Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties

  • Received: 19 January 2023 Revised: 13 June 2023 Accepted: 15 June 2023 Published: 26 June 2023
  • The main aim of this article is using the elementary method and the number of the solutions of some congruence equations modulo an odd prime p, to study the calculating problem of the sixth power mean of one kind generalized two-term exponential sums, and give a sharp asymptotic formula for it.

    Citation: Jin Zhang, Xiaoxue Li. The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties[J]. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234

    Related Papers:

    [1] Fabio Sanchez, Luis A. Barboza, Paola Vásquez . Parameter estimates of the 2016-2017 Zika outbreak in Costa Rica: An Approximate Bayesian Computation (ABC) approach. Mathematical Biosciences and Engineering, 2019, 16(4): 2738-2755. doi: 10.3934/mbe.2019136
    [2] Krzysztof Fujarewicz . Estimation of initial functions for systems with delays from discrete measurements. Mathematical Biosciences and Engineering, 2017, 14(1): 165-178. doi: 10.3934/mbe.2017011
    [3] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [4] Elisenda Feliu . Sign-sensitivities for reaction networks: an algebraic approach. Mathematical Biosciences and Engineering, 2019, 16(6): 8195-8213. doi: 10.3934/mbe.2019414
    [5] Krzysztof Fujarewicz, Marek Kimmel, Andrzej Swierniak . On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems. Mathematical Biosciences and Engineering, 2005, 2(3): 527-534. doi: 10.3934/mbe.2005.2.527
    [6] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [9] Yuzhen Zhou, Erxi Zhu, Shan Li . An image encryption algorithm based on the double time-delay Lorenz system. Mathematical Biosciences and Engineering, 2023, 20(10): 18491-18522. doi: 10.3934/mbe.2023821
    [10] Paolo Fergola, Marianna Cerasuolo, Edoardo Beretta . An allelopathic competition model with quorum sensing and delayed toxicant production. Mathematical Biosciences and Engineering, 2006, 3(1): 37-50. doi: 10.3934/mbe.2006.3.37
  • The main aim of this article is using the elementary method and the number of the solutions of some congruence equations modulo an odd prime p, to study the calculating problem of the sixth power mean of one kind generalized two-term exponential sums, and give a sharp asymptotic formula for it.





    [1] R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 72 (2020), 205–212.
    [2] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [3] W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013.
    [4] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin., Engl. Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [5] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/ 10.3390/math7100907 doi: 10.3390/math7100907
    [6] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 69 (2017), 75–81.
    [7] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. http://dx.doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [8] H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547.
    [9] X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96.
    [10] X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. http://dx.doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
    [11] T. M. Apostol, SIntroduction to Analytic Number Theory, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [12] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982. https://doi.org/10.1007/978-1-4757-1779-2
  • This article has been cited by:

    1. H. T. Banks, J. E. Banks, S. L. Joyner, Estimation in time-delay modeling of insecticide-induced mortality, 2009, 17, 0928-0219, 10.1515/JIIP.2009.012
    2. V. V. Uchaikin, V. A. Litvinov, Variational Interpolation of Functionals in Transport Theory Inverse Problems, 2019, 12, 1995-4239, 297, 10.1134/S199542391903008X
    3. H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, 2009, Chapter 11, 978-90-481-2312-4, 249, 10.1007/978-90-481-2313-1_11
    4. H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel, Generalized sensitivities and optimal experimental design, 2010, 18, 0928-0219, 10.1515/jiip.2010.002
    5. H. T. Banks, Danielle Robbins, Karyn L. Sutton, 2013, Chapter 2, 978-3-0348-0630-5, 19, 10.1007/978-3-0348-0631-2_2
    6. H. T. Banks, S. Dediu, S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, 2007, 15, 0928-0219, 10.1515/jiip.2007.038
    7. Karyn L. Sutton, Danielle Robbins, H.Thomas Banks, Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations, 2013, 10, 1551-0018, 1301, 10.3934/mbe.2013.10.1301
    8. H. Banks, Stacey Ernstberger, Shuhua Hu, Sensitivity equations for a size-structured population model, 2009, 67, 0033-569X, 627, 10.1090/S0033-569X-09-01105-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1618) PDF downloads(108) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog