Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties

  • The main aim of this article is using the elementary method and the number of the solutions of some congruence equations modulo an odd prime p, to study the calculating problem of the sixth power mean of one kind generalized two-term exponential sums, and give a sharp asymptotic formula for it.

    Citation: Jin Zhang, Xiaoxue Li. The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties[J]. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234

    Related Papers:

    [1] Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220
    [2] Jianghua Li, Zepeng Zhang, Tianyu Pan . On two-term exponential sums and their mean values. Electronic Research Archive, 2023, 31(9): 5559-5572. doi: 10.3934/era.2023282
    [3] Zhefeng Xu, Xiaoying Liu, Luyao Chen . Hybrid mean value involving some two-term exponential sums and fourth Gauss sums. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071
    [4] Li Rui, Nilanjan Bag . Fourth power mean values of one kind special Kloosterman's sum. Electronic Research Archive, 2023, 31(10): 6445-6453. doi: 10.3934/era.2023326
    [5] Hongjian Li, Kaili Yang, Pingzhi Yuan . The asymptotic behavior of the reciprocal sum of generalized Fibonacci numbers. Electronic Research Archive, 2025, 33(1): 409-432. doi: 10.3934/era.2025020
    [6] Li Yu, Xiaofeng Wang . Semi-local convergence of a sixth-order iterative method for solving nonlinear systems. Electronic Research Archive, 2025, 33(6): 3794-3810. doi: 10.3934/era.2025168
    [7] Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350
    [8] Meenakshi Rana, Shruti Sharma . Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29(1): 1803-1818. doi: 10.3934/era.2020092
    [9] Jing Huang, Qian Wang, Rui Zhang . The short interval results for power moments of the Riesz mean error term. Electronic Research Archive, 2023, 31(9): 5917-5927. doi: 10.3934/era.2023300
    [10] Shufen Zhao . The S-asymptotically $ \omega $-periodic solutions for stochastic fractional differential equations with piecewise constant arguments. Electronic Research Archive, 2023, 31(12): 7125-7141. doi: 10.3934/era.2023361
  • The main aim of this article is using the elementary method and the number of the solutions of some congruence equations modulo an odd prime p, to study the calculating problem of the sixth power mean of one kind generalized two-term exponential sums, and give a sharp asymptotic formula for it.



    As usual, we let p be an odd prime, χ denotes a Dirichlet character modulo p. For any integers k>h1 and integers m and n, the generalized two-term exponential sum S(m,n,k,h,χ;p) is defined as follows:

    S(m,n,k,h,χ;p)=p1a=1χ(a)e(mak+nahp),

    where e(y)=e2πiy and i is the imaginary unit.

    In analytic number theory, these sums play important roles, many classical number theory problems are closely related to it, such as the prime distribution and Waring's problems etc. And because of that, many number theorists and scholars had studied the various properties of S(m,n,k,h,χ;p), and obtained a series of meaningful research results. For example, R. Duan and W. P. Zhang [1] proved that for any prime p with 3(p1), and any Dirichlet character λmodp, one has the identities

    p1m=1|p1a=1λ(a)e(ma3+nap)|4={3p38p2 if λ=(p),2p37p2 if λχ0,λ(p),2p33p23p1 if λ=χ0,

    where (p) is the Legendre symbol and χ0 is the principal character modulo p.

    L. Chen and X. Wang [2] used the elementary method to prove the identities

    p1m=1|p1a=0e(ma4+ap)|4={2p2(p2), if p7mod12,2p3, if p11mod12,2p(p210p2α2), if p1mod24,2p(p24p2α2), if p5mod24,2p(p26p2α2), if p13mod24,2p(p28p2α2), if p17mod24,

    where the character sum α=α(p)=p12a=1(a3+ap) is an integer satisfying the identity (see [3, Theorem 4–11]):

    p=α2+β2=(p12a=1(a3+ap))2+(p12a=1(a3+rap))2,

    and r denotes any quadratic non-residue modulo p.

    Recently, W. P. Zhang and Y. Y. Meng [4] studied the sixth power mean of S(m,n,3,1,χ0;p), and proved that for any odd prime p and integer n with (n,p)=1, one has the identities

    p1m=1|p1a=0e(ma3+nap)|6={5p3(p1) if p5mod6;p2(5p223pd2) if p1mod6,

    where 4p=d2+27b2, and d is uniquely determined by d1mod3 and b>0.

    In addition, X. Y. Liu and W. P. Zhang [5] studied the calculating problem of the sixth power mean of the generalized two-term exponential sums

    χmodpp1m=0|p1a=1χ(a)e(ma3+ap)|6, (1.1)

    and proved that for any odd prime p with 3(p1), one has the identity

    χmodpp1m=0|p1a=1χ(a)e(ma3+ap)|6=p(p1)(6p328p2+39p+5).

    Some papers related to the exponential sums and the generalized exponential sums can also be found in [6,7,8,9,10], to save space, we will not list them all here.

    Of course, the results in [5] are very neat and beautiful, the only drawback is that they do not talk about the case 3(p1). Then for prime p with p1mod3, what is going to happen? This seems to be an open problem. In this paper, we will use the elementary and analytic methods, and the number of the solutions of some congruence equations to study this problem, and prove the following conclusion:

    Theorem. For any prime p with p1mod3, we have the asymptotic formula

    χmodpp1m=0|p1a=1χ(a)e(ma3+ap)|6=6p5+O(p4).

    Combining our theorem and the result in [5] we can deduce the following:

    Corollary. For any odd prime p, we have the asymptotic formula

    χmodpp1m=0|p1a=1χ(a)e(ma3+ap)|6=6p5+O(p4).

    Some notes: For prime p with p1mod3, we can only get an asymptotic formula for (1.1), but can not get an exact calculating formula. The reason is that we can not get an exact value in Lemma 6.

    Whether there exists an exact calculating formula for (1.1) with p1mod3 is an open problem. It remains to be further studied.

    In this section, we decompose the proof of the theorem into six simple lemmas. Of course, the proofs of these lemmas need some knowledge of elementary or analytic number theory, all these can be found in [3,11,12], we will not repeat them here. First we have the following:

    Lemma 1. Let p be an odd prime with p1mod3, then we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp1=p33p2+5p5.

    Proof. For any integer a, from the properties of the character sums

    χmodpχ(a)={p1 if  a1modp;0 otherwise,

    and the properties of the classical Gauss sums modulo p

    p1a=1χ(a)e(map)=¯χ(m)p1a=1χ(a)e(ap)=¯χ(m)τ(χ),

    we have

    χmodpp1m=0(p1a=1χ(a)e(map))3(p1a=1¯χ(a)e(map))3=p(p1)p1a=1p1b=1p1c=1p1d=1p1e=1p1f=1a+b+cd+e+fmodpabcdefmodp1=p(p1)p1a=1p1b=1p1c=1p1d=1p1e=1p1f=1af+bf+cfdf+ef+fmodpabcf3def3modp1=p(p1)2p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp1. (2.1)

    On the other hand, we also have

    χmodpp1m=0(p1a=1χ(a)e(map))3(p1a=1¯χ(a)e(map))3=(p1)6+χmodpp1m=1τ3(χ)¯τ(χ)3=(p1)6+(p1)+(p1)χχ0τ3(χ)¯τ(χ)3=(p1)6+(p1)[1+(p2)p3]=p(p1)2(p33p2+5p5), (2.2)

    where τ(χ)=p1a=1χ(a)e(ap) denotes the classical Gauss sums, χ0 denotes the principal character modulo p, ¯χ(a) and ¯τ(χ) denote the complex conjugate of χ(a) and τ(χ).

    Combining (2.1) and (2.2) we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp1=p33p2+5p5.

    This proves Lemma 1.

    Lemma 2. Let p be an odd prime with p1mod3. Then for any third-order character λ modulo p, we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)¯λ(d)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp¯λ(a)λ(d)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp¯λ(a)=p22p1.

    Proof. First from the properties of the reduced residue system modulo p we have

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)=p1a=1p1b=1p1c=1p1d=1p1e=1a1+d(b1)+e(c1)0modpabc1modpλ(a). (2.3)

    For any integer b with (b,p)=1, let ¯b denotes the multiplicative inverse of b modulo p. If a=b=c=1, then the congruence equations a1+d(b1)+e(c1)0modp and abc1modp have (p1)2 solutions and λ(1)=1.

    If a=1, b1 and c=¯b, then the congruence equations a1+d(b1)+e(c1)0modp and abc1modp have (p1)(p2) solutions.

    Similarly, if b=1, a1 and c=¯a, then we have

    p1a=2p1d=1p1e=1a1+e(¯a1)0modpλ(a)=(p1)p1a=2λ(a)=(p1). (2.4)

    If c=1, a1 and b=¯a, then we also have

    p1a=2p1d=1p1e=1a1+d(¯a1)0modpλ(a)=(p1)p1a=2λ(a)=(p1). (2.5)

    If a1, b1, c1 and abc1modp, then we have

    p1a=2p1b=2p1c=2p1d=1p1e=1a1+d(b1)+e(c1)0modpabc1modpλ(a)=p1a=2p1b=2p1c=2p1d=1p1e=11+d+e0modpabc1modpλ(a)=(p2)[(p1)p1a=1λ(a)(p2)2p1a=2λ(a)1]=(p2)(3p). (2.6)

    Combining (2.3)–(2.6) we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)=p22p1. (2.7)

    From the properties of the reduced residue system modulo p and (2.7) we also have

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)¯λ(d)=p1a=1p1b=1p1c=1p1d=1p1e=1ad+bd+cdd+ed+1modpabcd3d2emodpλ(ad)¯λ(d)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+c1+e+¯dmodpabc¯demodpλ(a)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)=p22p1. (2.8)

    Now Lemma 2 follows from (2.7) and (2.8).

    Lemma 3. Let p be an odd prime with p1mod3. Then for any third-order character λ modulo p, we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(d)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp¯λ(d)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)¯λ(b)=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(b)¯λ(a)=(p1).

    Proof. First from the properties of the reduced residue system we have

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(d)=p1a=1p1b=1p1c=1p1d=1p1e=1d(a1)+e(b1)+c10modpabc1modpλ(d). (2.9)

    If a=b=c=1, then from (2.9) we have

    p1d=1p1e=1λ(d)=0. (2.10)

    If a=1, b1 and c=¯b, then from (2.9) we have

    p1b=2p1c=2p1d=1p1e=1e(b1)+c10modpbc1modpλ(d)=p1b=2p1c=2p1e=1e(b1)+c10modpbc1modpp1d=1λ(d)=0. (2.11)

    Similarly, if b=1, a1 and c=¯a, then from (2.9) we have

    p1a=2p1d=1p1e=1d(a1)+¯a10modpλ(d)=(p1)p1a=2λ(d)=(p1). (2.12)

    If c=1, a1 and b=¯a, then we also have

    p1a=2p1d=1p1e=1d(a1)+e(¯a1)0modpλ(d)=p1a=2p1e=1λ(¯a)λ(e)=0. (2.13)

    If a1, b1, c1 and abc1modp, then note that λ(¯a)=¯λ(a), from (2.9) we have the identity

    p1a=2p1b=2p1c=2p1d=1p1e=1d(a1)+e(b1)+(c1)0modpabc1modpλ(d)=p1a=2p1b=2p1c=2p1d=1p1e=1d+e+c10modpabc1modp¯λ(a1)λ(d)=p1a=2p1b=2p1c=2p1e=1abc1modp¯λ(a1)λ(1ce)=p1a=1p1b=2p1c=1abc1modp¯λ(a1)λ(c1)=p1a=1p1c=1¯λ(a1)λ(c1)+p1a=1¯λ(a1)λ(¯a1)=1p1a=2λ(¯a)=0. (2.14)

    Combining (2.9)–(2.14) we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(d)=(p1). (2.15)

    From the properties of the reduced residue system modulo p and (2.15) we have

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(a)¯λ(b)=p1a=1p1b=1p1c=1p1d=1p1e=1ab+b+cbdb+eb+1modpab3cdbebmodpλ(ab)¯λ(b)=p1a=1p1b=1p1c=1p1d=1p1e=1a+1+cd+e+¯bmodpacde¯bmodpλ(a)=p1a=1p1b=1p1c=1p1d=1p1e=1a+1+cd+e+bmodpacdebmodpλ(a)=(p1). (2.16)

    Now Lemma 3 follows from (2.15) and (2.16).

    Lemma 4. Let p be an odd prime with p1mod3. Then for any third-order character λ modulo p, we have the identities

    |p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(ab)|=|p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp¯λ(c)λ(de)|p2;
    |p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(abc)|p2   and   |p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(dec)|p2.

    In fact, if abcdemodp and λi(a)λj(b)λk(c)λh(d)λs(e)1, 0i, j, k, h, s2, then we can also prove the estimate

    |p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλi(a)λj(b)λk(c)λh(d)λs(e)|p2.

    Proof. From the properties of the orthogonality of the characters we have

    χmodpp1m=0(p1a=1λ(a)χ(a)e(map))2(p1a=1χ(a)e(map))×(p1b=1¯χ(b)e(mbp))2e(mp)=p(p1)p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(ab). (2.17)

    On the other hand, from the properties of the classical Gauss sums we also have

    χmodpp1m=0(p1a=1λ(a)χ(a)e(map))2(p1a=1χ(a)e(map))×(p1b=1¯χ(b)e(mbp))2e(mp)=χmodpτ2(λχ)τ(χ)¯τ(χ)2p1m=1¯λ(m)¯χ(m)e(mp)=χmodp|τ(λχ)|2|τ(χ)|2τ(λχ)¯τ(χ)

    or

    |χmodpp1m=0(p1a=1λ(a)χ(a)e(map))2(p1a=1χ(a)e(map))|×|(p1b=1¯χ(b)e(mbp))2e(mp)|=|χmodp|τ(λχ)|2|τ(χ)|2τ(λχ)¯τ(χ)|p3(p1). (2.18)

    Combining (2.17) and (2.18) we may immediately deduce the estimate

    |p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodpλ(ab)|p2.

    Similarly, we can also deduce the other estimations in Lemma 4.

    Lemma 5. Let p be an odd prime with p1mod3. Then we have the identity

    p1a=1p1b=1p1c=1p1d=1p1e=1a3+b3+c3d3+e3+1modpa+b+cd+e+1modpabcdemodp1=7p229p+44.

    Proof. From the properties of the congruence equation modulo p we have

    p1a=1p1b=1p1c=1p1d=1p1e=1a3+b3+c3d3+e3+1modpa+b+cd+e+1modpabcdemodp1=p1a=1p1b=1p1c=1p1d=1p1e=1(a+b+c)3a3b3c3(d+e+1)3d3e31modpa+b+cd+e+1modpabcdemodp1=p1a=1p1b=1p1c=1p1d=1p1e=1(a+b+c)(a2+b2+c2d2e21)0modpa+b+cd+e+1modpabcdemodp1=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+c0modpa+b+cd+e+1modpabcdemodp1+p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2d2+e2+1modpa+b+cd+e+1modpabcdemodp1p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2d2+e2+1modpa+b+cd+e+10modpabcdemodp1. (2.19)

    Now we calculate the three sums in (2.19) separately. First we have

    p1a=1p1b=1p1c=1p1d=1p1e=1a+b+c0modpa+b+cd+e+1modpabcdemodp1=p1a=1p1b=1p1c=1p1d=1p1e=1da+eb+c0modpd+e+10modpabc1modp1=p1a=1p1b=1p1d=1p1e=1da+eb+¯ab0modpd+e+10modp1=p1a=1p1b=1p1d=1da(d+1)b+¯ab0modp1p1a=1p1b=1a+¯ab0modp1=p1a=1p1b=1p1d=1d(ab)b¯abmodp1(p1)=3(p1)+3(p2)+(p3)(p4)(p1)=p22p+4. (2.20)
    p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2d2+e2+1modpa+b+cd+e+1modpabcdemodp1=p1a=1p1b=1p1c=1p1d=1p1e=1ab+ac+bcde+d+emodpa+b+cd+e+1modpabcdemodp1=p1a=1p1b=1p1c=1p1d=1p1e=1ab+(a+b)cabde+ad+ebmodpa+b+cad+be+1modpcdemodp1=p1a=1p1b=1p1d=1p1e=1(a1)(b1)(de1)0modpa+b+dead+be+1modp1=1+p1d=1p1e=1(d1)(e1)0modp(de1,p)=11+2p1b=2p1d=1(d1)(b¯d)0modp1+2p1b=2p1d=1p1e=1(e1)(bd)0modp(de1,p)=11+p1a=2p1b=2p1d=1p1e=1a+bad+bemodpde1modp1=1+2(p2)+4(p2)+2(p2)(2p5)+p1a=2p1b=2p1e=1(a+b)ea+be2modp1=1+4(p2)(p1)+p1a=2p1b=2p1e=1(e1)(eba)0modp1=1+4(p2)(p1)+2(p2)2(p2)=6p221p+19. (2.21)
    p1a=1p1b=1p1c=1p1d=1p1e=1a2+b2+c2d2+e2+1modpa+b+cd+e+10modpabcdemodp1=p1a=1p1b=1p1d=1p1e=1(a1)(b1)(de1)0modpa+b+dead+be+10modp1=p1d=1p1e=12+ded+e+10modp1+2p1b=2p1d=12+bd+b¯d+10modp1+2p1b=2p1d=1p1e=11+b+ded+be+10modp(de1,p)=11+p1a=2p1b=2p1d=1a+b+1ad+b¯d+10modp1=2+4+2(p4+p5)+p4+p5=6p21. (2.22)

    Combining (2.19)–(2.22), we have the desired result

    p1a=1p1b=1p1c=1p1d=1p1e=1a3+b3+c3d3+e3+1modpa+b+cd+e+1modpabcdemodp1=7p229p+44.

    Lemma 6. Let p be an odd prime with p1mod3. Then we have the asymptotic formula

    p1a=1p1b=1p1c=1p1d=1p1e=1a3+b3+c3d3+e3+1modpabcdemodp1=p3+O(p2).

    Proof. Let λ be a third-order character modulo p. Note that if abcdemodp, then λ(abc)¯λ(de)=¯λ(abc)λ(de)=1, so from the properties of the third-order characters modulo p and Lemmas 1–4 we have the asymptotic formula

    p1a=1p1b=1p1c=1p1d=1p1e=1a3+b3+c3d3+e3+1modpabcdemodp1=13p1a=1p1b=1p1c=1p1d=1p1e=1a3+b3+c3d3+e3+1modpa3b3c3d3e3modp1=13p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp(1+λ(a)+¯λ(a))(1+λ(b)+¯λ(b))×(1+λ(c)+¯λ(c))(1+λ(d)+¯λ(d))(1+λ(e)+¯λ(e))=p1a=1p1b=1p1c=1p1d=1p1e=1a+b+cd+e+1modpabcdemodp1+O(p2)=p3+O(p2).

    This proves Lemma 6.

    Now we apply the lemmas in Section 2 to complete the proof of our theorem. Note that the trigonometrical identities

    p1a=0e(nap)={p if  pn;0 if  pn.

    From the orthogonality of the characters sums, Lemma 5 and 6 we have

    χmodpp1m=0|p1a=1χ(a)e(ma3+ap)|6=p(p1)p1a=1p1b=1p1c=1p1d=1p1h=1p1f=1a3+b3+c3d3+h3+f3modpabcdhfmodpe(a+b+cdhfp)=p(p1)p1a=1p1b=1p1c=1p1d=1p1h=1a3+b3+c3d3+h3+1modpabcdhmodpp1f=1e(f(a+b+cdh1)p)=p2(p1)p1a=1p1b=1p1c=1p1d=1p1h=1a3+b3+c3d3+h3+1modpa+b+cd+h+1modpabcdhmodp1p(p1)p1a=1p1b=1p1c=1p1d=1p1h=1a3+b3+c3d3+h3+1modpabcdhmodp1=p2(p1)(7p229p+44)p(p1)(p3+O(p2))=6p5+O(p4).

    This completes the proof of our theorem.

    The main result of this paper is to give an asymptotic formula for the sixth power mean of one kind special two-term exponential sums. That is, for any prime p with p1mod3, we have the asymptotic formula

    χmodpp1m=0|p1a=1χ(a)e(ma3+ap)|6=6p5+O(p4).

    Whether there exists an exact formula for the above power mean is still an open problem. We will keep working on it.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper. All authors have equally contributed to this work. All authors have read and approved the final manuscript. This work is supported by the N. S. F. (12126357) of P. R. China, and Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No.22JK0424).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 72 (2020), 205–212.
    [2] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [3] W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013.
    [4] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin., Engl. Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [5] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/ 10.3390/math7100907 doi: 10.3390/math7100907
    [6] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 69 (2017), 75–81.
    [7] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. http://dx.doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [8] H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547.
    [9] X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96.
    [10] X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. http://dx.doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
    [11] T. M. Apostol, SIntroduction to Analytic Number Theory, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [12] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982. https://doi.org/10.1007/978-1-4757-1779-2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1589) PDF downloads(108) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog