Research article Special Issues

Green bond market boom: did environmental, social and governance criteria play a role in reducing health-related uncertainty?

  • Received: 16 August 2022 Revised: 22 October 2022 Accepted: 08 November 2022 Published: 18 January 2023
  • JEL Codes: C12, C23, C50, D53, G10, H51

  • Recent years have been characterized by considerable growth of the green bond market in Europe, particularly in the domain of social bond issuance. Considering the recent pandemic, it is also a stylized fact that this growth is positively correlated with the concept of health-related uncertainty, as the green bond market aims to acquire financing in order to allow the development of projects that comply with the so-called environmental (E), social (S) and governance (G) criteria. This study then applies a dynamic spatial econometric analysis and several robustness checks to assess the extent to which each E, S and G criterion contributes to the societal dynamics of health-related uncertainty. The analysis takes advantage of available data on the number of confirmed cases of COVID-19 to measure health-related uncertainty at the municipal level, so that a higher (lower) number of confirmed cases constitutes a proxy for a greater (smaller) degree of uncertainty, respectively. To reinforce the need to evaluate impacts in a context characterized by health-related uncertainty, the time span covers the first wave of COVID-19, which is the period when uncertainty reached its highest peak. Additionally, the geographical scope is mainland Portugal since this country has become a breeding ground for startups and new ideas, being currently one of the world leaders in hosting businesses that reached Unicorn status. The main result of this research is that only the social dimension has a significant, positive and permanent impact on health-related uncertainty. Therefore, this study empirically confirms that the European green bond market has been and can be further leveraged by the need to finance projects with a social scope.

    Citation: Vitor Miguel Ribeiro. Green bond market boom: did environmental, social and governance criteria play a role in reducing health-related uncertainty?[J]. Green Finance, 2023, 5(1): 18-67. doi: 10.3934/GF.2023002

    Related Papers:

    [1] Mengze Wu, Dejun Xie . The impact of ESG performance on the credit risk of listed companies in Shanghai and Shenzhen stock exchanges. Green Finance, 2024, 6(2): 199-218. doi: 10.3934/GF.2024008
    [2] Samuel Asante Gyamerah, Clement Asare . A critical review of the impact of uncertainties on green bonds. Green Finance, 2024, 6(1): 78-91. doi: 10.3934/GF.2024004
    [3] Aikaterini (Katerina) Tsoukala, Georgios Tsiotas . Assessing green bond risk: an empirical investigation. Green Finance, 2021, 3(2): 222-252. doi: 10.3934/GF.2021012
    [4] Rongwu Zhang, Huaqian Chen, Wenjia Zhang, Tong Lu . Does ESG performance inhibit or promote herding behavior of institutional investors?. Green Finance, 2025, 7(2): 363-380. doi: 10.3934/GF.2025013
    [5] Thabo J. Gopane . Policy implications of ESG-moderated credit risk on bank profitability. Green Finance, 2025, 7(3): 406-428. doi: 10.3934/GF.2025015
    [6] Raja Elyn Maryam Raja Ezuma, Nitanan Koshy Matthew . The perspectives of stakeholders on the effectiveness of green financing schemes in Malaysia. Green Finance, 2022, 4(4): 450-473. doi: 10.3934/GF.2022022
    [7] Amr ElAlfy, Adel Elgharbawy, Tia Rebecca Driver, Abdul-Jalil Ibrahim . Sustainability disclosure in the Gulf Cooperation Council (GCC) countries: Opportunities and Challenges. Green Finance, 2025, 7(1): 40-82. doi: 10.3934/GF.2025003
    [8] Zach Williams, Heather Apollonio . The causation dilemma in ESG research. Green Finance, 2024, 6(2): 265-286. doi: 10.3934/GF.2024011
    [9] María Cantero-Saiz, Sergio Sanfilippo-Azofra, Begoña Torre-Olmo, Violeta Bringas-Fernández . ESG and bank profitability: the moderating role of country sustainability in developing and developed economies. Green Finance, 2025, 7(2): 288-331. doi: 10.3934/GF.2025011
    [10] Tao Lin, Mingyue Du, Siyu Ren . How do green bonds affect green technology innovation? Firm evidence from China. Green Finance, 2022, 4(4): 492-511. doi: 10.3934/GF.2022024
  • Recent years have been characterized by considerable growth of the green bond market in Europe, particularly in the domain of social bond issuance. Considering the recent pandemic, it is also a stylized fact that this growth is positively correlated with the concept of health-related uncertainty, as the green bond market aims to acquire financing in order to allow the development of projects that comply with the so-called environmental (E), social (S) and governance (G) criteria. This study then applies a dynamic spatial econometric analysis and several robustness checks to assess the extent to which each E, S and G criterion contributes to the societal dynamics of health-related uncertainty. The analysis takes advantage of available data on the number of confirmed cases of COVID-19 to measure health-related uncertainty at the municipal level, so that a higher (lower) number of confirmed cases constitutes a proxy for a greater (smaller) degree of uncertainty, respectively. To reinforce the need to evaluate impacts in a context characterized by health-related uncertainty, the time span covers the first wave of COVID-19, which is the period when uncertainty reached its highest peak. Additionally, the geographical scope is mainland Portugal since this country has become a breeding ground for startups and new ideas, being currently one of the world leaders in hosting businesses that reached Unicorn status. The main result of this research is that only the social dimension has a significant, positive and permanent impact on health-related uncertainty. Therefore, this study empirically confirms that the European green bond market has been and can be further leveraged by the need to finance projects with a social scope.



    1. Introduction

    Relatively large areas in the western region of the United States are classified as arid or semi-arid environments, which are characterized in part by their limited and variable precipitation. Semi-arid regions are expected to receive around 10 to 30 inches of average annual precipitation ( 254-762 mm year1) but climate change is predicted to increase the intensity and frequency of droughts globally [24]. For instance, in August of 2016, abnormally dry to moderate drought conditions were observed in several locations of the western region of the United States, with ranges between severe to extreme drought occurring in the northern portions, and severe to exceptional drought extending from California into Nevada [20]. The lack of precipitation puts indigenous species of plants and animals in semi-arid environments under unusual stress and the parallel habitat loss might pose a threat to local biodiversity [16]. Under these circumstances, having educated guesses of the potential vegetation biomass responses in semi-arid landscapes to long term changes in precipitation could serve to put forward the design of adaptation and conservation policies [9]. The estimation of the expected time of transition to a desert state (or bare-soil), as a conceivable measure of those responses, presents difficulties due to the complexities associated with specific water-vegetation systems. For instance, the inherent non-linear characteristics of semi-arid landscapes may trigger desertification in response to slow changes [23]. Results from simulations of simple mathematical models could still offer a hint of the relationship with the parameters that might be driving decline.

    Extensive mathematical modeling and analysis of semi-arid water-vegetation systems emerged for at least the past twenty years, especially since the appearance of deterministic ecohydrological models with broad developments focused on vegetation pattern formation, see for instance [5,12,19,22,25,26,27]. The effects of noise on dryland ecosystems that are usually described by deterministic models showing bistability have also been analysed, [6,21], suggesting the possibility of creation or disappearance of vegetated states in the form of noise-induced transitions, [11]. In contrast, the goals in this paper are to present a stochastic differential equation approximation for an idealized water-vegetation (non-spatial) discrete system and the estimation of mean transition times into a desert state. We emphasize that our model is not obtained by adding "noise" to a differential equation as previously done [6,21], but by the construction of a diffusion approximation.

    As a first step, we set up a Markov jump process that incorporates the interactions in an idealized water-vegetation system. Similar conceptual models have been used successfully in other biological contexts, see for instance [17] and [18,15]. The model involves only water and vegetation biomass, in an environment of limited capacity. When this capacity (or "system size") increases it gives rise to a deterministic system of differential equations for the mean densities. We deduce an intermediate mesoscale stochastic model between the jump process and the differential equations obtained for the means. Using estimated parameters for vegetation and precipitation in semi-arid landscapes from the literature, and data for state precipitation anomalies in California as baseline, we estimate the mean times for a system to reach desertification in a range of realistic precipitation anomalies, i.e. departures from long term mean. With these results we finally quantify, for this simple model, the dependence between changes in precipitation anomalies and mean transition times to the desert state.


    2. Theoretical framework for water-vegetation dynamics


    2.1. The stochastic and ODE models

    We start by defining a Markov jump process that represents a simplified version of the real interactions between water and vegetation at a small scale. We do this through the discretization of (alive) vegetation biomass and water volume in small units (individuals), for which a specific set of stochastic events can be explicitly characterized. Naturally, as we transition into larger scales discreteness is lost, and the continuous state space takes place.

    We first consider a patch with finite capacity, say N, containing three types of individuals: (ⅰ) vegetation biomass units; (ⅱ) water volume units; (ⅲ) empty locations. The dynamics of plant biomass and water interactions is driven by events involving a few processes: vegetation biomass loss, incoming water, water evaporation, and increase vegetation yield by taking up water. If we represent the state of the system, i.e. the number of biomass units, n, and the number of water volume units, m, by the pair (n,m) then these events correspond to the transitions detailed in Table 1.

    Table 1. Possible transition events with their associated jumps if the system is at state (n,m), where n and m represent units of biomass and water, respectively.
    Event Transition Jump Jump rate
    Vegetation biomass loss (n,m)(n1,m) (1,0) d
    Incoming water (n,m)(n,m+1) (0,1) s
    Water evaporation (n,m)(n,m1) (0,1) v
    Increase vegetation by (n,m)(n+1,m1) (1,1) b
    water take up
     | Show Table
    DownLoad: CSV

    It is then straightforward to find the probability rates of transition from a state (n,m) to (n,m), T(n,m|n,m):

    (a) T(n+1,m1|n,m)=bnNmN1

    (b) T(n1,m|n,m)=dnN

    (c) T(n,m+1|n,m)=sNnmN

    (d) T(n,m1|n,m)=vmN

    Using these rates we can write the associated Kolmogorov equation (see [7] for instance),

    dP(n,m,t)dt=T(n,m|n1,m+1)P(n1,m+1,t)+T(n,m|n+1,m)P(n+1,m,t)+T(n,m|n,m+1)P(n,m+1,t)+T(n,m|n,m1)P(n,m1,t)(T(n+1,m1|n,m)+T(n1,m|n,m)+T(n,m1|n,m)+T(n,m+1|n,m))P(n,m,t).

    where P(n,m,t) is the probability that the system is at the state (n,m) at time t. Imposing zero boundary conditions, multiplying the Kolmogorov equation by n, and summing over m and n gives the expression for the rate of change of the mean biomass,

    dndt=Nn,m=0[T(n+1,m1|n,m)T(n1,m|n,m)]P(n,m,t)=bnNmN1dnN, (1)

    where the correlations between the random variables are neglected under the assumption of a large N. Writing the mean density of vegetation as ρv=n/N finally gives

    dρvdt=˜bρvρw˜dρv, (2)

    where ˜b=b/(N1) and ˜d=d/N. Similarly,

    dmdt=Nn,m=0[T(n,m+1|n,m)T(n,m1|n,m)]P(n,m,t)        =ssn+mNbnNmN1vmN (3)

    Similarly, writing the mean density of water by ρw=m/N then

    dρwdt=˜s(1(ρv+ρw))˜bρvρw˜vρw, (4)

    where ˜s=s/N and ˜v=v/N. We remark at this point that water infiltration in the soil is generally improved by the presence of vegetation. As a consequence, the process of taking up water by plants gets more efficient. This fact can be incorporated into the model by letting the rate for taking up water be density dependent, that is, to the jump (1, -1) we associate a new rate bn/N. This leads to having T(n+1,m1|n,m)=bn2N2mN1, which replaced into the equation for dn/dt produces

    dρvdt=˜bρ2vρw˜dρv (5)

    instead of equation (2). A similar change happens in equation (4), which is now

    dρwdt=˜s(1(ρv+ρw))˜bρ2vρw˜vρw. (6)

    Equations (5) and (6) constitute a system of differential equations that serves as approximation to the dynamics of the mean densities for large values of N, also known as mean field equations in the Physics literature. We remark that for N relatively large the factor 1(ρv+ρw) is close to one, making our equations an approximation to the reaction part of Klausmeier's reaction-diffusion-advection equations for water-vegetation systems, [12].


    2.2. The diffusion approximation

    The diffusion approximation to our model (the mesoscale model) describes the system as an intermediate approximation that emerges between the Markov jump process model (microscale model) and the differential equations for the mean densities (macroscale model). For this approximation the state variables are continuous but include random fluctuations. We expect the new model to incorporate the differential equations and terms that express random fluctuations around the mean densities.

    To obtain a representation of the Markov jump process as a diffusion process one can follow either Kurtz's method [14], or find the same equations via the Fokker-Planck equation [18,7]; see [4] for a nice introduction. In Kurtz's approach, which is the one we use here, the jump process is represented by

    X(t)=X(0)+rrN(r)(t0NΦ(1NX(s);r)ds), (7)

    where r is a jump (see the third column in Table 1), N(r)(t) is a collection of independent rate 1 scalar Poisson processes and NΦ(1NX(s);r) is the rate at which a transition with jump r occurs. Kurtz showed that the process X(t)/N can be approximated by a process Y(t) that satisfies the stochastic differential equation

    dY(t)=rrΦ(Y(t);r)dt+1Nrr(Φ(Y(t);r)dW(r)(t), (8)

    where the W(r) are the Brownian motions associated with the jump types of the Markov jump process. The error introduced on bounded intervals of time by replacing X(t)/N with Y(t) is O(logN/N) as N. The first term in the sum of the right hand side of (8) corresponds to the vector field of mean densities, that is,

    A=[AvAw]=[˜bρ2vρw˜dρv,˜s(1ρvρw)˜bρ2vρw˜vρw,].

    If we denote by B the covariance matrix

    B=[BvvBvwBwvBww],

    where

    Bvv=˜bρ2vρw+˜dρv,Bvw=Bwv=˜bρ2vρw,Bww=˜bρ2vρw+˜s(1ρvρw)+˜vρw,

    and factor it as B=ggT for some g, then the stochastic differential equations system (8) can be written as

    dY(t)=Adt+1NgdW, (9)

    where dW is a two dimensional Brownian motion. Figure 1 compares several paths that correspond to the Markov jump process and the diffusion approximation, generated with the same set of (arbitrarily chosen) parameters. It is apparent that the stochastic differential equation provides a good approximation to the jump process.

    Figure 1. Simulations corresponding to the Markov jump process (left) and the diffusion approximation (right). For comparison purposes the paths in both panels were generated using the same parameters and the same scaled time.

    3. Simulations

    We use the stochastic differential equation (9) to simulate the water-vegetation system and obtain averages of the expected time to desertification (see [10] or [13] for a quick or an extensive introduction respectively to the numerical solution of stochastic differential equations).

    By identifying the parameters of the nondimensional deterministic (non-spatial) model in [12] with the mean field system obtained above (Av=Av(ρ) and Aw=Aw(ρ), where ρ=(ρv,ρw)) we obtain S=AR1/2J/L3/2 and ˜d=M/L, with the meaning and realistic values for these parameters listed in Table 3. Thus, for instance, Klausmeier's parameter ranges for S are [0.077,0.23] and ˜d=0.045 for trees, and [0.94,2.81] and ˜d=0.45 for grass. Also, the corresponding value for ˜b and ˜v in both cases is one. Regarding the average evaporation rate, we follow Klausmeier assuming that the equilibrium of water (in his deterministic model) is at w=75 mm, and then computing the associated evaporation rate given the averaged annual precipitation, [12]. For example, with A=300 mm year1 the evaporation rate is A/w=4 year1.

    Table 2. Parameters for semi-arid landscapes, taken from [12].
    Parameter Definition Estimated values Units
    R uptake rate of water 1.5(trees) - 100(grass) mm year1 (kg dry mass)2
    J yield of plant biomass 0.002(trees) - 0.003(grass) kg dry mass (mm)1
    M mortality rate 0.18(trees) - 1.8(grass) year1
    A precipitation 250 - 750 mm year1
    L evaporation rate 4 year1
     | Show Table
    DownLoad: CSV

    Precipitation anomalies records, i.e. records of the deviations from a long term precipitation mean, have a negative trend in specific geographic drought events. In the state of California for instance, which experienced unusually long drought conditions, the (state) average of the precipitation anomalies for the past 16 years is 2.07 (inches year1) (i.e. -52.58 mm year1), see Figure 2. Although there is a lot of variability across the state, we use this value for illustration purposes, and plot the data as if this negative deviation from the long term precipitation average were steady in time.

    Figure 2. State averages of precipitation anomalies for 2000-2016 in California (inches year1). The averaged anomaly (difference from long term average) during that period is -2.07 (inches year1) (-52.58 mm year1). The precipitation increase expected from El Niño for the winter 2015-2016 was scarcely above the long term state average. Data/image provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.

    The results of the simulations are shown in Figure 3, portraying a roughly linear relationship between the time to desertification and the anomalies in precipitation in the range selected. The simulations were run using parameters for trees (top panel) and grass (low panel), with system capacity N=500. If we denote by T the average time to desertification and by P the average annual precipitation we can define the (dimensionless) sensitivity index S0 as the ratio S0=(ΔT/T)/(ΔP/P), where ΔT and ΔP represent the absolute change in the variables T and P, i.e. S0 measures the relative change in T with respect to the relative change in P, see for instance [2]. Direct computation from the averaged results gives S02. Similar results were obtained with the larger system capacity N=104.

    Figure 3. Examples of how average time to desertification might be affected by a reduction in average annual precipitation. Parameters for trees were used in panel (a) and for grass in panel (b). The average of negative anomalies similar to that observed for the last years in California is around 50 mm year1. The model suggests that the sensitivity index S02, i.e. relative changes in the mean time to desertification are roughly twice the relative changes in average annual precipitation. For the simulations, N=500 and the initial conditions were ρ(0)=(0.1,0.1) (squares), ρ(0)=(0.5,0.5) (stars) and ρ(0)=(0.9,0.1) (triangles). Each time average was obtained from 50000 simulations. Panel (c) shows the histograms corresponding to the simulated times to desertification with an average annual precipitation of 200 and 250 mm year1 (for grass) on the left and right, respectively. The simulations used the same initial conditions ρ(0)=(0.1,0.1).

    4. Conclusions and discussion

    A traditional approach for modeling interacting populations at the macroscopic level assumes that the terms in the equations that drive the dynamics represent the average effects of individual interactions in a general, all-inclusive way. Subsequent developments use those models as departing points for building theoretical extensions by incorporating further complexity to the equations, like the inclusion of spatial dependence by adding diffusion, or the introduction of "noise" terms. A different modeling approach is to start at the individual level, with explicit rules describing the interactions between individuals and their environment, [17]. This alternative implies the definition of a Markov jump process that constitutes the foundation for developing definitive model approximations that relate macro and microscopic dynamical levels. In this paper we have taken the latter approach for constructing a stochastic differential equation (continuous state space) that approximates the dynamics of an idealized water-vegetation system, initially conceived as a Markov jump process (with discrete states as a proxy for small scale). Thus, our work complements the existing literature on modeling noise in drylands, [21].

    The diffusion approximation obtained, together with parameter values for vegetation and precipitation for semi-arid landscapes extracted from the literature, and data on decreasing precipitation trends in California, were used to estimate average times for desertification. For a fixed system capacity (N=500) the simulations for trees and grass suggests that the sensitivity of the time to desertification from the annual precipitation is roughly similar, and approximately equal to 2, i.e. the relative change in the transition time into a desert state is equal to twice the relative change in precipitation. Repeating the simulations, for different initial conditions and for a larger capacity (N=104), provided the same approximate numerical relation. The simulations (see Figure 3) suggest, for instance, that a decrease of roughly 0.4 inches of precipitation (10 mm year1) might reduce times to desertification in some cases by more than 25 years for the case of trees, and around 5 years in the case of grass. Put another way, current trends of desertification could be significantly boosted if the patterns of increasing precipitation anomalies are maintained. However, looking at the basic transition mechanisms considered in formulating the Markov jump process, it is clear that the model should be used with care to draw any conclusions on specific vegetation-water systems.

    We remark that extended droughts may resemble desertification, but the return of seasonal precipitation events may recover the vegetation (see for instance [1] where desertification was limited to spatially localized areas). This suggests that the inclusion of patterns of precipitation anomalies restricted to relatively small areas would provide more reliable results. For systems with relatively small capacity we notice that the times to desertification may be reduced dramatically (see Figure 4).

    Figure 4. Left: time to desertification for A=250 (dashes) and A=200 (dot-dashes) as function of the system capacity N. The sensitivity of the time to desertification from the annual precipitation was computed for N=10000 showing to be the same as when N=500, i.e. 2. As N increases both times to desertification also increase, but they get reduced dramatically as N gets smaller. Right: Difference between the curves in the contiguous plot. Although the difference increases, the sensitivity of the time to desertification from the annual precipitation is apparently similar in relatively large systems.

    Further work should also include long term variations of other climate related parameters. For instance, it has been documented that higher temperatures increase evapotranspiration rates [3], which have been observed over most of the United States, [8]. Another aspect that deserves attention is the inclusion of changes in the vegetation dynamics during dry periods, where vegetation mortality could be exacerbated. As is clearly pointed out in [28], neglecting the effects of intermittent precipitation on vegetation dynamics may influence the results considerably. Finally, the understanding of desertification will demand treatment with insightful stochastic space-time models.


    Acknowledgments

    The authors are grateful to C. Kribs and three anonymous reviewers for comments and suggestions that led to significant improvement of the paper.




    [1] Adda J (2016) Economic activity and the spread of viral diseases: Evidence from high frequency data. Quart J Econ 131: 891–941. https://doi.org/10.1093/qje/qjw005 doi: 10.1093/qje/qjw005
    [2] Agliardi E, Agliardi R (2019) Financing environmentally-sustainable projects with green bonds. Environ Develop Econ 24: 608–623. https://doi.org/10.1017/S1355770X19000020 doi: 10.1017/S1355770X19000020
    [3] Aleksandrova-Zlatanska S, Kalcheva DZ (2019) Alternatives for financing of municipal investments — green bonds. Rev Econ Bus Stud 12: 59–78. https://doi.org/10.1515/rebs-2019-0082 doi: 10.1515/rebs-2019-0082
    [4] Anselin L (1988) Spatial econometrics: Methods and models. Kluwer Academic: Boston, MA. ISBN: 90-247-3735-4
    [5] Anselin L, Syabri I, Kho Y (2010) GeoDa: an introduction to spatial data analysis, Hand Appl Spat Anal, Springer: 73–89. https://doi.org/10.1007/978-3-642-03647-7_5
    [6] APR (1986) Artigo 9 da Lei no. 44/86 da Série I do Diário da República no. 225/1986 de 1986-09-30, 2779-2783. Available from: https://dre.pt/application/conteudo/221696.
    [7] Barnes SR, Beland LP, Huh J, et al (2020) The Effect of COVID-19 Lockdown on Mobility and Traffic Accidents: Evidence from Louisiana. GLO Discussion Paper. Available from: https://econpapers.repec.org/paper/zbwglodps/616.htm.
    [8] Barmby T, Larguem M (2009) Coughs and sneezes spread diseases: An empirical study of absenteeism and infectious illness. J Health Econ 28: 1012–1017.https://doi.org/10.1016/j.jhealeco.2009.06.006 doi: 10.1016/j.jhealeco.2009.06.006
    [9] Battese GE, Coelli TJ (1992) Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. J Prod Analy 3: 153–169. https://doi.org/10.1007/BF00158774 doi: 10.1007/BF00158774
    [10] Battese GE, Coelli TJ (1995) A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Econ 20: 325–332. https://doi.org/10.1007/BF01205442 doi: 10.1007/BF01205442
    [11] Bell A, Jones K (2015) Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data. Pol Sci Res Meth 3: 133–153. https://doi.org/10.1017/psrm.2014.7 doi: 10.1017/psrm.2014.7
    [12] Bilgin NM (2020) Tracking COVID-19 Spread in Italy with Mobility Data. SSRN 3585921. Available from: https://econpapers.repec.org/paper/kocwpaper/2012.htm
    [13] Boshcma R (2005) Proximity and innovation: a critical assessment. Reg Stud 39: 61–74. https://doi.org/10.1080/0034340052000320887 doi: 10.1080/0034340052000320887
    [14] Bhutta US, Tariq A, Farrukh M, et al (2022) Green bonds for sustainable development: Review of literature on development and impact of green bonds. Tech For Soc Change 175: 121378. https://doi.org/10.1016/j.techfore.2021.121378 doi: 10.1016/j.techfore.2021.121378
    [15] Camagni R (2017) Regional competitiveness: towards a concept of territorial capital. Sem Stud Reg Urb Econ 1: 115–131. https://doi.org/10.1007/978-3-319-57807-1_6 doi: 10.1007/978-3-319-57807-1_6
    [16] Capello R, Faggian A (2005) Collective learning and relational capital in local innovation processes. Reg Stud 39: 75–87. https://doi.org/10.1080/0034340052000320851 doi: 10.1080/0034340052000320851
    [17] Caselli M, Fracasso A, Scicchitano S (2020) From the lockdown to the new normal: An analysis of the limitations to individual mobility in Italy following the Covid-19 crisis. GLO Discussion Paper. Available from: https://www.econstor.eu/handle/10419/225064
    [18] CBI (2022) H1 Market Report: Green and other labelled bond volumes reach $417.8bn in first half of 2022. Available from: https://www.climatebonds.net/resources/press-releases/2022/08/h1-market-report-green-and-other-labelled-bond-volumes-reach-4178bn
    [19] Choi BB, Lee D, Park Y (2013) Corporate social responsibility, corporate governance and earnings quality: Evidence from Korea. Corp Gov: Intern Rev 21: 447-–467. https://doi.org/10.1111/corg.12033 doi: 10.1111/corg.12033
    [20] Cicchiello AF, Cotugno M, Monferrà S, et al (2022) Which are the factors influencing green bonds issuance? Evidence from the European bonds market. Fin Res Let 50: 103190. https://doi.org/10.1016/j.frl.2022.103190 doi: 10.1016/j.frl.2022.103190
    [21] Coles JL, Daniel ND, Naveen L (2008) Boards: Does one size fit all? J Fin Econ 87: 329–356. https://doi.org/10.1016/j.jfineco.2006.08.008 doi: 10.1016/j.jfineco.2006.08.008
    [22] Cornwell C, Schmidt P, Sickles RC (1990) Production frontiers with cross-sectional and time-series variation in efficiency levels. J Econometrics 46: 185–200. https://doi.org/10.1016/0304-4076(90)90054-W doi: 10.1016/0304-4076(90)90054-W
    [23] Crowley F, Doran J (2020) Covid-19, Occupational Social Distancing and Remote Working Potential: An Occupation, Sector and Regional Perspective. Reg Sci Pol Pract: 1211–1234. https://doi.org/10.1111/rsp3.12347 doi: 10.1111/rsp3.12347
    [24] Dan A, Tiron-Tudor A (2021) The determinants of green bond issuance in the European Union. J Risk Fin Manag 14: 446. https://doi.org/10.3390/jrfm14090446 doi: 10.3390/jrfm14090446
    [25] Davidson R, MacKinnon JG (1993) Estimation and inference in econometrics 63. New York: Oxford University Press. https://doi.org/10.1017/S0266466600009452
    [26] Deboeck GJ (1994) Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets. London: John Wiley and Sons. ISBN: 0-471-31100-6
    [27] Dell'Atti S, Tommaso C, Pacelli V (2022) Sovereign green bond and country value and risk: Evidence from European Union countries. J Intern Fin Manag Account: In press. https://doi.org/10.1111/jifm.12155
    [28] EC (2022) European green bonds A standard for Europe, open to the world. Available from: https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698870/EPRS_BRI(2022)698870_EN.pdf
    [29] ECDPC (2018) European Center for Disease Prevention and Control Technical document - 2018 HEPSA (Health emergency preparedness self-assessment tool user guide). Stockholm: ECDC. Available from: https://www.ecdc.europa.eu/en/publications-data/hepsa-health-emergency-preparedness-self-assessment-tool-user-guide
    [30] Elhorst JP (2017) Spatial Panel Data Analysis. Ency GIS 2: 2050–2058. Available fom: https://spatial-panels.com/wp-content/uploads/2017/07/Elhorst-Spatial-Panel-Data-Analysis-Encyclopedia-GIS-2nd-ed_Working-Paper-Version.pdf
    [31] Engle S, Stromme J, Zhou A (2020) Staying at home: mobility effects of covid-19. Mimeo. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3565703
    [32] Fang H, Wang L, Yang Y (2020) Human mobility restrictions and the spread of the novel coronavirus (2019-ncov) in China. J Public Econ 191: 104272. https://doi.org/10.1016/j.jpubeco.2020.104272 doi: 10.1016/j.jpubeco.2020.104272
    [33] Fatica S, Panzica R, Rancan M (2021) The pricing of green bonds: are financial institutions special?. J Fin Stab 54: 100873. https://doi.org/10.1016/j.jfs.2021.100873 doi: 10.1016/j.jfs.2021.100873
    [34] Favero CA, Ichino A, Rustichini A (2020) Restarting the economy while saving lives under Covid-19. CEPR Discussion Paper No. DP14664. Available from: https://econpapers.repec.org/paper/cprceprdp/14664.htm
    [35] Firmino D, Elhorst JP, Neto RMS (2017) Urban and rural population growth in a spatial panel of municipalities. Reg Stud 51: 894–908. https://doi.org/10.1080/00343404.2016.1144922 doi: 10.1080/00343404.2016.1144922
    [36] Flammer C (2021) Corporate green bonds. J Fin Econ 142: 499–516. https://doi.org/10.1016/j.jfineco.2021.01.010 doi: 10.1016/j.jfineco.2021.01.010
    [37] Fritsch M, Kublina S (2018) Related variety, unrelated variety and regional growth: the role of absorptive capacity and entrepreneurship. Reg Stud 52: 1360–1371. https://doi.org/10.1080/00343404.2017.1388914 doi: 10.1080/00343404.2017.1388914
    [38] Gianfrate G, Peri M (2019) The green advantage: Exploring the convenience of issuing green bonds. J Clean Prod 219: 127–135. https://doi.org/10.1016/j.jclepro.2019.02.022 doi: 10.1016/j.jclepro.2019.02.022
    [39] Glaeser EL, Gorback CS, Redding SJ (2020) How much does covid-19 increase with mobility? evidence from new york and four other us cities. National Bureau of Economic Research. Available from: https://www.nber.org/system/files/working_papers/w27519/w27519.pdf
    [40] Godzinski A, Suarez-Castillo M (2019) Short-term health effects of public transport disruptions: air pollution and viral spread channels. Mimeo. Available from: https://econpapers.repec.org/paper/nsedoctra/g2019-03.htm
    [41] Greene W (2005) Fixed and random effects in stochastic frontier models. J Prod Analy 23: 7–32. doi: https://doi.org/10.1007/s11123-004-8545-1 doi: 10.1007/s11123-004-8545-1
    [42] Gilchrist D, Yu J, Zhong R (2021) The limits of green finance: A survey of literature in the context of green bonds and green loans. Sustainability 13: 478. https://doi.org/10.3390/su13020478 doi: 10.3390/su13020478
    [43] Hamilton JD, Waggoner DF, Zha T (2007) Normalization in econometrics. Econometric Rev 26: 221–252. https://doi.org/10.1080/07474930701220329 doi: 10.1080/07474930701220329
    [44] Hamilton JG, Genoff MC, Han PK (2020) Health‐Related Uncertainty. Wiley Ency Health Psych 305–313. https://doi.org/10.1002/9781119057840.ch80 doi: 10.1002/9781119057840.ch80
    [45] Han Y, Li J (2022) Should investors include green bonds in their portfolios? Evidence for the USA and Europe. Intern Rev Fin Analy 80: 101998. https://doi.org/10.1016/j.irfa.2021.101998 doi: 10.1016/j.irfa.2021.101998
    [46] Han PKJ, Klein WMP, Arora NK (2011) Varieties of uncertainty in health care: A conceptual taxonomy. Med Decis Making 31: 828–838. https://doi.org/10.1177/0272989X103939 doi: 10.1177/0272989X103939
    [47] Hancock AA, Bush EN, Stanisic D, et al (1988) Data normalization before statistical analysis: keeping the horse before the cart. Trend Pharma Sci 9: 29–32. https://doi.org/10.1016/0165-6147(88)90239-8 doi: 10.1016/0165-6147(88)90239-8
    [48] Hachenberg B, Schiereck D (2018) Are green bonds priced differently from conventional bonds?. J Asset Manag 19: 371–383. https://doi.org/10.1057/s41260-018-0088-5 doi: 10.1057/s41260-018-0088-5
    [49] Hsiang S, Allen D, Annan-Phan S, et al (2020) The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584: 262–267. https://doi.org/10.1038/s41586-020-2404-8 doi: 10.1038/s41586-020-2404-8
    [50] Iacobucci G (2020) Covid-19: Deprived areas have the highest death rates in England and Wales. British Med J 369: 1. https://doi.org/10.1136/bmj.m1810 doi: 10.1136/bmj.m1810
    [51] Laborda J, Sánchez-Guerra A (2021) Green bond finance in Europe and the stock market reaction. Estud Economía Aplicada 39: 5. https://doi.org/10.25115/eea.v39i3.4125 doi: 10.25115/eea.v39i3.4125
    [52] Lee YH, Schmidt P (1993). A production frontier model with flexible temporal variation in technical efficiency. The measurement of productive efficiency: Techniques and applications. 237–255. ISBN: 0-19-507218-9
    [53] Lee LF (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72: 1899–1925. https://doi.org/10.1111/j.1468-0262.2004.00558.x doi: 10.1111/j.1468-0262.2004.00558.x
    [54] Lee LF, Yu J (2016). Identification of spatial Durbin panel models. J Appl Econometrics 31: 133–162. https://doi.org/10.1002/jae.2450 doi: 10.1002/jae.2450
    [55] Lee DL, McCrary J, Moreira MJ, et al (2020) Valid t-ratio Inference for Ⅳ. Amer Econ Rev 112: 3260–3290. https://doi.org/10.1257/aer.20211063 doi: 10.1257/aer.20211063
    [56] Leitao J, Ferreira J, Santibanez‐Gonzalez E (2021) Green bonds, sustainable development and environmental policy in the European Union carbon market. Bus Strat Environ 30: 2077–2090. https://doi.org/10.1002/bse.2733 doi: 10.1002/bse.2733
    [57] LeSage JP, Pace RK (2009) Introduction to Spatial Econometrics. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781420064254
    [58] LeSage JP (2014) Spatial econometric panel data model specification: A Bayesian approach. Spat Stat 9: 122–145. https://doi.org/10.1016/j.spasta.2014.02.002 doi: 10.1016/j.spasta.2014.02.002
    [59] Litvinova M, Liu QH, Kulikov ES, et al (2019) Reactive school closure weakens the network of social interactions and reduces the spread of influenza. Proc Nat Acad Scie 116: 13174–13181. https://doi.org/10.1073/pnas.182129811 doi: 10.1073/pnas.182129811
    [60] Jalan J, Sen A (2020) Containing a pandemic with public actions and public trust: the Kerala story. Indian Econ Rev 1: 1–20. https://doi.org/10.1007/s41775-020-00087-1 doi: 10.1007/s41775-020-00087-1
    [61] Jakubik P, Uguz S (2021) Impact of green bond policies on insurers: evidence from the European equity market. J Econ Fin 45: 381–393. https://doi.org/10.1007/s12197-020-09534-4 doi: 10.1007/s12197-020-09534-4
    [62] Jankovic I, Vasic V, Kovacevic V (2022) Does transparency matter? Evidence from panel analysis of the EU government green bonds. Energy Econ 1: 106325. https://doi.org/10.1016/j.eneco.2022.106325 doi: 10.1016/j.eneco.2022.106325
    [63] Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Est Fin Econ 17: 99–121. https://doi.org/10.1023/A:1007707430416 doi: 10.1023/A:1007707430416
    [64] Kelejian HH, Prucham IR (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. Intern Econ Rev 40: 509–533. https://doi.org/10.1111/1468-2354.00027 doi: 10.1111/1468-2354.00027
    [65] Khalatbari-Soltani S, Cumming RG, Delpierre C, et al (2020) Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards. J Epidem Commun Health 1: 1–10. Available from: https://jech.bmj.com/content/74/8/620.info
    [66] Kreps DM, Wilson R (1982) Sequential equilibria. Econometrica 863–894. https://doi.org/10.2307/1912767 doi: 10.2307/1912767
    [67] Markowitz S, Nesson E, Robinson J (2019) The effects of employment on influenza rates. Econ Hum Biol 34: 286–295. https://doi.org/10.1016/j.ehb.2019.04.004 doi: 10.1016/j.ehb.2019.04.004
    [68] Maurer J (2009) Who has a clue to preventing the flu? Unravelling supply and demand effects on the take-up of influenza vaccinations. J Health Econ 28: 704–717. https://doi.org/10.1016/j.jhealeco.2009.01.005 doi: 10.1016/j.jhealeco.2009.01.005
    [69] McKnight PJ, Weir C (2009) Agency costs, corporate governance mechanisms and ownership structure in large UK publicly quoted companies: A panel data analysis. Quart Rev Econ Fin 49: 139–158. https://doi.org/10.1016/j.qref.2007.09.008 doi: 10.1016/j.qref.2007.09.008
    [70] MFF (2020) Questions and answers about the effects of the coronavirus. Available from: https://vm.fi/kysymyksia-ja-vastauksia-koronaviruksen-vaikutuksista
    [71] Milani F (2020) COVID-19 Outbreak, Social Response, and Early Economic Effects: A Global VAR Analysis of Cross-Country Interdependencies. J Pop Econ 34: 223–252. https://doi.org/10.1007/s00148-020-00792-4 doi: 10.1007/s00148-020-00792-4
    [72] Milusheva S (2017) Less bite for your buck: Using cell phone data to target disease prevention. Mimeo. Available from: https://www.semanticscholar.org/paper/Less-Bite-for-Your-Buck-3A-Using-Cell-Phone-Data-to-Milusheva/2ba1aa5c668f50990d269f48cbc9acf5b007e592
    [73] Moran P (1950) Notes on continuous stochastic phenomena. Biometrika 37: 17–23. https://doi.org/10.2307/2332142 doi: 10.2307/2332142
    [74] Muttakin MB, Khan A, Azim MI (2015) Corporate social responsibility disclosures and earnings quality. Manag Audit J 30: 277–298. https://doi.org/10.1108/MAJ-02-2014-0997 doi: 10.1108/MAJ-02-2014-0997
    [75] OECD (2020) The Territorial Impact of COVID-19: Managing the Crisis across Levels of Government. OECD Paris. Available from: https://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-COVID-19-managing-the-crisis-across-levels-of-government-d3e314e1/
    [76] Okoi O, Bwawa T (2020) How health inequality affect responses to the COVID-19 pandemic in Sub-Saharan Africa. World Devel 135: 105067. https://doi.org/10.1016/j.worlddev.2020.105067 doi: 10.1016/j.worlddev.2020.105067
    [77] Patel JA, Nielsen FBH, Badiani AA, et al (2020) Poverty, inequality and COVID-19: the forgotten vulnerable. Pub Health 183: 110. https://doi.org/10.1016/j.puhe.2020.05.006 doi: 10.1016/j.puhe.2020.05.006
    [78] Pepe E, Bajardi P, Gauvin L, et al (2020) COVID-19 outbreak response: a first assessment of mobility changes in Italy following national lockdown. Sci Data 7: 230. https://doi.org/10.1038/s41597-020-00575-2 doi: 10.1038/s41597-020-00575-2
    [79] Persico C, Johnson KR (2020) Deregulation in a Time of Pandemic: Does Pollution Increase Coronavirus Cases or Deaths? Available from: https://ideas.repec.org/p/iza/izadps/dp13231.html
    [80] Pichler S, Ziebarth NR (2017) The pros and cons of sick pay schemes: Testing for contagious presenteeism and noncontagious absenteeism behavior. J Publ Econ 156: 14–33. https://doi.org/10.1016/j.jpubeco.2017.07.003 doi: 10.1016/j.jpubeco.2017.07.003
    [81] PMFA (2008). Ministério dos Negócios Estrangeiros. Aviso n.º 12/2008, de 23 de janeiro, do Ministério dos Negócios Estrangeiros. Regulamento Sanitário Internacional. Available from: https://files.dre.pt/1s/2008/11/22600/0813508177.pdf
    [82] PMH (2014) Ministério da Saúde. Programa Nacional de erradicação da Poliomielite: Plano de acção após erradicação. Norma nº017/2014 de 27/11/2014 - Direção-Geral da Saúde. Available from: http://www.aenfermagemeasleis.pt/2014/11/27/norma-dgs-programa-nacional-de-erradicacao-da-poliomielite-plano-de-acao-pos-eliminacao/
    [83] Qiu Y, Chen X, Shi W (2020) Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China. J Pop Econ 1: 1–27. https://doi.org/10.1007/s00148-020-00778-2 doi: 10.1007/s00148-020-00778-2
    [84] Rannou Y, Boutabba MA, Barneto P (2021) Are Green Bond and Carbon Markets in Europe complements or substitutes? Insights from the activity of power firms. Energy Econ 104: 105651. https://doi.org/10.1016/j.eneco.2021.105651 doi: 10.1016/j.eneco.2021.105651
    [85] Rossman H, Keshet A, Shilo S, et al (2020) A framework for identifying regional outbreak and spread of COVID-19 from one-minute population-wide surveys, Nature Med 26: 634–638. https://doi.org/10.1038/s41591-020-0857-9 doi: 10.1038/s41591-020-0857-9
    [86] Santana R, Sousa JS, Soares P, et al (2020) The demand for hospital emergency services: trends during the first month of COVID-19 response, Port J Publ Health 38: 30–36. https://doi.org/10.1159/000507764 doi: 10.1159/000507764
    [87] Slusky D, Zeckhauser RJ (2018) Sunlight and protection against influenza. Econ Hum Biol 40: 100942. https://doi.org/10.1016/j.ehb.2020.100942 doi: 10.1016/j.ehb.2020.100942
    [88] Taghizadeh-Hesary F, Yoshino N, Phoumin H (2021). Analyzing the characteristics of green bond markets to facilitate green finance in the post-COVID-19 world. Sustainability 13: 5719. https://doi.org/10.3390/su13105719 doi: 10.3390/su13105719
    [89] Tian H, Liu Y, Li Y, et al (2020) An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Sci 368: 638–642. https://doi.org/10.1126/science.abb6105 doi: 10.1126/science.abb6105
    [90] Vanolo A (2014) Smartmentality: The smart city as disciplinary strategy. Urb Stud 51: 883–898. https://doi.org/10.1177/00420980134944 doi: 10.1177/00420980134944
    [91] Varkey RS, Joy J, Sarmah G, et al (2020). Socioeconomic determinants of COVID-19 in Asian countries: An empirical analysis J Publ Affairs: e2532. https://doi.org/10.1002/pa.2532 doi: 10.1002/pa.2532
    [92] Weill JA, Stigler M, Deschenes O, et al (2020) Social distancing responses to COVID-19 emergency declarations strongly differentiated by income. Proc Nat Acad Sci 117: 19658–19660. https://doi.org/10.1073/pnas.2009412117 doi: 10.1073/pnas.2009412117
    [93] White C (2019) Measuring social and externality benefits of influenza vaccination. J Hum Resourc: 1118–9893R2. https://doi.org/10.3368/jhr.56.3.1118-9893R2 doi: 10.3368/jhr.56.3.1118-9893R2
    [94] WHO (2020) 2019 Novel Coronavirus (2019 nCoV): STRATEGIC PREPAREDNESS AND RESPONSE PLAN. Available from: https://www.who.int/docs/default-source/coronaviruse/srp-04022020.pdf
    [95] WHO (2020) Strategy Update. April 14, 2020. WHO Report. Available from: https://www.who.int/publications-detail-redirect/covid-19-strategy-update—14-april-2020
    [96] Yilmazkuday H (2020) Stay-at-Home Works to Fight Against COVID-19: International Evidence from Google Mobility Data. J Hum Behav Soc Environ 31: 210–220. https://doi.org/10.1080/10911359.2020.1845903 doi: 10.1080/10911359.2020.1845903
    [97] Zhan C, Tse C, Fu X, et al (2020) Modelling and prediction of the 2019 Coronavirus Disease spreading in China incorporating human migration data. PLoS One 15: e0241171. https://doi.org/10.1371/journal.pone.0241171 doi: 10.1371/journal.pone.0241171
    [98] Zhang C, Chen C, Shen W, et al (2020) Impact of population movement on the spread of 2019-nCoV in China. Emerg Microb Infect 9: 988–990. https://doi.org/10.1080/22221751.2020.1760143 doi: 10.1080/22221751.2020.1760143
  • GF-05-01-002-s001.pdf
    GF-05-01-002-s002.pdf
  • This article has been cited by:

    1. E. M. Starodubtseva, I. N. Tsymbalov, D. A. Gorlova, K. A. Ivanov, A. B. Savel’ev, Polarization state control for high-peak-power applications, 2025, 42, 1084-7529, 285, 10.1364/JOSAA.544487
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3631) PDF downloads(393) Cited by(5)

Article outline

Figures and Tables

Figures(9)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog