Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Correlation properties of interleaved Legendre sequences and Ding-Helleseth-Lam sequences

  • Sequences with optimal autocorrelation properties play an important role in wireless communication, radar and cryptography. Interleaving is a very important method in constructing the optimal autocorrelation sequence. Tang and Gong gave three different constructions of interleaved sequences (generalized GMW sequences, twin prime sequences and Legendre sequences). Su et al. constructed a series of sequences with optimal autocorrelation magnitude via interleaving Ding-Helleseth-Lam sequences. In this paper we further study the correlation properties of interleaved Legendre sequences and Ding-Helleseth-Lam sequences.

    Citation: Yixin Ren, Chenyu Hou, Huaning Liu. Correlation properties of interleaved Legendre sequences and Ding-Helleseth-Lam sequences[J]. Electronic Research Archive, 2023, 31(8): 4549-4556. doi: 10.3934/era.2023232

    Related Papers:

    [1] Xi Liu, Huaning Liu . Arithmetic autocorrelation and pattern distribution of binary sequences. Electronic Research Archive, 2025, 33(2): 849-866. doi: 10.3934/era.2025038
    [2] Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, Minghao Chen . Recursive sequences and girard-waring identities with applications in sequence transformation. Electronic Research Archive, 2020, 28(2): 1049-1062. doi: 10.3934/era.2020057
    [3] Messoud Efendiev, Vitali Vougalter . Linear and nonlinear non-Fredholm operators and their applications. Electronic Research Archive, 2022, 30(2): 515-534. doi: 10.3934/era.2022027
    [4] Tingting Du, Zhengang Wu . On the reciprocal sums of products of $ m $th-order linear recurrence sequences. Electronic Research Archive, 2023, 31(9): 5766-5779. doi: 10.3934/era.2023293
    [5] Kiyoshi Igusa, Gordana Todorov . Picture groups and maximal green sequences. Electronic Research Archive, 2021, 29(5): 3031-3068. doi: 10.3934/era.2021025
    [6] Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu . A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28(2): 1123-1142. doi: 10.3934/era.2020062
    [7] Yilin Wu, Guodong Zhou . From short exact sequences of abelian categories to short exact sequences of homotopy categories and derived categories. Electronic Research Archive, 2022, 30(2): 535-564. doi: 10.3934/era.2022028
    [8] Tian-Xiao He, Peter J.-S. Shiue . Identities for linear recursive sequences of order $ 2 $. Electronic Research Archive, 2021, 29(5): 3489-3507. doi: 10.3934/era.2021049
    [9] Shishuo Fu, Jiaxi Lu, Yuanzhe Ding . A skeleton model to enumerate standard puzzle sequences. Electronic Research Archive, 2022, 30(1): 179-203. doi: 10.3934/era.2022010
    [10] Jing Chen, Weiyu Ye, Shaowei Kang . Learning user preferences from Multi-Contextual Sequence influences for next POI recommendation. Electronic Research Archive, 2024, 32(1): 486-504. doi: 10.3934/era.2024024
  • Sequences with optimal autocorrelation properties play an important role in wireless communication, radar and cryptography. Interleaving is a very important method in constructing the optimal autocorrelation sequence. Tang and Gong gave three different constructions of interleaved sequences (generalized GMW sequences, twin prime sequences and Legendre sequences). Su et al. constructed a series of sequences with optimal autocorrelation magnitude via interleaving Ding-Helleseth-Lam sequences. In this paper we further study the correlation properties of interleaved Legendre sequences and Ding-Helleseth-Lam sequences.



    Given a binary sequence v=(v(0),v(1),,v(N1)){0,1}N of period N, ZN is the integer ring of modulo N, the set Cv={tZN: v(t)=1} is called the support of v. Let τ{1,,N1}, the autocorrelation function Rv(τ) of v is defined by

    Rv(τ)=N1i=0(1)v(i)+v(i+τ),

    where i+τ is operating on modulo N. Easy to verity

    Rv(τ)=N4|(Cv+τ)Cv|.

    Thus Rv(τ)N (mod 4). In particular, Rv(τ)0 (mod 4) for N0 (mod 4).

    If Rv(τ){0,4} or Rv(τ){0,+4} where τ{1,,N1}, then v is referred to as a sequence with optimal autocorrelation value. If Rv(τ){0,±4} where τ{1,,N1}, then v is referred to as a sequence with optimal autocorrelation magnitude. Sequences with optimal autocorrelation properties play an important role in wireless communication, radar and cryptography[1], so they have always been the focus of scholars' research (refer to [2,3,4,5,6,7,8,9,10,11]).

    Gong[12] introduced powerful interleaved method to design sequences. The key idea of this method is to obtain long sequences with good correlation from shorter ones. Let

    vk=(vk(0),vk(1),,vk(N1))

    be a sequence of period N, where 0kM1. Define the N×M matrix U=(Uij) as follows

    U=[v0(0)v1(0)vM1(0)v0(1)v1(1)vM1(1)v0(N1)v1(N1)vM1(N1)].

    An interleaved sequence u=(u(t)) of period MN is defined by

    uiM+j=Uij=vj(i),0i<N, 0j<M.

    For convenience we write

    u=I(v0,v1,,vM1).

    Interleaving is a very important method in constructing optimal autocorrelation sequences. The autocorrelation of the sequence u is determined by the autocorrelation and cross-correlation of the sequences v0,v1,,vM1.

    Tang and Gong[10] gave three different constructions of interleaved sequences with the following structure:

    u=I(a0+b(0), Ld+η(a1)+b(1), L2d(a2)+b(2), L3d+η(a3)+b(3)), (1.1)

    where η is an integer with 0η<N, d is an integer with 4d1 (mod N), b=(b(0),b(1),b(2),b(3)) is a binary perfect sequence, ai, i=0,1,2,3, are sequences of period N taken from three different pairs of sequences (generalized GMW sequences, twin prime sequences and Legendre sequences).

    Let N=p be an odd prime. The Legendre sequence l=(l(0),l(1),,l(p1)) of period p is defined by

    l(i)={0  or  1,if  i=0,1,if i is quadratic residue modulo p,0,if i is quadratic non-residue modulo p.

    In particular, l is called the first type Legendre sequence if l(0)=1 otherwise the second type Legendre sequence. Let l and l be the first type and the second type of Legendre sequence of period p, respectively.

    Tang and Gong[10] showed that the constructions of interleaved Legendre sequence have optimal autocorrelation magnitude. Li and Tang[6] studied the linear complexity of binary sequences given in [10].

    Let p=4f+1 be an odd prime, where f is a positive integer, α is a generator of Fp. Define sets

    Di={αi+4j: 0jf1},i=0,1,2,3.

    Then Di, i=0,1,2,3 are called the cyclotomic classes of order 4 with respect to Fp. It is very easy to verity that Di, i=0,1,2,3 constitute a partition of Fp.

    Ding et al.[13] constructed some binary sequences based on the cyclotomic classes of order 4 of Fp, and proved that these sequences are three-level autocorrelation.

    Proposition 1.1. Let p=4f+1=x2+4y2 be an odd prime, where f,x,y are integers. Let s1,s2,s3,s4 be binary sequences of period p with supports D0D1, D0D3, D1D2 and D2D3, respectively. Then Rsi(τ){1,3} for all 1τ<p if and only if f is odd and y=±1.

    Let a0,a1,a2,a3 be four binary sequences of period p, b=(b(0),b(1),b(2),b(3)) be a binary sequence of length 4. Construct a binary sequence u=u(t) of length 4p as follows:

    u=I(a0+b(0), Ld(a1)+b(1), L2d(a2)+b(2), L3d(a3)+b(3)), (1.2)

    where d is a integer with 4d1 (mod p), L is a cyclic left shift operator, when c=(c(0),c(1),,c(N1)), L(c)=(c(1),c(2),,c(N1),c(0)).

    Su et al.[8] constructed a series sequences with optimal autocorrelation magnitude of period 4p via interleaving Ding-Helleseth-Lam sequences.

