The main aim of this article is using the elementary method and the number of the solutions of some congruence equations modulo an odd prime , to study the calculating problem of the sixth power mean of one kind generalized two-term exponential sums, and give a sharp asymptotic formula for it.
Citation: Jin Zhang, Xiaoxue Li. The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties[J]. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234
[1] | Fabio Sanchez, Luis A. Barboza, Paola Vásquez . Parameter estimates of the 2016-2017 Zika outbreak in Costa Rica: An Approximate Bayesian Computation (ABC) approach. Mathematical Biosciences and Engineering, 2019, 16(4): 2738-2755. doi: 10.3934/mbe.2019136 |
[2] | Krzysztof Fujarewicz . Estimation of initial functions for systems with delays from discrete measurements. Mathematical Biosciences and Engineering, 2017, 14(1): 165-178. doi: 10.3934/mbe.2017011 |
[3] | Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93 |
[4] | Elisenda Feliu . Sign-sensitivities for reaction networks: an algebraic approach. Mathematical Biosciences and Engineering, 2019, 16(6): 8195-8213. doi: 10.3934/mbe.2019414 |
[5] | Krzysztof Fujarewicz, Marek Kimmel, Andrzej Swierniak . On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems. Mathematical Biosciences and Engineering, 2005, 2(3): 527-534. doi: 10.3934/mbe.2005.2.527 |
[6] | Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196 |
[7] | Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283 |
[8] | Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445 |
[9] | Yuzhen Zhou, Erxi Zhu, Shan Li . An image encryption algorithm based on the double time-delay Lorenz system. Mathematical Biosciences and Engineering, 2023, 20(10): 18491-18522. doi: 10.3934/mbe.2023821 |
[10] | Paolo Fergola, Marianna Cerasuolo, Edoardo Beretta . An allelopathic competition model with quorum sensing and delayed toxicant production. Mathematical Biosciences and Engineering, 2006, 3(1): 37-50. doi: 10.3934/mbe.2006.3.37 |
The main aim of this article is using the elementary method and the number of the solutions of some congruence equations modulo an odd prime , to study the calculating problem of the sixth power mean of one kind generalized two-term exponential sums, and give a sharp asymptotic formula for it.
[1] | R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 72 (2020), 205–212. |
[2] |
L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
![]() |
[3] | W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013. |
[4] |
W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin., Engl. Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
![]() |
[5] |
X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/ 10.3390/math7100907 doi: 10.3390/math7100907
![]() |
[6] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 69 (2017), 75–81. |
[7] |
W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. http://dx.doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
![]() |
[8] | H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547. |
[9] | X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96. |
[10] |
X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. http://dx.doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
![]() |
[11] | T. M. Apostol, SIntroduction to Analytic Number Theory, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4 |
[12] | K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982. https://doi.org/10.1007/978-1-4757-1779-2 |
1. | H. T. Banks, J. E. Banks, S. L. Joyner, Estimation in time-delay modeling of insecticide-induced mortality, 2009, 17, 0928-0219, 10.1515/JIIP.2009.012 | |
2. | V. V. Uchaikin, V. A. Litvinov, Variational Interpolation of Functionals in Transport Theory Inverse Problems, 2019, 12, 1995-4239, 297, 10.1134/S199542391903008X | |
3. | H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, 2009, Chapter 11, 978-90-481-2312-4, 249, 10.1007/978-90-481-2313-1_11 | |
4. | H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel, Generalized sensitivities and optimal experimental design, 2010, 18, 0928-0219, 10.1515/jiip.2010.002 | |
5. | H. T. Banks, Danielle Robbins, Karyn L. Sutton, 2013, Chapter 2, 978-3-0348-0630-5, 19, 10.1007/978-3-0348-0631-2_2 | |
6. | H. T. Banks, S. Dediu, S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, 2007, 15, 0928-0219, 10.1515/jiip.2007.038 | |
7. | Karyn L. Sutton, Danielle Robbins, H.Thomas Banks, Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations, 2013, 10, 1551-0018, 1301, 10.3934/mbe.2013.10.1301 | |
8. | H. Banks, Stacey Ernstberger, Shuhua Hu, Sensitivity equations for a size-structured population model, 2009, 67, 0033-569X, 627, 10.1090/S0033-569X-09-01105-1 |