 0.009114 | 1.52E-07 | |
z5 | 6 | 19 | 0.010119 | 8.43E-09 | 7 | 21 | 0.013185 | 1.10E-09 | |
z6 | 9 | 28 | 0.009592 | 1.04E-09 | 7 | 21 | 0.014685 | 1.74E-08 | |
z7 | 44 | 169 | 0.043234 | 9.47E-07 | 69 | 261 | 0.22456 | 6.30E-07 | |
5000 | z1 | 6 | 20 | 0.062266 | 2.97E-07 | 4 | 12 | 0.012773 | 1.75E-07 |
z2 | 6 | 20 | 0.031005 | 4.05E-07 | 5 | 15 | 0.019072 | 6.27E-10 | |
z3 | 6 | 19 | 0.022469 | 9.12E-10 | 5 | 15 | 0.03412 | 1.42E-07 | |
z4 | 7 | 23 | 0.048441 | 3.74E-07 | 6 | 18 | 0.040398 | 3.94E-08 | |
z5 | 6 | 19 | 0.032782 | 1.42E-09 | 6 | 18 | 0.030696 | 4.05E-07 | |
z6 | 7 | 22 | 0.038421 | 7.12E-09 | 7 | 21 | 0.02232 | 2.36E-09 | |
z7 | 45 | 169 | 0.32315 | 1.74E-07 | 75 | 290 | 0.68505 | 9.20E-07 | |
10000 | z1 | 5 | 16 | 0.065175 | 9.23E-09 | 4 | 12 | 0.05281 | 1.21E-07 |
z2 | 6 | 21 | 0.072794 | 3.06E-07 | 5 | 15 | 0.055137 | 2.79E-10 | |
z3 | 6 | 19 | 0.036537 | 4.32E-10 | 5 | 15 | 0.038347 | 9.73E-08 | |
z4 | 7 | 24 | 0.054625 | 2.82E-07 | 6 | 18 | 0.057504 | 2.56E-08 | |
z5 | 6 | 20 | 0.09281 | 7.38E-10 | 6 | 18 | 0.053546 | 2.93E-07 | |
z6 | 7 | 22 | 0.098951 | 4.21E-09 | 7 | 21 | 0.05207 | 1.24E-09 | |
z7 | 34 | 133 | 0.35652 | 8.45E-07 | 75 | 286 | 1.1715 | 8.81E-07 | |
50000 | z1 | 7 | 26 | 1.0892 | 1.84E-07 | 4 | 12 | 0.072347 | 6.32E-08 |
z2 | 9 | 34 | 0.57121 | 3.87E-07 | 5 | 16 | 0.17135 | 6.75E-11 | |
z3 | 6 | 21 | 0.17777 | 5.88E-07 | 5 | 15 | 0.30908 | 4.87E-08 | |
z4 | 10 | 37 | 0.79714 | 3.60E-07 | 6 | 18 | 0.30538 | 1.11E-08 | |
z5 | 7 | 25 | 0.14544 | 1.16E-07 | 6 | 18 | 0.17986 | 1.84E-07 | |
z6 | 8 | 28 | 0.24313 | 7.93E-07 | 7 | 21 | 0.11731 | 4.01E-10 | |
z7 | 36 | 141 | 1.1389 | 1.07E-07 | 87 | 326 | 3.3093 | 3.83E-07 | |
100000 | z1 | 7 | 26 | 0.35609 | 2.56E-07 | 4 | 12 | 0.23409 | 5.40E-08 |
z2 | 9 | 34 | 0.43666 | 5.47E-07 | 5 | 16 | 0.3152 | 4.27E-11 | |
z3 | 6 | 21 | 0.31721 | 7.65E-07 | 5 | 15 | 0.28597 | 4.05E-08 | |
z4 | 10 | 37 | 0.53074 | 5.09E-07 | 6 | 18 | 0.23003 | 8.15E-09 | |
z5 | 7 | 25 | 0.27827 | 1.55E-07 | 6 | 18 | 0.45582 | 1.80E-07 | |
z6 | 9 | 32 | 0.5333 | 1.09E-07 | 7 | 22 | 0.2709 | 2.71E-10 | |
z7 | 31 | 121 | 1.7511 | 5.10E-07 | 81 | 306 | 6.1345 | 9.16E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 2 | 6 | 0.007199 | 0 | 2 | 6 | 0.026849 | 0 |
z2 | 2 | 6 | 0.00552 | 0 | 2 | 6 | 0.003173 | 0 | |
z3 | 2 | 6 | 0.006377 | 0 | 2 | 6 | 0.006714 | 0 | |
z4 | 3 | 11 | 0.017561 | 0.00E+00 | 2 | 6 | 0.005403 | 0 | |
z5 | 3 | 11 | 0.007556 | 0.00E+00 | 2 | 6 | 0.009761 | 0 | |
z6 | 3 | 11 | 0.008376 | 0 | 2 | 6 | 0.003285 | 0 | |
z7 | 16 | 49 | 0.043387 | 2.91E-07 | 2 | 6 | 0.005238 | 0 | |
5000 | z1 | 2 | 6 | 0.024798 | 0 | 2 | 6 | 0.037672 | 0 |
z2 | 2 | 6 | 0.017882 | 0 | 2 | 6 | 0.016857 | 0 | |
z3 | 2 | 6 | 0.014761 | 0 | 2 | 6 | 0.016971 | 0 | |
z4 | 3 | 11 | 0.021926 | 0.00E+00 | 2 | 6 | 0.024599 | 0 | |
z5 | 3 | 11 | 0.019501 | 0.00E+00 | 2 | 6 | 0.12878 | 0 | |
z6 | 3 | 11 | 0.099645 | 0 | 2 | 6 | 0.016172 | 0 | |
z7 | 21 | 65 | 0.26663 | 8.91E-07 | 2 | 6 | 0.068901 | 0 | |
10000 | z1 | 2 | 6 | 0.053329 | 0 | 2 | 6 | 0.039629 | 0 |
z2 | 2 | 6 | 0.036889 | 0 | 2 | 6 | 0.029941 | 0 | |
z3 | 2 | 6 | 0.02419 | 0 | 2 | 6 | 0.022097 | 0 | |
z4 | 3 | 11 | 0.046062 | 0.00E+00 | 2 | 6 | 0.015668 | 0 | |
z5 | 3 | 11 | 0.17699 | 0.00E+00 | 2 | 6 | 0.1442 | 0 | |
z6 | 3 | 11 | 0.056058 | 0 | 2 | 6 | 0.080865 | 0 | |
z7 | 19 | 58 | 0.42057 | 1.22E-07 | 2 | 6 | 0.052839 | 0 | |
50000 | z1 | 2 | 6 | 0.11901 | 0 | 2 | 6 | 0.27419 | 0 |
z2 | 2 | 6 | 0.10804 | 0 | 2 | 6 | 0.228 | 0 | |
z3 | 2 | 6 | 0.15799 | 0 | 2 | 6 | 0.083129 | 0 | |
z4 | 3 | 11 | 0.27797 | 0.00E+00 | 2 | 6 | 0.09131 | 0 | |
z5 | 3 | 11 | 0.21594 | 0.00E+00 | 2 | 6 | 0.047357 | 0 | |
z6 | 3 | 11 | 0.16137 | 0 | 2 | 6 | 0.049002 | 0 | |
z7 | 21 | 64 | 1.156 | 3.21E-07 | 2 | 6 | 0.12806 | 0 | |
100000 | z1 | 2 | 6 | 0.21976 | 0 | 2 | 6 | 0.15418 | 0 |
z2 | 2 | 6 | 0.19397 | 0 | 2 | 6 | 0.44568 | 0 | |
z3 | 2 | 6 | 0.17969 | 0 | 2 | 6 | 0.79033 | 0 | |
z4 | 3 | 11 | 0.30701 | 0.00E+00 | 2 | 6 | 0.20222 | 0 | |
z5 | 3 | 11 | 0.72994 | 0.00E+00 | 2 | 6 | 0.20959 | 0 | |
z6 | 3 | 11 | 0.36806 | 0 | 2 | 6 | 0.26684 | 0 | |
z7 | 22 | 67 | 1.8809 | 2.86E-07 | 2 | 6 | 0.23472 | 0 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 2 | 7 | 0.007686 | 0 | 8 | 31 | 0.025113 | 1.65E-07 |
z2 | 2 | 7 | 0.004973 | 0 | 7 | 28 | 0.007628 | 2.32E-07 | |
z3 | 2 | 7 | 0.004693 | 0.00E+00 | 8 | 32 | 0.009827 | 7.42E-07 | |
z4 | 2 | 7 | 0.005652 | 0.00E+00 | 9 | 35 | 0.012267 | 1.62E-07 | |
z5 | 2 | 7 | 0.007206 | 0.00E+00 | 7 | 28 | 0.012782 | 3.92E-07 | |
z6 | 2 | 7 | 0.005871 | 0.00E+00 | 8 | 32 | 0.016455 | 3.68E-07 | |
z7 | 22 | 87 | 0.030189 | 0.00E+00 | 71 | 284 | 0.045157 | 1.91E-07 | |
5000 | z1 | 2 | 7 | 0.01789 | 0 | 8 | 31 | 0.035804 | 3.68E-07 |
z2 | 2 | 7 | 0.083644 | 0 | 7 | 28 | 0.056219 | 5.20E-07 | |
z3 | 2 | 7 | 0.019787 | 0.00E+00 | 9 | 36 | 0.028182 | 1.66E-07 | |
z4 | 2 | 7 | 0.02077 | 0 | 9 | 35 | 0.028652 | 3.61E-07 | |
z5 | 2 | 7 | 0.023139 | 0 | 7 | 28 | 0.09901 | 8.76E-07 | |
z6 | 2 | 7 | 0.045152 | 0 | 8 | 32 | 0.046074 | 8.22E-07 | |
z7 | 77 | 308 | 0.88375 | 2.85E-07 | 51 | 204 | 0.12808 | 9.55E-07 | |
10000 | z1 | 2 | 7 | 0.025792 | 0 | 8 | 32 | 0.043945 | 5.20E-07 |
z2 | 2 | 7 | 0.020051 | 0 | 7 | 27 | 0.050306 | 7.35E-07 | |
z3 | 2 | 7 | 0.025936 | 0.00E+00 | 9 | 36 | 0.039643 | 2.35E-07 | |
z4 | 2 | 7 | 0.03822 | 0 | 9 | 35 | 0.041378 | 5.11E-07 | |
z5 | 2 | 7 | 0.03849 | 0 | 8 | 32 | 0.13231 | 1.24E-07 | |
z6 | 2 | 7 | 0.031354 | 0.00E+00 | NaN | NaN | NaN | NaN | |
z7 | 101 | 404 | 3.4918 | 4.06E-09 | NaN | NaN | NaN | NaN | |
50000 | z1 | 2 | 7 | 0.091176 | 0 | 9 | 34 | 0.23565 | 0 |
z2 | 2 | 7 | 0.090561 | 0 | NaN | NaN | NaN | NaN | |
z3 | 2 | 7 | 0.13857 | 0.00E+00 | 9 | 35 | 0.12604 | 5.25E-07 | |
z4 | 2 | 7 | 0.10731 | 0.00E+00 | 10 | 38 | 0.426 | 0 | |
z5 | 2 | 7 | 0.14284 | 0.00E+00 | 8 | 31 | 0.47179 | 2.77E-07 | |
z6 | 2 | 7 | 0.29418 | 0.00E+00 | 9 | 35 | 0.21126 | 2.60E-07 | |
z7 | 110 | 439 | 8.6871 | 0 | 44 | 176 | 1.2526 | 3.55E-07 | |
100000 | z1 | 2 | 7 | 0.20371 | 0 | 9 | 36 | 0.2659 | 1.65E-07 |
z2 | 2 | 7 | 0.26727 | 0 | 8 | 30 | 0.48604 | 0 | |
z3 | 2 | 7 | 0.1588 | 0.00E+00 | 9 | 35 | 0.35032 | 7.42E-07 | |
z4 | 2 | 7 | 0.20624 | 0.00E+00 | 10 | 39 | 0.34301 | 1.62E-07 | |
z5 | 2 | 7 | 0.19404 | 0.00E+00 | NaN | NaN | NaN | NaN | |
z6 | 2 | 7 | 0.21718 | 0.00E+00 | 9 | 35 | 0.31142 | 3.68E-07 | |
z7 | 111 | 444 | 18.0039 | 6.11E-08 | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 34 | 127 | 0.026467 | 1.62E-07 | 71 | 263 | 0.16103 | 3.21E-07 |
z2 | 36 | 140 | 0.026972 | 7.43E-07 | 62 | 235 | 0.052281 | 1.13E-07 | |
z3 | 52 | 205 | 0.16096 | 2.58E-07 | 50 | 194 | 0.088863 | 3.72E-07 | |
z4 | 96 | 378 | 0.55079 | 4.35E-07 | NaN | NaN | NaN | NaN | |
z5 | 123 | 492 | 0.48012 | 3.96E-07 | NaN | NaN | NaN | NaN | |
z6 | 196 | 784 | 1.0967 | 6.21E-07 | NaN | NaN | NaN | NaN | |
z7 | 115 | 459 | 0.34961 | 2.89E-07 | NaN | NaN | NaN | NaN | |
5000 | z1 | 59 | 232 | 0.68163 | 2.32E-07 | 63 | 231 | 0.30231 | 3.90E-07 |
z2 | 50 | 188 | 0.29441 | 6.42E-07 | 72 | 282 | 0.18091 | 7.31E-07 | |
z3 | 179 | 709 | 2.2218 | 2.91E-07 | 60 | 232 | 0.14861 | 1.47E-07 | |
z4 | 171 | 684 | 2.9204 | 2.99E-07 | NaN | NaN | NaN | NaN | |
z5 | 297 | 1187 | 5.9983 | 3.31E-07 | NaN | NaN | NaN | NaN | |
z6 | 420 | 1680 | 9.6236 | 1.67E-07 | NaN | NaN | NaN | NaN | |
z7 | 187 | 744 | 3.4767 | 8.43E-07 | NaN | NaN | NaN | NaN | |
10000 | z1 | 77 | 300 | 1.3784 | 1.39E-07 | 75 | 283 | 0.27114 | 2.35E-07 |
z2 | 74 | 283 | 1.5399 | 1.34E-07 | 55 | 208 | 0.20873 | 3.12E-07 | |
z3 | 214 | 843 | 5.0625 | 9.68E-07 | 67 | 259 | 0.65684 | 2.52E-07 | |
z4 | 253 | 1012 | 8.4598 | 5.48E-07 | NaN | NaN | NaN | NaN | |
z5 | 383 | 1531 | 15.2491 | 1.45E-07 | NaN | NaN | NaN | NaN | |
z6 | 575 | 2300 | 24.956 | 4.27E-07 | NaN | NaN | NaN | NaN | |
z7 | 323 | 1291 | 9.6152 | 2.90E-07 | NaN | NaN | NaN | NaN | |
50000 | z1 | 135 | 534 | 12.3192 | 9.85E-07 | 65 | 253 | 1.9331 | 1.74E-07 |
z2 | 342 | 1357 | 46.7469 | 1.53E-07 | 94 | 369 | 4.3154 | 4.77E-07 | |
z3 | 326 | 1294 | 39.8986 | 4.97E-07 | NaN | NaN | NaN | NaN | |
z4 | 504 | 2016 | 82.9841 | 3.45E-07 | NaN | NaN | NaN | NaN | |
z5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z6 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z7 | 602 | 2403 | 97.0953 | 6.65E-07 | NaN | NaN | NaN | NaN | |
100000 | z1 | 164 | 645 | 25.8558 | 1.87E-07 | NaN | NaN | NaN | NaN |
z2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z3 | 400 | 1590 | 126.0758 | 7.38E-07 | NaN | NaN | NaN | NaN | |
z4 | 636 | 2544 | 240.5206 | 3.57E-07 | NaN | NaN | NaN | NaN | |
z5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z6 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z7 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 9 | 36 | 0.17935 | 8.25E-07 | 9 | 36 | 0.0153 | 8.24E-07 |
z2 | 9 | 36 | 0.03051 | 7.93E-07 | 9 | 36 | 0.048509 | 7.93E-07 | |
z3 | 9 | 36 | 0.027967 | 6.99E-07 | 9 | 36 | 0.017521 | 6.98E-07 | |
z4 | 9 | 36 | 0.015472 | 4.79E-07 | 9 | 36 | 0.014811 | 4.78E-07 | |
z5 | 9 | 36 | 0.007122 | 3.84E-07 | 9 | 36 | 0.016431 | 3.83E-07 | |
z6 | 9 | 36 | 0.010164 | 2.27E-07 | 9 | 36 | 0.009737 | 2.26E-07 | |
z7 | 9 | 36 | 0.020191 | 7.23E-07 | 9 | 36 | 0.017515 | 7.06E-07 | |
5000 | z1 | 10 | 40 | 0.048118 | 1.85E-07 | 10 | 40 | 0.082844 | 1.85E-07 |
z2 | 10 | 40 | 0.097072 | 1.78E-07 | 10 | 40 | 0.050343 | 1.78E-07 | |
z3 | 10 | 40 | 0.032297 | 1.57E-07 | 10 | 40 | 0.10792 | 1.57E-07 | |
z4 | 10 | 40 | 0.043942 | 1.07E-07 | 10 | 40 | 0.076199 | 1.07E-07 | |
z5 | 9 | 36 | 0.043841 | 8.61E-07 | 9 | 36 | 0.037916 | 8.61E-07 | |
z6 | 9 | 36 | 0.033263 | 5.08E-07 | 9 | 36 | 0.069375 | 5.08E-07 | |
z7 | 10 | 40 | 0.037194 | 1.58E-07 | 10 | 40 | 0.047672 | 1.58E-07 | |
10000 | z1 | 10 | 40 | 0.082406 | 2.62E-07 | 10 | 40 | 0.076648 | 2.62E-07 |
z2 | 10 | 40 | 0.068947 | 2.52E-07 | 10 | 40 | 0.15678 | 2.52E-07 | |
z3 | 10 | 40 | 0.058721 | 2.22E-07 | 10 | 40 | 0.13597 | 2.22E-07 | |
z4 | 10 | 40 | 0.078257 | 1.52E-07 | 10 | 40 | 0.08399 | 1.52E-07 | |
z5 | 10 | 40 | 0.062069 | 1.22E-07 | 10 | 40 | 0.07822 | 1.22E-07 | |
z6 | 9 | 36 | 0.053275 | 7.18E-07 | 9 | 36 | 0.1205 | 7.18E-07 | |
z7 | 10 | 40 | 0.057688 | 2.24E-07 | 10 | 40 | 0.080168 | 2.23E-07 | |
50000 | z1 | 10 | 40 | 0.22352 | 5.85E-07 | 10 | 39 | 0.38243 | 5.85E-07 |
z2 | 10 | 40 | 0.27436 | 5.63E-07 | 10 | 39 | 0.41361 | 5.63E-07 | |
z3 | 10 | 40 | 0.23122 | 4.96E-07 | 10 | 39 | 0.30721 | 4.96E-07 | |
z4 | 10 | 40 | 0.21192 | 3.40E-07 | 10 | 39 | 0.43086 | 3.40E-07 | |
z5 | 10 | 40 | 0.23892 | 2.72E-07 | 10 | 38 | 0.29829 | 1.26E-15 | |
z6 | 10 | 40 | 0.29017 | 1.61E-07 | 10 | 38 | 0.51415 | 6.28E-16 | |
z7 | 10 | 40 | 0.25616 | 5.01E-07 | 10 | 39 | 0.29756 | 5.00E-07 | |
100000 | z1 | 10 | 40 | 0.82944 | 8.28E-07 | 10 | 39 | 1.1183 | 8.28E-07 |
z2 | 10 | 40 | 0.47168 | 7.96E-07 | 10 | 38 | 0.6117 | 6.28E-16 | |
z3 | 10 | 40 | 0.49749 | 7.01E-07 | 10 | 38 | 0.81145 | 6.28E-16 | |
z4 | 10 | 40 | 0.52125 | 4.80E-07 | 10 | 38 | 0.79886 | 0 | |
z5 | 10 | 40 | 0.69499 | 3.85E-07 | 10 | 38 | 0.60219 | 0 | |
z6 | 10 | 40 | 0.47656 | 2.27E-07 | 10 | 38 | 0.72864 | 0 | |
z7 | 10 | 40 | 0.49578 | 7.07E-07 | 10 | 39 | 0.80741 | 7.07E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 5 | 20 | 0.046544 | 3.24E-07 | 5 | 20 | 0.008647 | 3.24E-07 |
z2 | 5 | 20 | 0.009418 | 1.43E-07 | 5 | 20 | 0.013849 | 1.43E-07 | |
z3 | 5 | 20 | 0.038932 | 1.68E-08 | 4 | 16 | 0.015388 | 5.81E-08 | |
z4 | 6 | 24 | 0.01166 | 9.16E-09 | 6 | 24 | 0.010967 | 3.39E-08 | |
z5 | 6 | 24 | 0.010929 | 1.23E-08 | 6 | 24 | 0.0107 | 4.99E-08 | |
z6 | 6 | 23 | 0.01937 | 1.04E-07 | 6 | 23 | 0.014025 | 6.55E-08 | |
z7 | 26 | 104 | 0.032336 | 8.36E-09 | 36 | 144 | 0.12555 | 5.34E-08 | |
5000 | z1 | 5 | 20 | 0.029586 | 7.25E-07 | 5 | 20 | 0.041107 | 7.25E-07 |
z2 | 5 | 20 | 0.027892 | 3.20E-07 | 5 | 20 | 0.038182 | 3.20E-07 | |
z3 | 5 | 20 | 0.035333 | 3.75E-08 | 4 | 16 | 0.12123 | 1.30E-07 | |
z4 | 6 | 24 | 0.032225 | 2.05E-08 | 6 | 24 | 0.05211 | 7.58E-08 | |
z5 | 6 | 24 | 0.026546 | 2.75E-08 | 6 | 24 | 0.038675 | 1.12E-07 | |
z6 | 6 | 23 | 0.032529 | 2.32E-07 | 6 | 23 | 0.081384 | 1.46E-07 | |
z7 | 34 | 136 | 0.24122 | 3.59E-08 | 41 | 164 | 0.29917 | 1.14E-07 | |
10000 | z1 | 6 | 24 | 0.043879 | 5.12E-09 | 6 | 24 | 0.079589 | 5.12E-09 |
z2 | 5 | 20 | 0.036531 | 4.52E-07 | 5 | 20 | 0.1417 | 4.52E-07 | |
z3 | 5 | 20 | 0.050902 | 5.31E-08 | 4 | 16 | 0.045901 | 1.84E-07 | |
z4 | 6 | 24 | 0.054078 | 2.90E-08 | 6 | 24 | 0.059807 | 1.07E-07 | |
z5 | 6 | 24 | 0.052048 | 3.89E-08 | 6 | 24 | 0.099213 | 1.58E-07 | |
z6 | 6 | 23 | 0.04894 | 3.28E-07 | 6 | 23 | 0.054029 | 2.07E-07 | |
z7 | 41 | 164 | 0.30793 | 3.45E-08 | 45 | 180 | 0.92444 | 3.64E-07 | |
50000 | z1 | 6 | 24 | 0.14 | 1.15E-08 | 6 | 24 | 0.26027 | 1.15E-08 |
z2 | 6 | 24 | 0.14343 | 5.06E-09 | 6 | 24 | 0.60276 | 5.06E-09 | |
z3 | 5 | 20 | 0.15201 | 1.19E-07 | 4 | 16 | 0.17247 | 4.11E-07 | |
z4 | 6 | 24 | 0.34794 | 6.48E-08 | 6 | 24 | 0.22999 | 2.40E-07 | |
z5 | 6 | 24 | 0.15433 | 8.70E-08 | 6 | 24 | 0.38048 | 3.53E-07 | |
z6 | 6 | 23 | 0.1425 | 7.35E-07 | 6 | 23 | 0.2271 | 4.63E-07 | |
z7 | 29 | 116 | 1.295 | 9.41E-09 | 44 | 176 | 2.2436 | 7.06E-07 | |
100000 | z1 | 6 | 24 | 0.39791 | 1.62E-08 | 6 | 24 | 0.94834 | 1.62E-08 |
z2 | 6 | 24 | 0.47548 | 7.15E-09 | 6 | 24 | 0.43453 | 7.15E-09 | |
z3 | 5 | 20 | 0.48174 | 1.68E-07 | 4 | 16 | 0.29517 | 5.81E-07 | |
z4 | 6 | 24 | 0.26721 | 9.16E-08 | 6 | 24 | 0.55119 | 3.39E-07 | |
z5 | 6 | 24 | 0.28512 | 1.23E-07 | 6 | 24 | 0.61073 | 4.99E-07 | |
z6 | 7 | 27 | 0.5385 | 5.19E-09 | 6 | 23 | 0.42035 | 6.55E-07 | |
z7 | 29 | 116 | 1.6021 | 1.19E-08 | 41 | 164 | 3.9953 | 9.23E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 66 | 264 | 0.934 | 3.48E-07 | NaN | NaN | NaN | NaN |
z2 | 101 | 404 | 0.99428 | 4.28E-07 | 41 | 164 | 0.75214 | 4.29E-07 | |
z3 | 40 | 160 | 0.40127 | 3.33E-07 | NaN | NaN | NaN | NaN | |
z4 | 39 | 156 | 0.5071 | 5.07E-07 | 39 | 156 | 0.71207 | 3.83E-07 | |
z5 | 36 | 144 | 0.61923 | 4.69E-07 | 35 | 140 | 1.4123 | 4.07E-07 | |
z6 | 4 | 14 | 0.071864 | NaN | 4 | 14 | 0.059454 | NaN | |
z7 | 23 | 89 | 0.48051 | NaN | NaN | NaN | NaN | NaN | |
5000 | z1 | 52 | 208 | 2.7649 | 2.91E-07 | NaN | NaN | NaN | NaN |
z2 | 44 | 176 | 2.1027 | 3.54E-07 | NaN | NaN | NaN | NaN | |
z3 | 42 | 168 | 2.1325 | 2.95E-07 | NaN | NaN | NaN | NaN | |
z4 | 37 | 148 | 2.0738 | 3.41E-07 | NaN | NaN | NaN | NaN | |
z5 | 16 | 60 | 0.64982 | NaN | NaN | NaN | NaN | NaN | |
z6 | 20 | 76 | 0.98188 | NaN | NaN | NaN | NaN | NaN | |
z7 | 301 | 1202 | 18.7543 | 4.37E-07 | NaN | NaN | NaN | NaN | |
10000 | z1 | 77 | 303 | 9.6495 | 3.64E-07 | NaN | NaN | NaN | NaN |
z2 | 71 | 284 | 8.0859 | 3.74E-07 | NaN | NaN | NaN | NaN | |
z3 | 62 | 248 | 7.1755 | 3.27E-07 | NaN | NaN | NaN | NaN | |
z4 | 48 | 192 | 4.1575 | 4.42E-07 | NaN | NaN | NaN | NaN | |
z5 | 15 | 55 | 0.93456 | NaN | NaN | NaN | NaN | NaN | |
z6 | 123 | 490 | 12.4072 | 3.88E-07 | NaN | NaN | NaN | NaN | |
z7 | 307 | 1226 | 35.579 | 3.46E-07 | NaN | NaN | NaN | NaN | |
50000 | z1 | 24 | 89 | 8.5017 | NaN | NaN | NaN | NaN | NaN |
z2 | 89 | 355 | 45.0395 | 4.34E-07 | NaN | NaN | NaN | NaN | |
z3 | 65 | 260 | 28.4752 | 3.57E-07 | NaN | NaN | NaN | NaN | |
z4 | 431 | 1718 | 135.7493 | 3.88E-07 | NaN | NaN | NaN | NaN | |
z5 | 6 | 21 | 2.1067 | NaN | NaN | NaN | NaN | NaN | |
z6 | 6 | 21 | 1.8349 | NaN | NaN | NaN | NaN | NaN | |
z7 | 7 | 24 | 1.8872 | NaN | NaN | NaN | NaN | NaN | |
100000 | z1 | 34 | 130 | 31.5135 | NaN | NaN | NaN | NaN | NaN |
z2 | 5 | 17 | 1.9076 | NaN | NaN | NaN | NaN | NaN | |
z3 | 87 | 332 | 64.5816 | 3.00E-07 | NaN | NaN | NaN | NaN | |
z4 | 76 | 303 | 68.3533 | 4.49E-07 | NaN | NaN | NaN | NaN | |
z5 | 5 | 17 | 2.2305 | NaN | NaN | NaN | NaN | NaN | |
z6 | 5 | 17 | 2.5293 | NaN | NaN | NaN | NaN | NaN | |
z7 | 6 | 21 | 3.1078 | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 10 | 34 | 0.032445 | 1.06E-07 | 10 | 34 | 0.005932 | 1.06E-07 |
z2 | 10 | 34 | 0.008239 | 1.06E-07 | 10 | 34 | 0.010335 | 1.06E-07 | |
z3 | 10 | 34 | 0.0073 | 1.06E-07 | 10 | 34 | 0.008407 | 1.06E-07 | |
z4 | 10 | 34 | 0.008495 | 1.06E-07 | 10 | 34 | 0.010614 | 1.06E-07 | |
z5 | 10 | 34 | 0.00772 | 1.06E-07 | 10 | 34 | 0.00775 | 1.06E-07 | |
z6 | 10 | 34 | 0.011383 | 1.06E-07 | 10 | 35 | 0.009311 | 1.06E-07 | |
z7 | 67 | 213 | 0.024778 | 9.71E-07 | 10 | 34 | 0.008864 | 1.06E-07 | |
5000 | z1 | 7 | 25 | 0.022534 | 6.89E-08 | 7 | 25 | 0.027033 | 6.89E-08 |
z2 | 7 | 25 | 0.032305 | 6.89E-08 | 7 | 25 | 0.02838 | 6.89E-08 | |
z3 | 7 | 25 | 0.026468 | 6.89E-08 | 7 | 25 | 0.068469 | 6.89E-08 | |
z4 | 7 | 25 | 0.034453 | 6.89E-08 | 7 | 26 | 0.037886 | 6.89E-08 | |
z5 | 7 | 25 | 0.021703 | 6.89E-08 | 7 | 26 | 0.037186 | 6.89E-08 | |
z6 | 7 | 25 | 0.027352 | 6.89E-08 | 7 | 26 | 0.077955 | 6.89E-08 | |
z7 | 20 | 66 | 0.061189 | 9.72E-07 | 7 | 25 | 0.037992 | 6.89E-08 | |
10000 | z1 | 6 | 22 | 0.07498 | 8.13E-08 | 6 | 22 | 0.054682 | 8.13E-08 |
z2 | 6 | 22 | 0.047478 | 8.13E-08 | 6 | 22 | 0.21797 | 8.13E-08 | |
z3 | 6 | 22 | 0.052347 | 8.13E-08 | 6 | 22 | 0.081579 | 8.13E-08 | |
z4 | 6 | 22 | 0.047644 | 8.13E-08 | 6 | 23 | 0.085064 | 8.13E-08 | |
z5 | 6 | 22 | 0.068304 | 8.13E-08 | 6 | 23 | 0.19028 | 8.13E-08 | |
z6 | 6 | 22 | 0.042771 | 8.13E-08 | 6 | 23 | 0.15365 | 8.13E-08 | |
z7 | 12 | 41 | 0.074071 | 9.08E-07 | 6 | 22 | 0.056989 | 8.13E-08 | |
50000 | z1 | 5 | 19 | 0.22112 | 1.41E-07 | 5 | 19 | 0.60662 | 1.41E-07 |
z2 | 5 | 19 | 0.21638 | 1.41E-07 | 5 | 19 | 0.33244 | 1.41E-07 | |
z3 | 5 | 19 | 0.22186 | 1.41E-07 | 5 | 20 | 0.8389 | 1.41E-07 | |
z4 | 5 | 19 | 0.37207 | 1.41E-07 | 5 | 20 | 0.63139 | 1.41E-07 | |
z5 | 5 | 19 | 0.36107 | 1.41E-07 | 5 | 20 | 1.046 | 1.41E-07 | |
z6 | 5 | 19 | 0.27063 | 1.41E-07 | 5 | 20 | 1.4673 | 1.41E-07 | |
z7 | 59 | 235 | 2.7862 | 4.11E-07 | 5 | 19 | 0.57234 | 1.41E-07 | |
100000 | z1 | 6 | 23 | 0.93893 | 2.10E-07 | 6 | 23 | 1.3525 | 2.10E-07 |
z2 | 6 | 23 | 0.60445 | 2.10E-07 | 6 | 24 | 1.5313 | 2.10E-07 | |
z3 | 6 | 23 | 0.71683 | 2.10E-07 | 6 | 24 | 1.6022 | 2.10E-07 | |
z4 | 6 | 23 | 0.57114 | 2.10E-07 | 6 | 24 | 1.7882 | 2.10E-07 | |
z5 | 6 | 23 | 0.57099 | 2.10E-07 | 6 | 24 | 1.878 | 2.10E-07 | |
z6 | 6 | 23 | 0.69104 | 2.10E-07 | 6 | 24 | 1.9634 | 2.10E-07 | |
z7 | 34 | 135 | 4.3899 | 4.52E-07 | 6 | 23 | 1.4688 | 2.10E-07 |
Algo.1 | Algo.2 | |||||
Test Image | SNR | PSNR | SSIM | SNR | PSNR | SSIM |
A | 16.74 | 19.03 | 0.765 | 16.66 | 18.95 | 0.760 |
B | 16.65 | 21.98 | 0.911 | 16.59 | 21.93 | 0.910 |
C | 20.93 | 22.76 | 0.913 | 20.87 | 22.70 | 0.912 |
D | 18.80 | 21.71 | 0.931 | 18.68 | 21.58 | 0.929 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 3 | 11 | 0.020026 | 0 | 32 | 128 | 0.15285 | 5.77E-07 |
z2 | 2 | 7 | 0.022233 | 0 | 23 | 92 | 0.046757 | 1.03E-07 | |
z3 | 3 | 11 | 0.028924 | 0.00E+00 | 43 | 172 | 0.085067 | 3.24E-07 | |
z4 | 2 | 7 | 0.01272 | 0.00E+00 | 28 | 112 | 0.042162 | 8.50E-07 | |
z5 | 2 | 7 | 0.012594 | 0 | 38 | 152 | 0.082875 | 7.44E-07 | |
z6 | 2 | 7 | 0.006795 | 0.00E+00 | 34 | 136 | 0.061034 | 4.36E-07 | |
z7 | 29 | 116 | 0.098046 | 3.71E-08 | 62 | 248 | 0.1162 | 3.84E-07 | |
5000 | z1 | 2 | 7 | 0.1681 | 0 | 16 | 64 | 0.097823 | 4.98E-07 |
z2 | 2 | 7 | 0.07673 | 0 | 27 | 108 | 0.16998 | 5.89E-08 | |
z3 | 2 | 7 | 0.019262 | 0.00E+00 | 34 | 136 | 0.43167 | 8.96E-07 | |
z4 | 2 | 7 | 0.041163 | 0.00E+00 | 43 | 172 | 0.24401 | 4.77E-07 | |
z5 | 2 | 7 | 0.035437 | 0.00E+00 | 36 | 144 | 0.28409 | 4.72E-07 | |
z6 | 2 | 7 | 0.031377 | 0 | 25 | 100 | 0.1577 | 8.50E-07 | |
z7 | 68 | 272 | 1.5225 | 2.22E-08 | NaN | NaN | NaN | NaN | |
10000 | z1 | 2 | 7 | 0.067548 | 0 | 7 | 28 | 0.080462 | 7.04E-07 |
z2 | 2 | 7 | 0.02502 | 0 | 24 | 96 | 0.9236 | 2.84E-07 | |
z3 | 2 | 7 | 0.037267 | 0.00E+00 | 21 | 84 | 0.82591 | 6.94E-07 | |
z4 | 2 | 7 | 0.027143 | 0 | 38 | 152 | 0.97602 | 5.16E-07 | |
z5 | 2 | 7 | 0.070627 | 0 | 28 | 112 | 0.46927 | 8.68E-07 | |
z6 | 2 | 7 | 0.052355 | 0 | 25 | 100 | 0.28425 | 8.52E-07 | |
z7 | 107 | 428 | 9.536 | 3.42E-08 | NaN | NaN | NaN | NaN | |
50000 | z1 | 2 | 7 | 0.35904 | 0 | 7 | 28 | 0.29707 | 2.32E-07 |
z2 | 2 | 7 | 0.24819 | 0 | 15 | 60 | 1.212 | 2.10E-07 | |
z3 | 2 | 7 | 0.21212 | 0.00E+00 | 7 | 28 | 0.33872 | 7.76E-07 | |
z4 | 2 | 7 | 0.265 | 0.00E+00 | 24 | 96 | 1.2315 | 7.36E-07 | |
z5 | 2 | 7 | 0.22679 | 0.00E+00 | 21 | 84 | 0.98662 | 9.19E-07 | |
z6 | 2 | 7 | 0.46048 | 0.00E+00 | 8 | 32 | 0.44742 | 4.62E-07 | |
z7 | 353 | 1412 | 85.8011 | 1.12E-11 | NaN | NaN | NaN | NaN | |
100000 | z1 | 2 | 7 | 0.26127 | 0 | 7 | 28 | 0.66487 | 2.45E-07 |
z2 | 2 | 7 | 0.42916 | 0 | 14 | 56 | 1.9555 | 4.72E-07 | |
z3 | 2 | 7 | 0.29924 | 0.00E+00 | 7 | 28 | 0.65463 | 8.36E-07 | |
z4 | 2 | 7 | 0.47753 | 0 | 28 | 112 | 4.5812 | 5.94E-07 | |
z5 | 2 | 7 | 0.28228 | 0.00E+00 | 17 | 68 | 2.0596 | 5.23E-07 | |
z6 | 2 | 7 | 0.45284 | 0.00E+00 | 8 | 32 | 1.4187 | 3.26E-07 | |
z7 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 7 | 22 | 0.047242 | 1.58E-09 | 4 | 12 | 0.075993 | 5.17E-07 |
z2 | 7 | 22 | 0.011612 | 2.12E-09 | 5 | 15 | 0.01685 | 6.04E-09 | |
z3 | 6 | 19 | 0.008748 | 7.52E-09 | 5 | 15 | 0.009081 | 4.37E-07 | |
z4 | 8 | 25 | 0.008643 | 1.95E-09 | 6 | 18 | 0.009114 | 1.52E-07 | |
z5 | 6 | 19 | 0.010119 | 8.43E-09 | 7 | 21 | 0.013185 | 1.10E-09 | |
z6 | 9 | 28 | 0.009592 | 1.04E-09 | 7 | 21 | 0.014685 | 1.74E-08 | |
z7 | 44 | 169 | 0.043234 | 9.47E-07 | 69 | 261 | 0.22456 | 6.30E-07 | |
5000 | z1 | 6 | 20 | 0.062266 | 2.97E-07 | 4 | 12 | 0.012773 | 1.75E-07 |
z2 | 6 | 20 | 0.031005 | 4.05E-07 | 5 | 15 | 0.019072 | 6.27E-10 | |
z3 | 6 | 19 | 0.022469 | 9.12E-10 | 5 | 15 | 0.03412 | 1.42E-07 | |
z4 | 7 | 23 | 0.048441 | 3.74E-07 | 6 | 18 | 0.040398 | 3.94E-08 | |
z5 | 6 | 19 | 0.032782 | 1.42E-09 | 6 | 18 | 0.030696 | 4.05E-07 | |
z6 | 7 | 22 | 0.038421 | 7.12E-09 | 7 | 21 | 0.02232 | 2.36E-09 | |
z7 | 45 | 169 | 0.32315 | 1.74E-07 | 75 | 290 | 0.68505 | 9.20E-07 | |
10000 | z1 | 5 | 16 | 0.065175 | 9.23E-09 | 4 | 12 | 0.05281 | 1.21E-07 |
z2 | 6 | 21 | 0.072794 | 3.06E-07 | 5 | 15 | 0.055137 | 2.79E-10 | |
z3 | 6 | 19 | 0.036537 | 4.32E-10 | 5 | 15 | 0.038347 | 9.73E-08 | |
z4 | 7 | 24 | 0.054625 | 2.82E-07 | 6 | 18 | 0.057504 | 2.56E-08 | |
z5 | 6 | 20 | 0.09281 | 7.38E-10 | 6 | 18 | 0.053546 | 2.93E-07 | |
z6 | 7 | 22 | 0.098951 | 4.21E-09 | 7 | 21 | 0.05207 | 1.24E-09 | |
z7 | 34 | 133 | 0.35652 | 8.45E-07 | 75 | 286 | 1.1715 | 8.81E-07 | |
50000 | z1 | 7 | 26 | 1.0892 | 1.84E-07 | 4 | 12 | 0.072347 | 6.32E-08 |
z2 | 9 | 34 | 0.57121 | 3.87E-07 | 5 | 16 | 0.17135 | 6.75E-11 | |
z3 | 6 | 21 | 0.17777 | 5.88E-07 | 5 | 15 | 0.30908 | 4.87E-08 | |
z4 | 10 | 37 | 0.79714 | 3.60E-07 | 6 | 18 | 0.30538 | 1.11E-08 | |
z5 | 7 | 25 | 0.14544 | 1.16E-07 | 6 | 18 | 0.17986 | 1.84E-07 | |
z6 | 8 | 28 | 0.24313 | 7.93E-07 | 7 | 21 | 0.11731 | 4.01E-10 | |
z7 | 36 | 141 | 1.1389 | 1.07E-07 | 87 | 326 | 3.3093 | 3.83E-07 | |
100000 | z1 | 7 | 26 | 0.35609 | 2.56E-07 | 4 | 12 | 0.23409 | 5.40E-08 |
z2 | 9 | 34 | 0.43666 | 5.47E-07 | 5 | 16 | 0.3152 | 4.27E-11 | |
z3 | 6 | 21 | 0.31721 | 7.65E-07 | 5 | 15 | 0.28597 | 4.05E-08 | |
z4 | 10 | 37 | 0.53074 | 5.09E-07 | 6 | 18 | 0.23003 | 8.15E-09 | |
z5 | 7 | 25 | 0.27827 | 1.55E-07 | 6 | 18 | 0.45582 | 1.80E-07 | |
z6 | 9 | 32 | 0.5333 | 1.09E-07 | 7 | 22 | 0.2709 | 2.71E-10 | |
z7 | 31 | 121 | 1.7511 | 5.10E-07 | 81 | 306 | 6.1345 | 9.16E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 2 | 6 | 0.007199 | 0 | 2 | 6 | 0.026849 | 0 |
z2 | 2 | 6 | 0.00552 | 0 | 2 | 6 | 0.003173 | 0 | |
z3 | 2 | 6 | 0.006377 | 0 | 2 | 6 | 0.006714 | 0 | |
z4 | 3 | 11 | 0.017561 | 0.00E+00 | 2 | 6 | 0.005403 | 0 | |
z5 | 3 | 11 | 0.007556 | 0.00E+00 | 2 | 6 | 0.009761 | 0 | |
z6 | 3 | 11 | 0.008376 | 0 | 2 | 6 | 0.003285 | 0 | |
z7 | 16 | 49 | 0.043387 | 2.91E-07 | 2 | 6 | 0.005238 | 0 | |
5000 | z1 | 2 | 6 | 0.024798 | 0 | 2 | 6 | 0.037672 | 0 |
z2 | 2 | 6 | 0.017882 | 0 | 2 | 6 | 0.016857 | 0 | |
z3 | 2 | 6 | 0.014761 | 0 | 2 | 6 | 0.016971 | 0 | |
z4 | 3 | 11 | 0.021926 | 0.00E+00 | 2 | 6 | 0.024599 | 0 | |
z5 | 3 | 11 | 0.019501 | 0.00E+00 | 2 | 6 | 0.12878 | 0 | |
z6 | 3 | 11 | 0.099645 | 0 | 2 | 6 | 0.016172 | 0 | |
z7 | 21 | 65 | 0.26663 | 8.91E-07 | 2 | 6 | 0.068901 | 0 | |
10000 | z1 | 2 | 6 | 0.053329 | 0 | 2 | 6 | 0.039629 | 0 |
z2 | 2 | 6 | 0.036889 | 0 | 2 | 6 | 0.029941 | 0 | |
z3 | 2 | 6 | 0.02419 | 0 | 2 | 6 | 0.022097 | 0 | |
z4 | 3 | 11 | 0.046062 | 0.00E+00 | 2 | 6 | 0.015668 | 0 | |
z5 | 3 | 11 | 0.17699 | 0.00E+00 | 2 | 6 | 0.1442 | 0 | |
z6 | 3 | 11 | 0.056058 | 0 | 2 | 6 | 0.080865 | 0 | |
z7 | 19 | 58 | 0.42057 | 1.22E-07 | 2 | 6 | 0.052839 | 0 | |
50000 | z1 | 2 | 6 | 0.11901 | 0 | 2 | 6 | 0.27419 | 0 |
z2 | 2 | 6 | 0.10804 | 0 | 2 | 6 | 0.228 | 0 | |
z3 | 2 | 6 | 0.15799 | 0 | 2 | 6 | 0.083129 | 0 | |
z4 | 3 | 11 | 0.27797 | 0.00E+00 | 2 | 6 | 0.09131 | 0 | |
z5 | 3 | 11 | 0.21594 | 0.00E+00 | 2 | 6 | 0.047357 | 0 | |
z6 | 3 | 11 | 0.16137 | 0 | 2 | 6 | 0.049002 | 0 | |
z7 | 21 | 64 | 1.156 | 3.21E-07 | 2 | 6 | 0.12806 | 0 | |
100000 | z1 | 2 | 6 | 0.21976 | 0 | 2 | 6 | 0.15418 | 0 |
z2 | 2 | 6 | 0.19397 | 0 | 2 | 6 | 0.44568 | 0 | |
z3 | 2 | 6 | 0.17969 | 0 | 2 | 6 | 0.79033 | 0 | |
z4 | 3 | 11 | 0.30701 | 0.00E+00 | 2 | 6 | 0.20222 | 0 | |
z5 | 3 | 11 | 0.72994 | 0.00E+00 | 2 | 6 | 0.20959 | 0 | |
z6 | 3 | 11 | 0.36806 | 0 | 2 | 6 | 0.26684 | 0 | |
z7 | 22 | 67 | 1.8809 | 2.86E-07 | 2 | 6 | 0.23472 | 0 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 2 | 7 | 0.007686 | 0 | 8 | 31 | 0.025113 | 1.65E-07 |
z2 | 2 | 7 | 0.004973 | 0 | 7 | 28 | 0.007628 | 2.32E-07 | |
z3 | 2 | 7 | 0.004693 | 0.00E+00 | 8 | 32 | 0.009827 | 7.42E-07 | |
z4 | 2 | 7 | 0.005652 | 0.00E+00 | 9 | 35 | 0.012267 | 1.62E-07 | |
z5 | 2 | 7 | 0.007206 | 0.00E+00 | 7 | 28 | 0.012782 | 3.92E-07 | |
z6 | 2 | 7 | 0.005871 | 0.00E+00 | 8 | 32 | 0.016455 | 3.68E-07 | |
z7 | 22 | 87 | 0.030189 | 0.00E+00 | 71 | 284 | 0.045157 | 1.91E-07 | |
5000 | z1 | 2 | 7 | 0.01789 | 0 | 8 | 31 | 0.035804 | 3.68E-07 |
z2 | 2 | 7 | 0.083644 | 0 | 7 | 28 | 0.056219 | 5.20E-07 | |
z3 | 2 | 7 | 0.019787 | 0.00E+00 | 9 | 36 | 0.028182 | 1.66E-07 | |
z4 | 2 | 7 | 0.02077 | 0 | 9 | 35 | 0.028652 | 3.61E-07 | |
z5 | 2 | 7 | 0.023139 | 0 | 7 | 28 | 0.09901 | 8.76E-07 | |
z6 | 2 | 7 | 0.045152 | 0 | 8 | 32 | 0.046074 | 8.22E-07 | |
z7 | 77 | 308 | 0.88375 | 2.85E-07 | 51 | 204 | 0.12808 | 9.55E-07 | |
10000 | z1 | 2 | 7 | 0.025792 | 0 | 8 | 32 | 0.043945 | 5.20E-07 |
z2 | 2 | 7 | 0.020051 | 0 | 7 | 27 | 0.050306 | 7.35E-07 | |
z3 | 2 | 7 | 0.025936 | 0.00E+00 | 9 | 36 | 0.039643 | 2.35E-07 | |
z4 | 2 | 7 | 0.03822 | 0 | 9 | 35 | 0.041378 | 5.11E-07 | |
z5 | 2 | 7 | 0.03849 | 0 | 8 | 32 | 0.13231 | 1.24E-07 | |
z6 | 2 | 7 | 0.031354 | 0.00E+00 | NaN | NaN | NaN | NaN | |
z7 | 101 | 404 | 3.4918 | 4.06E-09 | NaN | NaN | NaN | NaN | |
50000 | z1 | 2 | 7 | 0.091176 | 0 | 9 | 34 | 0.23565 | 0 |
z2 | 2 | 7 | 0.090561 | 0 | NaN | NaN | NaN | NaN | |
z3 | 2 | 7 | 0.13857 | 0.00E+00 | 9 | 35 | 0.12604 | 5.25E-07 | |
z4 | 2 | 7 | 0.10731 | 0.00E+00 | 10 | 38 | 0.426 | 0 | |
z5 | 2 | 7 | 0.14284 | 0.00E+00 | 8 | 31 | 0.47179 | 2.77E-07 | |
z6 | 2 | 7 | 0.29418 | 0.00E+00 | 9 | 35 | 0.21126 | 2.60E-07 | |
z7 | 110 | 439 | 8.6871 | 0 | 44 | 176 | 1.2526 | 3.55E-07 | |
100000 | z1 | 2 | 7 | 0.20371 | 0 | 9 | 36 | 0.2659 | 1.65E-07 |
z2 | 2 | 7 | 0.26727 | 0 | 8 | 30 | 0.48604 | 0 | |
z3 | 2 | 7 | 0.1588 | 0.00E+00 | 9 | 35 | 0.35032 | 7.42E-07 | |
z4 | 2 | 7 | 0.20624 | 0.00E+00 | 10 | 39 | 0.34301 | 1.62E-07 | |
z5 | 2 | 7 | 0.19404 | 0.00E+00 | NaN | NaN | NaN | NaN | |
z6 | 2 | 7 | 0.21718 | 0.00E+00 | 9 | 35 | 0.31142 | 3.68E-07 | |
z7 | 111 | 444 | 18.0039 | 6.11E-08 | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 34 | 127 | 0.026467 | 1.62E-07 | 71 | 263 | 0.16103 | 3.21E-07 |
z2 | 36 | 140 | 0.026972 | 7.43E-07 | 62 | 235 | 0.052281 | 1.13E-07 | |
z3 | 52 | 205 | 0.16096 | 2.58E-07 | 50 | 194 | 0.088863 | 3.72E-07 | |
z4 | 96 | 378 | 0.55079 | 4.35E-07 | NaN | NaN | NaN | NaN | |
z5 | 123 | 492 | 0.48012 | 3.96E-07 | NaN | NaN | NaN | NaN | |
z6 | 196 | 784 | 1.0967 | 6.21E-07 | NaN | NaN | NaN | NaN | |
z7 | 115 | 459 | 0.34961 | 2.89E-07 | NaN | NaN | NaN | NaN | |
5000 | z1 | 59 | 232 | 0.68163 | 2.32E-07 | 63 | 231 | 0.30231 | 3.90E-07 |
z2 | 50 | 188 | 0.29441 | 6.42E-07 | 72 | 282 | 0.18091 | 7.31E-07 | |
z3 | 179 | 709 | 2.2218 | 2.91E-07 | 60 | 232 | 0.14861 | 1.47E-07 | |
z4 | 171 | 684 | 2.9204 | 2.99E-07 | NaN | NaN | NaN | NaN | |
z5 | 297 | 1187 | 5.9983 | 3.31E-07 | NaN | NaN | NaN | NaN | |
z6 | 420 | 1680 | 9.6236 | 1.67E-07 | NaN | NaN | NaN | NaN | |
z7 | 187 | 744 | 3.4767 | 8.43E-07 | NaN | NaN | NaN | NaN | |
10000 | z1 | 77 | 300 | 1.3784 | 1.39E-07 | 75 | 283 | 0.27114 | 2.35E-07 |
z2 | 74 | 283 | 1.5399 | 1.34E-07 | 55 | 208 | 0.20873 | 3.12E-07 | |
z3 | 214 | 843 | 5.0625 | 9.68E-07 | 67 | 259 | 0.65684 | 2.52E-07 | |
z4 | 253 | 1012 | 8.4598 | 5.48E-07 | NaN | NaN | NaN | NaN | |
z5 | 383 | 1531 | 15.2491 | 1.45E-07 | NaN | NaN | NaN | NaN | |
z6 | 575 | 2300 | 24.956 | 4.27E-07 | NaN | NaN | NaN | NaN | |
z7 | 323 | 1291 | 9.6152 | 2.90E-07 | NaN | NaN | NaN | NaN | |
50000 | z1 | 135 | 534 | 12.3192 | 9.85E-07 | 65 | 253 | 1.9331 | 1.74E-07 |
z2 | 342 | 1357 | 46.7469 | 1.53E-07 | 94 | 369 | 4.3154 | 4.77E-07 | |
z3 | 326 | 1294 | 39.8986 | 4.97E-07 | NaN | NaN | NaN | NaN | |
z4 | 504 | 2016 | 82.9841 | 3.45E-07 | NaN | NaN | NaN | NaN | |
z5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z6 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z7 | 602 | 2403 | 97.0953 | 6.65E-07 | NaN | NaN | NaN | NaN | |
100000 | z1 | 164 | 645 | 25.8558 | 1.87E-07 | NaN | NaN | NaN | NaN |
z2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z3 | 400 | 1590 | 126.0758 | 7.38E-07 | NaN | NaN | NaN | NaN | |
z4 | 636 | 2544 | 240.5206 | 3.57E-07 | NaN | NaN | NaN | NaN | |
z5 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z6 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
z7 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 9 | 36 | 0.17935 | 8.25E-07 | 9 | 36 | 0.0153 | 8.24E-07 |
z2 | 9 | 36 | 0.03051 | 7.93E-07 | 9 | 36 | 0.048509 | 7.93E-07 | |
z3 | 9 | 36 | 0.027967 | 6.99E-07 | 9 | 36 | 0.017521 | 6.98E-07 | |
z4 | 9 | 36 | 0.015472 | 4.79E-07 | 9 | 36 | 0.014811 | 4.78E-07 | |
z5 | 9 | 36 | 0.007122 | 3.84E-07 | 9 | 36 | 0.016431 | 3.83E-07 | |
z6 | 9 | 36 | 0.010164 | 2.27E-07 | 9 | 36 | 0.009737 | 2.26E-07 | |
z7 | 9 | 36 | 0.020191 | 7.23E-07 | 9 | 36 | 0.017515 | 7.06E-07 | |
5000 | z1 | 10 | 40 | 0.048118 | 1.85E-07 | 10 | 40 | 0.082844 | 1.85E-07 |
z2 | 10 | 40 | 0.097072 | 1.78E-07 | 10 | 40 | 0.050343 | 1.78E-07 | |
z3 | 10 | 40 | 0.032297 | 1.57E-07 | 10 | 40 | 0.10792 | 1.57E-07 | |
z4 | 10 | 40 | 0.043942 | 1.07E-07 | 10 | 40 | 0.076199 | 1.07E-07 | |
z5 | 9 | 36 | 0.043841 | 8.61E-07 | 9 | 36 | 0.037916 | 8.61E-07 | |
z6 | 9 | 36 | 0.033263 | 5.08E-07 | 9 | 36 | 0.069375 | 5.08E-07 | |
z7 | 10 | 40 | 0.037194 | 1.58E-07 | 10 | 40 | 0.047672 | 1.58E-07 | |
10000 | z1 | 10 | 40 | 0.082406 | 2.62E-07 | 10 | 40 | 0.076648 | 2.62E-07 |
z2 | 10 | 40 | 0.068947 | 2.52E-07 | 10 | 40 | 0.15678 | 2.52E-07 | |
z3 | 10 | 40 | 0.058721 | 2.22E-07 | 10 | 40 | 0.13597 | 2.22E-07 | |
z4 | 10 | 40 | 0.078257 | 1.52E-07 | 10 | 40 | 0.08399 | 1.52E-07 | |
z5 | 10 | 40 | 0.062069 | 1.22E-07 | 10 | 40 | 0.07822 | 1.22E-07 | |
z6 | 9 | 36 | 0.053275 | 7.18E-07 | 9 | 36 | 0.1205 | 7.18E-07 | |
z7 | 10 | 40 | 0.057688 | 2.24E-07 | 10 | 40 | 0.080168 | 2.23E-07 | |
50000 | z1 | 10 | 40 | 0.22352 | 5.85E-07 | 10 | 39 | 0.38243 | 5.85E-07 |
z2 | 10 | 40 | 0.27436 | 5.63E-07 | 10 | 39 | 0.41361 | 5.63E-07 | |
z3 | 10 | 40 | 0.23122 | 4.96E-07 | 10 | 39 | 0.30721 | 4.96E-07 | |
z4 | 10 | 40 | 0.21192 | 3.40E-07 | 10 | 39 | 0.43086 | 3.40E-07 | |
z5 | 10 | 40 | 0.23892 | 2.72E-07 | 10 | 38 | 0.29829 | 1.26E-15 | |
z6 | 10 | 40 | 0.29017 | 1.61E-07 | 10 | 38 | 0.51415 | 6.28E-16 | |
z7 | 10 | 40 | 0.25616 | 5.01E-07 | 10 | 39 | 0.29756 | 5.00E-07 | |
100000 | z1 | 10 | 40 | 0.82944 | 8.28E-07 | 10 | 39 | 1.1183 | 8.28E-07 |
z2 | 10 | 40 | 0.47168 | 7.96E-07 | 10 | 38 | 0.6117 | 6.28E-16 | |
z3 | 10 | 40 | 0.49749 | 7.01E-07 | 10 | 38 | 0.81145 | 6.28E-16 | |
z4 | 10 | 40 | 0.52125 | 4.80E-07 | 10 | 38 | 0.79886 | 0 | |
z5 | 10 | 40 | 0.69499 | 3.85E-07 | 10 | 38 | 0.60219 | 0 | |
z6 | 10 | 40 | 0.47656 | 2.27E-07 | 10 | 38 | 0.72864 | 0 | |
z7 | 10 | 40 | 0.49578 | 7.07E-07 | 10 | 39 | 0.80741 | 7.07E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 5 | 20 | 0.046544 | 3.24E-07 | 5 | 20 | 0.008647 | 3.24E-07 |
z2 | 5 | 20 | 0.009418 | 1.43E-07 | 5 | 20 | 0.013849 | 1.43E-07 | |
z3 | 5 | 20 | 0.038932 | 1.68E-08 | 4 | 16 | 0.015388 | 5.81E-08 | |
z4 | 6 | 24 | 0.01166 | 9.16E-09 | 6 | 24 | 0.010967 | 3.39E-08 | |
z5 | 6 | 24 | 0.010929 | 1.23E-08 | 6 | 24 | 0.0107 | 4.99E-08 | |
z6 | 6 | 23 | 0.01937 | 1.04E-07 | 6 | 23 | 0.014025 | 6.55E-08 | |
z7 | 26 | 104 | 0.032336 | 8.36E-09 | 36 | 144 | 0.12555 | 5.34E-08 | |
5000 | z1 | 5 | 20 | 0.029586 | 7.25E-07 | 5 | 20 | 0.041107 | 7.25E-07 |
z2 | 5 | 20 | 0.027892 | 3.20E-07 | 5 | 20 | 0.038182 | 3.20E-07 | |
z3 | 5 | 20 | 0.035333 | 3.75E-08 | 4 | 16 | 0.12123 | 1.30E-07 | |
z4 | 6 | 24 | 0.032225 | 2.05E-08 | 6 | 24 | 0.05211 | 7.58E-08 | |
z5 | 6 | 24 | 0.026546 | 2.75E-08 | 6 | 24 | 0.038675 | 1.12E-07 | |
z6 | 6 | 23 | 0.032529 | 2.32E-07 | 6 | 23 | 0.081384 | 1.46E-07 | |
z7 | 34 | 136 | 0.24122 | 3.59E-08 | 41 | 164 | 0.29917 | 1.14E-07 | |
10000 | z1 | 6 | 24 | 0.043879 | 5.12E-09 | 6 | 24 | 0.079589 | 5.12E-09 |
z2 | 5 | 20 | 0.036531 | 4.52E-07 | 5 | 20 | 0.1417 | 4.52E-07 | |
z3 | 5 | 20 | 0.050902 | 5.31E-08 | 4 | 16 | 0.045901 | 1.84E-07 | |
z4 | 6 | 24 | 0.054078 | 2.90E-08 | 6 | 24 | 0.059807 | 1.07E-07 | |
z5 | 6 | 24 | 0.052048 | 3.89E-08 | 6 | 24 | 0.099213 | 1.58E-07 | |
z6 | 6 | 23 | 0.04894 | 3.28E-07 | 6 | 23 | 0.054029 | 2.07E-07 | |
z7 | 41 | 164 | 0.30793 | 3.45E-08 | 45 | 180 | 0.92444 | 3.64E-07 | |
50000 | z1 | 6 | 24 | 0.14 | 1.15E-08 | 6 | 24 | 0.26027 | 1.15E-08 |
z2 | 6 | 24 | 0.14343 | 5.06E-09 | 6 | 24 | 0.60276 | 5.06E-09 | |
z3 | 5 | 20 | 0.15201 | 1.19E-07 | 4 | 16 | 0.17247 | 4.11E-07 | |
z4 | 6 | 24 | 0.34794 | 6.48E-08 | 6 | 24 | 0.22999 | 2.40E-07 | |
z5 | 6 | 24 | 0.15433 | 8.70E-08 | 6 | 24 | 0.38048 | 3.53E-07 | |
z6 | 6 | 23 | 0.1425 | 7.35E-07 | 6 | 23 | 0.2271 | 4.63E-07 | |
z7 | 29 | 116 | 1.295 | 9.41E-09 | 44 | 176 | 2.2436 | 7.06E-07 | |
100000 | z1 | 6 | 24 | 0.39791 | 1.62E-08 | 6 | 24 | 0.94834 | 1.62E-08 |
z2 | 6 | 24 | 0.47548 | 7.15E-09 | 6 | 24 | 0.43453 | 7.15E-09 | |
z3 | 5 | 20 | 0.48174 | 1.68E-07 | 4 | 16 | 0.29517 | 5.81E-07 | |
z4 | 6 | 24 | 0.26721 | 9.16E-08 | 6 | 24 | 0.55119 | 3.39E-07 | |
z5 | 6 | 24 | 0.28512 | 1.23E-07 | 6 | 24 | 0.61073 | 4.99E-07 | |
z6 | 7 | 27 | 0.5385 | 5.19E-09 | 6 | 23 | 0.42035 | 6.55E-07 | |
z7 | 29 | 116 | 1.6021 | 1.19E-08 | 41 | 164 | 3.9953 | 9.23E-07 |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 66 | 264 | 0.934 | 3.48E-07 | NaN | NaN | NaN | NaN |
z2 | 101 | 404 | 0.99428 | 4.28E-07 | 41 | 164 | 0.75214 | 4.29E-07 | |
z3 | 40 | 160 | 0.40127 | 3.33E-07 | NaN | NaN | NaN | NaN | |
z4 | 39 | 156 | 0.5071 | 5.07E-07 | 39 | 156 | 0.71207 | 3.83E-07 | |
z5 | 36 | 144 | 0.61923 | 4.69E-07 | 35 | 140 | 1.4123 | 4.07E-07 | |
z6 | 4 | 14 | 0.071864 | NaN | 4 | 14 | 0.059454 | NaN | |
z7 | 23 | 89 | 0.48051 | NaN | NaN | NaN | NaN | NaN | |
5000 | z1 | 52 | 208 | 2.7649 | 2.91E-07 | NaN | NaN | NaN | NaN |
z2 | 44 | 176 | 2.1027 | 3.54E-07 | NaN | NaN | NaN | NaN | |
z3 | 42 | 168 | 2.1325 | 2.95E-07 | NaN | NaN | NaN | NaN | |
z4 | 37 | 148 | 2.0738 | 3.41E-07 | NaN | NaN | NaN | NaN | |
z5 | 16 | 60 | 0.64982 | NaN | NaN | NaN | NaN | NaN | |
z6 | 20 | 76 | 0.98188 | NaN | NaN | NaN | NaN | NaN | |
z7 | 301 | 1202 | 18.7543 | 4.37E-07 | NaN | NaN | NaN | NaN | |
10000 | z1 | 77 | 303 | 9.6495 | 3.64E-07 | NaN | NaN | NaN | NaN |
z2 | 71 | 284 | 8.0859 | 3.74E-07 | NaN | NaN | NaN | NaN | |
z3 | 62 | 248 | 7.1755 | 3.27E-07 | NaN | NaN | NaN | NaN | |
z4 | 48 | 192 | 4.1575 | 4.42E-07 | NaN | NaN | NaN | NaN | |
z5 | 15 | 55 | 0.93456 | NaN | NaN | NaN | NaN | NaN | |
z6 | 123 | 490 | 12.4072 | 3.88E-07 | NaN | NaN | NaN | NaN | |
z7 | 307 | 1226 | 35.579 | 3.46E-07 | NaN | NaN | NaN | NaN | |
50000 | z1 | 24 | 89 | 8.5017 | NaN | NaN | NaN | NaN | NaN |
z2 | 89 | 355 | 45.0395 | 4.34E-07 | NaN | NaN | NaN | NaN | |
z3 | 65 | 260 | 28.4752 | 3.57E-07 | NaN | NaN | NaN | NaN | |
z4 | 431 | 1718 | 135.7493 | 3.88E-07 | NaN | NaN | NaN | NaN | |
z5 | 6 | 21 | 2.1067 | NaN | NaN | NaN | NaN | NaN | |
z6 | 6 | 21 | 1.8349 | NaN | NaN | NaN | NaN | NaN | |
z7 | 7 | 24 | 1.8872 | NaN | NaN | NaN | NaN | NaN | |
100000 | z1 | 34 | 130 | 31.5135 | NaN | NaN | NaN | NaN | NaN |
z2 | 5 | 17 | 1.9076 | NaN | NaN | NaN | NaN | NaN | |
z3 | 87 | 332 | 64.5816 | 3.00E-07 | NaN | NaN | NaN | NaN | |
z4 | 76 | 303 | 68.3533 | 4.49E-07 | NaN | NaN | NaN | NaN | |
z5 | 5 | 17 | 2.2305 | NaN | NaN | NaN | NaN | NaN | |
z6 | 5 | 17 | 2.5293 | NaN | NaN | NaN | NaN | NaN | |
z7 | 6 | 21 | 3.1078 | NaN | NaN | NaN | NaN | NaN |
Algo.1 | Algo.2 | ||||||||
dim | inp | nit | nfv | tim | norm | nit | nfv | tim | norm |
1000 | z1 | 10 | 34 | 0.032445 | 1.06E-07 | 10 | 34 | 0.005932 | 1.06E-07 |
z2 | 10 | 34 | 0.008239 | 1.06E-07 | 10 | 34 | 0.010335 | 1.06E-07 | |
z3 | 10 | 34 | 0.0073 | 1.06E-07 | 10 | 34 | 0.008407 | 1.06E-07 | |
z4 | 10 | 34 | 0.008495 | 1.06E-07 | 10 | 34 | 0.010614 | 1.06E-07 | |
z5 | 10 | 34 | 0.00772 | 1.06E-07 | 10 | 34 | 0.00775 | 1.06E-07 | |
z6 | 10 | 34 | 0.011383 | 1.06E-07 | 10 | 35 | 0.009311 | 1.06E-07 | |
z7 | 67 | 213 | 0.024778 | 9.71E-07 | 10 | 34 | 0.008864 | 1.06E-07 | |
5000 | z1 | 7 | 25 | 0.022534 | 6.89E-08 | 7 | 25 | 0.027033 | 6.89E-08 |
z2 | 7 | 25 | 0.032305 | 6.89E-08 | 7 | 25 | 0.02838 | 6.89E-08 | |
z3 | 7 | 25 | 0.026468 | 6.89E-08 | 7 | 25 | 0.068469 | 6.89E-08 | |
z4 | 7 | 25 | 0.034453 | 6.89E-08 | 7 | 26 | 0.037886 | 6.89E-08 | |
z5 | 7 | 25 | 0.021703 | 6.89E-08 | 7 | 26 | 0.037186 | 6.89E-08 | |
z6 | 7 | 25 | 0.027352 | 6.89E-08 | 7 | 26 | 0.077955 | 6.89E-08 | |
z7 | 20 | 66 | 0.061189 | 9.72E-07 | 7 | 25 | 0.037992 | 6.89E-08 | |
10000 | z1 | 6 | 22 | 0.07498 | 8.13E-08 | 6 | 22 | 0.054682 | 8.13E-08 |
z2 | 6 | 22 | 0.047478 | 8.13E-08 | 6 | 22 | 0.21797 | 8.13E-08 | |
z3 | 6 | 22 | 0.052347 | 8.13E-08 | 6 | 22 | 0.081579 | 8.13E-08 | |
z4 | 6 | 22 | 0.047644 | 8.13E-08 | 6 | 23 | 0.085064 | 8.13E-08 | |
z5 | 6 | 22 | 0.068304 | 8.13E-08 | 6 | 23 | 0.19028 | 8.13E-08 | |
z6 | 6 | 22 | 0.042771 | 8.13E-08 | 6 | 23 | 0.15365 | 8.13E-08 | |
z7 | 12 | 41 | 0.074071 | 9.08E-07 | 6 | 22 | 0.056989 | 8.13E-08 | |
50000 | z1 | 5 | 19 | 0.22112 | 1.41E-07 | 5 | 19 | 0.60662 | 1.41E-07 |
z2 | 5 | 19 | 0.21638 | 1.41E-07 | 5 | 19 | 0.33244 | 1.41E-07 | |
z3 | 5 | 19 | 0.22186 | 1.41E-07 | 5 | 20 | 0.8389 | 1.41E-07 | |
z4 | 5 | 19 | 0.37207 | 1.41E-07 | 5 | 20 | 0.63139 | 1.41E-07 | |
z5 | 5 | 19 | 0.36107 | 1.41E-07 | 5 | 20 | 1.046 | 1.41E-07 | |
z6 | 5 | 19 | 0.27063 | 1.41E-07 | 5 | 20 | 1.4673 | 1.41E-07 | |
z7 | 59 | 235 | 2.7862 | 4.11E-07 | 5 | 19 | 0.57234 | 1.41E-07 | |
100000 | z1 | 6 | 23 | 0.93893 | 2.10E-07 | 6 | 23 | 1.3525 | 2.10E-07 |
z2 | 6 | 23 | 0.60445 | 2.10E-07 | 6 | 24 | 1.5313 | 2.10E-07 | |
z3 | 6 | 23 | 0.71683 | 2.10E-07 | 6 | 24 | 1.6022 | 2.10E-07 | |
z4 | 6 | 23 | 0.57114 | 2.10E-07 | 6 | 24 | 1.7882 | 2.10E-07 | |
z5 | 6 | 23 | 0.57099 | 2.10E-07 | 6 | 24 | 1.878 | 2.10E-07 | |
z6 | 6 | 23 | 0.69104 | 2.10E-07 | 6 | 24 | 1.9634 | 2.10E-07 | |
z7 | 34 | 135 | 4.3899 | 4.52E-07 | 6 | 23 | 1.4688 | 2.10E-07 |