    Proposition 1.2. Let p=4f+1=x2+4y2 be an odd prime, where x is an integer, y=±1, f is odd. Let b(0)=b(2), b(1)=b(3), and (a0,a1,a2,a3) be chosen from

    (s3,s2,s1,s1),(s2,s3,s1,s1),(s1,s4,s2,s2),(s4,s1,s2,s2),(s1,s4,s3,s3),(s4,s1,s3,s3),(s3,s2,s4,s4),(s2,s3,s4,s4). (1.3)

    Then the binary sequence u by (1.2) has Ru(τ){0,±4} for all 1τ<4p.

    Later Fan[14] showed that the above sequences have large linear complexity. Sun et al.[15] proved that the sequences have good 2-adic complexity.

    This paper will further study the fourth-order correlation properties of interleaved Legendre sequences and Ding-Helleseth-Lam sequences. Our results are as follows.

    Theorem 1.1. Let p>2 be a prime, b=(b(0),b(1),b(2),b(3)) be a binary perfect sequence, η be an integer with 0<η<p and let the binary sequence u be generated by (1.1). For n{0,1,,4p1} we have

    (1)un+un+p+un+2p+un+3p={(1)a0(pη)+a1(0)+a2(pη)+a3(0)+1,n4η (mod p),(1)a0(0)+a1(η)+a2(0)+a3(η)+1,n0 (mod p)  and  n4η (mod p),1,n0 (mod p)  and  n4η (mod p).

    Theorem 1.2. Let p=4f+1 be an odd prime, b(0)=b(2), b(1)=b(3) and let (a0,a1,a2,a3) be chosen from (1.3). Let the binary sequence u be defined as in (1.2). For n{0,1,,4p1} we have

    (1)un+un+p+un+2p+un+3p={+1,n0 (mod p),1,n0 (mod p).

    Our results show that the fourth-order correlation for interleaved Legendre sequences and Ding-Helleseth-Lam sequences u we have (1)un+un+p+un+2p+un+3p=1 which the number of n is at least 4p5 for all n{0,1,,4p1}. This means that there are at least four subsequences that do not satisfy lower mutual interference. Therefore, researchers should pay careful attention to these four subsequences when consider their application in communication systems.

    Write

    u=I(v0, v1, v2, v3)=I(a0+b(0), Ld+η(a1)+b(1), L2d(a2)+b(2), L3d+η(a3)+b(3)).

    Then

    (1)v0(n)=(1)b(0)(1)a0(n), (2.1)
    (1)v1(n)=(1)b(1)(1)a1(n+d+η), (2.2)
    (1)v2(n)=(1)b(2)(1)a2(n+2d), (2.3)
    (1)v3(n)=(1)b(3)(1)a3(n+3d+η). (2.4)

    Case Ⅰ: p1 (mod 4). We have

    p=4p14+1,2p=42(p1)4+2,3p=43(p1)4+3,d=3p+14.

    Write n=4i+j, where 0ip1 and 0j3. Hence,

    un+un+p+un+2p+un+3p=u4i+j+u4i+j+4p14+1+u4i+j+42(p1)4+2+u4i+j+43(p1)4+3. (2.5)

    First we consider the case of j=1. By (2.1)–(2.5) we get

    un+un+p+un+2p+un+3p=u4i+1+u4(i+p14)+2+u4(i+2(p1)4)+3+u4(i+3(p1)4)+4=v1(i)+v2(i+p14)+v3(i+2(p1)4)+v0(i+3p+14)=a1(i+d+η)+b(1)+a2(i+p14+2d)+b(2)+a3(i+2(p1)4+3d+η)+b(3)+a0(i+3p+14)+b(0)=b(0)+b(1)+b(2)+b(3)+a0(i+d)+a1(i+d+η)+a2(i+d)+a3(i+d+η). (2.6)

    For all j{0,1,2,3} we can also have

    un+un+p+un+2p+un+3p=b(0)+b(1)+b(2)+b(3)+a0(i+jd)+a1(i+jd+η)+a2(i+jd)+a3(i+jd+η). (2.7)

    Noting that 4d1 (mod p) and n=4i+j, thus we get

    i+jd0 (mod p)4i+j0 (mod p)n0 (mod p),i+jd+η0 (mod p)4i+j+4η0 (mod p)n+4η0 (mod p).

    Therefore

    (1)un+un+p+un+2p+un+3p=(1)a0(i+jd)+a1(i+jd+η)+a2(i+jd)+a3(i+jd+η)={(1)a0(0)+a1(0)+a2(0)+a3(0)+1,n0 (mod p)  and  n+4η0 (mod p),(1)a0(pη)+a1(0)+a2(pη)+a3(0)+1,n0 (mod p)  and  n+4η0 (mod p),(1)a0(0)+a1(η)+a2(0)+a3(η)+1,n0 (mod p)  and  n+4η0 (mod p),1,n0 (mod p)  and  n+4η0 (mod p),={(1)a0(pη)+a1(0)+a2(pη)+a3(0)+1,n4η (mod p),(1)a0(0)+a1(η)+a2(0)+a3(η)+1,n0 (mod p)  and  n4η (mod p),1,n0 (mod p)  and  n4η (mod p).

    Case Ⅱ: p3 (mod 4). We have

    p=4p34+3,2p=42(p1)4+2,3p=43p14+1,d=p+14.

    Similarly we can get

    (1)un+un+p+un+2p+un+3p={(1)a0(pη)+a1(0)+a2(pη)+a3(0)+1,n4η (mod p),(1)a0(0)+a1(η)+a2(0)+a3(η)+1,n0 (mod p)  and  n4η (mod p),1,n0 (mod p)  and  n4η (mod p).

    This proves Theorem 1.1.

    Write

    u=I(v0, v1, v2, v3)=I(a0+b(0), Ld(a1)+b(1), L2d(a2)+b(2), L3d(a3)+b(3)).

    Then

    (1)v0(n)=(1)b(0)(1)a0(n), (3.1)
    (1)v1(n)=(1)b(1)(1)a1(n+d), (3.2)
    (1)v2(n)=(1)b(2)(1)a2(n+2d), (3.3)
    (1)v3(n)=(1)b(3)(1)a3(n+3d). (3.4)

    Let b(0)=b(2) and b(1)=b(3). Noting that p1 (mod 4), thus we have

    p=4p14+1,2p=42(p1)4+2,3p=43(p1)4+3,d=3p+14.

    Write n=4i+j, where 0ip1 and 0j3. Hence,

    un+un+p+un+2p+un+3p=u4i+j+u4i+j+4p14+1+u4i+j+42(p1)4+2+u4i+j+43(p1)4+3. (3.5)

    For the case of j=1, by (3.1)–(3.5) we get

    un+un+p+un+2p+un+3p=u4i+1+u4(i+p14)+2+u4(i+2(p1)4)+3+u4(i+3(p1)4)+4=v1(i)+v2(i+p14)+v3(i+2(p1)4)+v0(i+3p+14)=a1(i+d)+b(1)+a2(i+p14+2d)+b(2)+a3(i+2(p1)4+3d)+b(3)+a0(i+3p+14)+b(0)=b(0)+b(1)+b(2)+b(3)+a0(i+d)+a1(i+d)+a2(i+d)+a3(i+d). (3.6)

    For all j{0,1,2,3} we can also have

    un+un+p+un+2p+un+3p=b(0)+b(1)+b(2)+b(3)+a0(i+jd)+a1(i+jd)+a2(i+jd)+a3(i+jd). (3.7)

    Clearly,

    i+jd0 (mod p)4i+j0 (mod p)n0 (mod p).

    Let (a0,a1,a2,a3) be chosen from

    (s3,s2,s1,s1),(s2,s3,s1,s1),(s1,s4,s2,s2),(s4,s1,s2,s2),(s1,s4,s3,s3),(s4,s1,s3,s3),(s3,s2,s4,s4),(s2,s3,s4,s4).

    From (3.7) we get

    (1)un+un+p+un+2p+un+3p=(1)a0(i+jd)+a1(i+jd)+a2(i+jd)+a3(i+jd)={+1,n0 (mod p),1,n0 (mod p).

    This completes the proof of Theorem 1.2.

    The authors have not used Artificial Intelligence (AI) tools in the creation of this article.

    This paper is supported by National Natural Science Foundation of China under Grant No. 12071368, Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSY017), and Northwest University Graduate Innovation Program Funds (No. CX2023066).

    The authors declare there is no conflicts of interest.



    [1] S. W. Golomb, G. Gong, Signal Design for Good Correlation-for Wireless Communication, Cryptography and Radar, Cambridge University Press, Cambridge, 2005. https://doi.org/10.1017/CBO9780511546907
    [2] K. T. Arasu, C. Ding, T. Helleseth, P. V. Kumar, H. Martinsen, Almost difference sets and their sequences with optimal autocorrelation, IEEE Trans. Inf. Theory, 47 (2001), 2934–2943. https://doi.org/10.1109/18.959271 doi: 10.1109/18.959271
    [3] Y. Cai, C. Ding, Binary sequences with optimal autocorrelation, Theor. Comput. Sci., 410 (2009), 2316–2322. https://doi.org/10.1016/j.tcs.2009.02.021 doi: 10.1016/j.tcs.2009.02.021
    [4] D. Jungnickel, Finite Fields: Structure and Arithmetics, BI-Wissenschaftsverlag, Mannheim, 1993.
    [5] A. Lempel, M. Cohn, W. L. Eastman, A class of balanced binary sequences with optimal autocorrelation properties, IEEE Trans. Inf. Theory, 23 (1977), 38–42. https://doi.org/10.1109/TIT.1977.1055672 doi: 10.1109/TIT.1977.1055672
    [6] N. Li, X. Tang, On the linear complexity of binary sequences of period 4N with optimal autocorrelation value/magnitude, IEEE Trans. Inf. Theory, 57 (2011), 7597–7604. https://doi.org/10.1109/TIT.2011.2159575 doi: 10.1109/TIT.2011.2159575
    [7] V. M. Sidel'nikov, Some k-valued pseudo-random sequences and nearly equidistant codes, Probl. Peredachi Inf., 5 (1969), 12–16.
    [8] W. Su, Y. Yang, C. Fan, New optimal binary sequences with period 4p via interleaving Ding-Helleseth-Lam sequences, Des. Codes Cryptogr., 86 (2018), 1329–1338. https://doi.org/10.1007/s10623-017-0398-5 doi: 10.1007/s10623-017-0398-5
    [9] W. Su, Y. Yang, Z. Zhou, X. Tang, New quaternary sequences of even length with optimal auto-correlation, Sci. China Inf. Sci., 61 (2018). https://doi.org/10.1007/s11432-016-9087-2 doi: 10.1007/s11432-016-9087-2
    [10] X. Tang, G. Gong, New constructions of binary sequences with optimal autocorrelation value/magnitude, IEEE Trans. Inf. Theory, 56 (2010), 1278–1286. https://doi.org/10.1109/TIT.2009.2039159 doi: 10.1109/TIT.2009.2039159
    [11] N. Yu, G. Gong, New binary sequences with optimal autocorrelation magnitude, IEEE Trans. Inf. Theory, 54 (2008), 4771–4779. https://doi.org/10.1109/TIT.2008.928999 doi: 10.1109/TIT.2008.928999
    [12] G. gong, Theory and applications of q-ary interleaved sequences, IEEE Trans. Inf. Theory, 41 (1995), 400–411. https://doi.org/10.1109/18.370141 doi: 10.1109/18.370141
    [13] C. Ding, T. Helleseth, K. Y. Lam, Several classes of binary sequences with three-level autocorrelation, IEEE Trans. Inf. Theory, 45 (1999), 2606–2612. https://doi.org/10.1109/18.796414 doi: 10.1109/18.796414
    [14] C. Fan, The linear complexity of a class of binary sequences with optimal autocorrelation, Des. Codes Cryptogr., 86 (2018), 2441–2450. https://doi.org/10.1007/s10623-018-0456-7 doi: 10.1007/s10623-018-0456-7
    [15] Y. Sun, T. Yan, Z. Chen, L. Wang, The 2-adic complexity of a class of binary sequences with optimal autocorrelation magnitude, Cryptogr. Commun., 12 (2020), 675–683. https://doi.org/10.1007/s12095-019-00411-4 doi: 10.1007/s12095-019-00411-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1517) PDF downloads(117) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog