
This article shows how to solve the time-fractional Fisher's equation through the use of two well-known analytical methods. The techniques we propose are a modified form of the Adomian decomposition method and homotopy perturbation method with a Yang transform. To show the accuracy of the suggested techniques, illustrative examples are considered. It is confirmed that the solution we get by implementing the suggested techniques has the desired rate of convergence towards the accurate solution. The main benefit of the proposed techniques is the small number of calculations. To show the reliability of the suggested techniques, we present some graphical behaviors of the accurate and analytical results, absolute error graphs and tables that strongly agree with each other. Furthermore, it can be used for solving fractional-order physical problems in various fields of applied sciences.
Citation: Ahmed M. Zidan, Adnan Khan, Rasool Shah, Mohammed Kbiri Alaoui, Wajaree Weera. Evaluation of time-fractional Fisher's equations with the help of analytical methods[J]. AIMS Mathematics, 2022, 7(10): 18746-18766. doi: 10.3934/math.20221031
[1] | Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon . On the solution of nonlinear fractional-order shock wave equation via analytical method. AIMS Mathematics, 2022, 7(10): 19325-19343. doi: 10.3934/math.20221061 |
[2] | Manal Alqhtani, Khaled M. Saad, Rasool Shah, Thongchai Botmart, Waleed M. Hamanah . Evaluation of fractional-order equal width equations with the exponential-decay kernel. AIMS Mathematics, 2022, 7(9): 17236-17251. doi: 10.3934/math.2022949 |
[3] | Naveed Iqbal, Saleh Alshammari, Thongchai Botmart . Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives. AIMS Mathematics, 2022, 7(11): 20401-20419. doi: 10.3934/math.20221118 |
[4] | M. Mossa Al-Sawalha, Azzh Saad Alshehry, Kamsing Nonlaopon, Rasool Shah, Osama Y. Ababneh . Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm. AIMS Mathematics, 2022, 7(11): 19739-19757. doi: 10.3934/math.20221082 |
[5] | Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan . Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations. AIMS Mathematics, 2023, 8(11): 25845-25862. doi: 10.3934/math.20231318 |
[6] | Shabir Ahmad, Aman Ullah, Ali Akgül, Fahd Jarad . A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations. AIMS Mathematics, 2022, 7(5): 9389-9404. doi: 10.3934/math.2022521 |
[7] | Abdul Hamid Ganie, Fatemah Mofarreh, Adnan Khan . A novel analysis of the time-fractional nonlinear dispersive K(m, n, 1) equations using the homotopy perturbation transform method and Yang transform decomposition method. AIMS Mathematics, 2024, 9(1): 1877-1898. doi: 10.3934/math.2024092 |
[8] | M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Osama Y. Ababneh . Numerical investigation of fractional-order wave-like equation. AIMS Mathematics, 2023, 8(3): 5281-5302. doi: 10.3934/math.2023265 |
[9] | Rasool Shah, Abd-Allah Hyder, Naveed Iqbal, Thongchai Botmart . Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis. AIMS Mathematics, 2022, 7(11): 19846-19864. doi: 10.3934/math.20221087 |
[10] | Muath Awadalla, Abdul Hamid Ganie, Dowlath Fathima, Adnan Khan, Jihan Alahmadi . A mathematical fractional model of waves on Shallow water surfaces: The Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10561-10579. doi: 10.3934/math.2024516 |
This article shows how to solve the time-fractional Fisher's equation through the use of two well-known analytical methods. The techniques we propose are a modified form of the Adomian decomposition method and homotopy perturbation method with a Yang transform. To show the accuracy of the suggested techniques, illustrative examples are considered. It is confirmed that the solution we get by implementing the suggested techniques has the desired rate of convergence towards the accurate solution. The main benefit of the proposed techniques is the small number of calculations. To show the reliability of the suggested techniques, we present some graphical behaviors of the accurate and analytical results, absolute error graphs and tables that strongly agree with each other. Furthermore, it can be used for solving fractional-order physical problems in various fields of applied sciences.
The history of fractional calculus (FC) is as old as classical calculus which as at least 300 years old and arose from Leibniz's letter to L'Hospital, wherein, for the first time-fractional derivatives were discussed [1]. The researchers did not pay much attention to FC initially, but it attracted researchers' attention due to its large number of science and engineering applications. Many phenomena in engineering and other fields can be well represented by models based on FC or the theory of fractional non-integer order derivatives and integrals. In recent years, there has been a growing interest in FC, as evidenced by various studies, such as regular variation in thermodynamics, blood flow phenomena, biophysics, aerodynamics, electrical circuits, electro-analytical chemistry, control theory and biology [2,3,4,5,6,7].
In recent years, fractional differential equations have attracted lots of interest due to their numerous applications in physics and engineering. Many important phenomena in acoustics, electromagnetics, electrochemistry, viscoelasticity and material science are well explained by fractional differential equations [8,9,10,11,12,13]. The accurate and explicit solutions of nonlinear partial differential equations are extremely significant in mathematical sciences, and it is one of the most stimulating and dynamic study topics. Nonlinear differential equations are used to describe the majority of natural occurrences. As a result, scientists from various fields try to solve them. Finding an accurate solution is difficult due to the nonlinear nature of these equations. Although significant progress has been made in developing methods for getting exact solutions to nonlinear equations in the last few decades, the progress made is insufficient. This is because, in our opinion, there is no one ideal way to obtain exact solutions to nonlinear differential equations of both types, and each method has its own set of advantages and disadvantages that are dependent on the researchers' experience. To find a solution, a variety of analytical techniques have been used, such as the natural transform decomposition method [14], optimal homotopy asymptotic method [15], homotopy perturbation method [16], elzaki transform decomposition method [17], reduced differential transform method [18], adomian decomposition method [19], iterative Laplace transform method [20] and laplace variational iteration method [21].
Here we solve the time-fractional Fisher's equation by implementing two methods, namely, the homotopy perturbation Yang transform method (HPYTM) and the Yang transform decomposition method (YTDM). Xiao-Jun Yang was the first to introduce the Yang transform and utilize it for different differential equations solutions with constant coefficients. In contrast, the Adomian decomposition method [22,23], is a powerful method for solving both linear and nonlinear and homogeneous and nonhomogeneous partial and differential equations as well as integrodifferential equations of integer and non-integer order which gives us convergent series form exact solutions. Also, In 1998 he was the first to introduce the [24,25]. Later on, the solutions of some nonlinear nonhomogeneous partial differential equations were obtained through this semi-analytical method [26,27,28,29]. The solution they obtained is in the form of an infinite sequence that converges rapidly to the exact solutions. Due to its quick results, the method has been further used for solving linear and nonlinear equations. In the present work, we used an approximate analytical technique that combines the Yang transform and HPM, known as the HPYTM. It is confirmed that the proposed methods are very easy to implement to find the analytical solution of the time-fractional Fisher's equation. The proposed techniques and solutions are in good agreement with the exact solution of the targeted problems. The fractional view analysis of the problems is also shown using the suggested techniques. It is demonstrated that the proposed methods can be modified for solving other fractional PDEs and their systems.
In 1937, Fisher [30] and Kolmogorov [31] were first to present Fisher- Kolmogorov-Petrovsky Piscounov (Fisher-KPP) equation; afterward, it was recalled as the Fisher equation. The Fisher equation has various applications in the domain of science and engineering [32,33,34,35]. Researchers examined a certain significant generalization of this equation [36,37,38]. Many reaction-diffusion equations have wavefronts that show a dynamic part in the description of physical, chemical and biological phenomena [39,40,41]. Mathematical models of reaction-diffusion systems show how the concentration of one or more compounds changes over time. Local chemical reactions turn compounds into one another, while diffusion allows substances to diffuse through the air with the simplest equation in one dimension, as follows:
φκ=Rφμμ+S(φ) | (1.1) |
Here φ(μ) indicates the single material concentration, R denotes the diffusion coefficients and S characterizes all local reactions. In order to get the Fisher equation we will replace S(φ) with φ(1−φ) which is used to define the dispersion of biological populations. The Fisher KPP advection equation is used to model population dynamics in advective environments [42]. Fisher presented the following nonlinear partial differential equation as:
φκ=Rφμμ+sφ(1−φ) | (1.2) |
As a model for propagating a mutant gene with an advantageous selection intensity s, the same equation can also be found in nuclear reactor theory, autocatalytic chemical reactions, neurophysiology, Brownian motion and flame propagation. Because of the above applications, the Fisher equation is considered to be the most important equation in engineering.
The rest of the paper is organized as follows. Section 2 presents some basic ideas of FC related to our present study. The implementation of the HPYTM to solve the fractional partial differential equations is given in Section 3, while the methodology of the YTDM is shown in Section 4. In section 5, we derive the solution of fractional order Fisher's equations with the help of the proposed methods. The discussion part of the obtained solutions is presented in Section 6. In the end, a brief conclusion is given.
Here we discuss some basic definitions used in our present work.
The fractional Caputo derivative is stated as [43,44]
D℘κφ(μ,κ)=1Γ(k−℘)∫κ0(κ−ρ)k−℘−1φ(k)(μ,ρ)dρ,k−1<℘≤k,k∈N. | (2.1) |
Xiao Jun Yang was the first to present the Yang Laplace transform. The Yang transform of a function φ(κ) is given by Y{φ(κ)} or M(u) as [45]
Y{φ(κ)}=M(u)=∫∞0e−κuφ(κ)dκ, κ>0, u∈(−κ1,κ2). | (2.2) |
The inverse Yang transform is given as
Y−1{M(u)}=φ(κ). | (2.3) |
The nth derivatives of the Yang transform [46,47]
Y{φn(κ)}=M(u)un−n−1∑k=0φk(0)un−k−1, ∀ n=1,2,3,⋯ | (2.4) |
The Yang transform of derivatives with a fractional order is as follows [46,47]
Y{φ℘(κ)}=M(u)u℘−n−1∑k=0φk(0)u℘−(k+1), 0<℘≤n. | (2.5) |
The following equation is considered in order to understand the basic idea of this approach as:
D℘κφ(μ,κ)=P1[μ]φ(μ,κ)+Q1[μ]φ(μ,κ), 1<℘≤2, | (3.1) |
where the initial conditions are represented by
φ(μ,0)=ξ(μ), ∂∂κφ(μ,0)=ζ(μ); |
additionally D℘κ=∂℘∂κ℘ denotes Caputo's derivative and P1[μ] and Q1[μ] represent the linear and nonlinear operators respectively.
Applying the Yang transform, we get
Y[D℘κφ(μ,κ)]=Y[P1[μ]φ(μ,κ)+Q1[μ]φ(μ,κ)], | (3.2) |
1u℘{M(u)−uφ(0)−u2φ′(0)}=Y[P1[μ]φ(μ,κ)+Q1[μ]φ(μ,κ)]. | (3.3) |
From the above equation, we have that
M(φ)=uφ(0)+u2φ′(0)+u℘Y[P1[μ]φ(μ,κ)+Q1[μ]φ(μ,κ)]. | (3.4) |
On taking the inverse Yang transform, we get
φ(μ,κ)=φ(0)+φ′(0)+Y−1[u℘Y[P1[μ]φ(μ,κ)+Q1[μ]φ(μ,κ)]]. | (3.5) |
By applying the perturbation method with the parameter ϵ, it can be defined as
φ(μ,κ)=∞∑k=0ϵkφk(μ,κ), | (3.6) |
where ϵ∈[0,1] which is the perturbation parameter.
The nonlinear terms decomposition is determined as
Q1[μ]φ(μ,κ)=∞∑k=0ϵkHn(φ), | (3.7) |
where He's polynomials are represented by Hn of the form φ0,φ1,φ2,...,φn, which is calculated as
Hn(φ0,φ1,...,φn)=1Γ(n+1)Dkϵ[Q1(∞∑k=0ϵiφi)]ϵ=0, | (3.8) |
where Dkϵ=∂k∂ϵk.
Substituting (3.7) and (3.8) in (3.5) and establishing the homotopy, we get
∞∑k=0ϵkφk(μ,κ)=φ(0)+φ′(0)+ϵ×(Y−1[u℘Y{P1∞∑k=0ϵkφk(μ,κ)+∞∑k=0ϵkHk(φ)}]). | (3.9) |
Thus, upon comparing ϵ coefficient of both sides, we have that
ϵ0:φ0(μ,κ)=φ(0)+φ′(0),ϵ1:φ1(μ,κ)=Y−1[u℘Y(P1[μ]φ0(μ,κ)+H0(φ))],ϵ2:φ2(μ,κ)=Y−1[u℘Y(P1[μ]φ1(μ,κ)+H1(φ))],...ϵk:φk(μ,κ)=Y−1[u℘Y(P1[μ]φk−1(μ,κ)+Hk−1(φ))],k>0,k∈N. | (3.10) |
The components φk(μ,κ) are easily computable. On taking ϵ→1, we have that
φ(μ,κ)=limM→∞M∑k=1φk(μ,κ). | (3.11) |
Thus the series form solution we obtain converges rapidly to the accurate solution.
The following equation is considered in order to understand the basic idea of this approach as:
D℘κφ(μ,κ)=P1(μ,κ)+Q1(μ,κ),1<℘≤2, | (4.1) |
which has some initial conditions:
φ(μ,0)=ξ(μ), ∂∂κφ(μ,0)=ζ(μ), |
where D℘κ=∂℘∂κ℘ is the fractional Caputo derivative of order ℘ and P1 and Q1 are linear and nonlinear functions, respectively.
Applying the Yang transform, we get:
Y[D℘κφ(μ,κ)]=Y[P1(μ,κ)+Q1(μ,κ)]. | (4.2) |
By the transformation property of Yang differentiation, we get
1u℘{M(u)−uφ(0)−u2φ′(0)}=Y[P1(μ,κ)+Q1(μ,κ)]. | (4.3) |
Equation (4.3) implies that
M(φ)=uφ(0)+u2φ′(0)+u℘Y[P1(μ,κ)+Q1(μ,κ)]. | (4.4) |
On employing the inverse Yang transform to (4.4), we have that
φ(μ,κ)=φ(0)+φ′(0)+Y−1[u℘Y[P1(μ,κ)+Q1(μ,κ)]. | (4.5) |
The YTDM determines the infinite sequence φ(μ,κ) solution as
φ(μ,κ)=∞∑m=0φm(μ,κ). | (4.6) |
Now, by the Adomian polynomials Q1 the nonlinear terms can be decomposed as
Q1(μ,κ)=∞∑m=0Am. | (4.7) |
All forms of nonlinearity of the Adomian polynomials are represented by
Am=1m![∂m∂ℓm{Q1(∞∑k=0ℓkμk,∞∑k=0ℓkκk)}]ℓ=0. | (4.8) |
Substituting (4.7) and (4.8) into (4.5), we have that
∞∑m=0φm(μ,κ)=φ(0)+φ′(0)+Y−1u℘[Y{P1(∞∑m=0μm,∞∑m=0κm)+∞∑m=0Am}]. | (4.9) |
The following terms are described:
φ0(μ,κ)=φ(0)+κφ′(0), | (4.10) |
φ1(μ,κ)=Y−1[u℘Y{P1(μ0,κ0)+A0}], |
where the generalization for m≥1 is defined as
φm+1(μ,κ)=Y−1[u℘Y{P1(μm,κm)+Am}]. |
In this section, the solutions of some fractional order Fisher's equations are determined by using the YTDM and HPYTM.
Consider the Fisher equation in the time-fractional domain, as given by
∂℘φ∂κ℘=∂2φ∂μ2+φ(1−φ), 0<℘≤1, | (5.1) |
with the initial condition
φ(μ,0)=γ. |
Applying the Yang transform, we get
Y(∂℘φ∂κ℘)=Y(∂2φ∂μ2+φ(1−φ)). | (5.2) |
By applying the Yang transform differential property, we get
1u℘{M(u)−uφ(0)}=Y(∂2φ∂μ2+φ(1−φ)), | (5.3) |
M(u)=uφ(0)+u℘Y(∂2φ∂μ2+φ(1−φ)). | (5.4) |
On taking the inverse Yang transform, we have that
φ(μ,κ)=φ(0)+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ))}],φ(μ,κ)=γ+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ))}]. | (5.5) |
By applying the homotopy perturbation technique given in (3.9), we have that
∞∑k=0ϵkφk(μ,κ)=γ+ϵ(Y−1[u℘Y[(∞∑k=0ϵkφk(μ,κ))μμ+∞∑k=0ϵkφk(μ,κ)−∞∑k=0ϵkHk(φ)]]), | (5.6) |
where He's polynomials are given as
H0(φ)=φ20,H1(φ)=2φ0φ1,H2(φ)=2φ0φ2+(φ2)2 |
When we compare the same ϵ power coefficient, we get
ϵ0:φ0(μ,κ)=γ,ϵ1:φ1(μ,κ)=Y−1(u℘Y[∂2φ0∂μ2+φ0−φ20])=γ(1−γ)κ℘Γ(℘+1),ϵ2:φ2(μ,κ)=Y−1(u℘Y[∂2φ1∂μ2+φ1−2φ0φ1])=γ(1−γ)(1−2γ)κ2℘Γ(2℘+1),ϵ3:φ3(μ,κ)=Y−1(u℘Y[∂2φ2∂μ2φ2−2φ0φ2−(φ2)2+φ2])=(γ−5γ2+8γ3−4γ4)κ3℘Γ(3℘+1)−(γ2−2γ3+γ4)(Γ(2℘+1)Γ(℘+1)2)κ3℘Γ(3℘+1),... |
Thus on taking ϵ→1, we can calculate the solution with a convergent series form as
φ(μ,κ)=φ0(μ,κ)+φ1(μ,κ)+φ2(μ,κ)+φ3(μ,κ)+⋯=γ+γ(1−γ)κ℘Γ(℘+1)+γ(1−γ)(1−2γ)κ2℘Γ(2℘+1)+(γ−5γ2+8γ3−4γ4)κ3℘Γ(3℘+1)−(γ2−2γ3+γ4)(Γ(2℘+1)Γ(℘+1)2)κ3℘Γ(3℘+1)+⋯ |
Solution via the YTDM
Applying the Yang transform to (5.1), we get
Y{∂℘φ∂κ℘}=Y[∂2φ∂μ2+φ(1−φ)]. | (5.7) |
By applying the Yang transform differential property, we get
1u℘{M(u)−uφ(0)}=Y[∂2φ∂μ2+φ(1−φ)], | (5.8) |
M(u)=uφ(0)+u℘Y[∂2φ∂μ2+φ(1−φ)]. | (5.9) |
On taking the inverse Yang transform, we have that
φ(μ,κ)=φ(0)+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ))}],φ(μ,κ)=γ+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ))}]. | (5.10) |
The infinite series form solution for the function φ(μ,κ) is stated as
φ(μ,κ)=∞∑m=0φm(μ,κ). | (5.11) |
Thus the nonlinear terms can be defined by the Adomian polynomial φ2=∑∞m=0Am. Using specific concepts, (5.10) can be rewritten in the following form:
∞∑m=0φm(μ,κ)=φ(μ,0)+Y−1[u℘Y[∂2φ∂μ2+φ−∞∑m=0Am]],∞∑m=0φm(μ,κ)=γ+Y−1[u℘Y[∂2φ∂μ2+φ−∞∑m=0Am]]. | (5.12) |
Now, by applying the Adomian polynomials Q1 the nonlinear terms can be decomposed as given in (4.8):
A0=φ20,A1=2φ0φ1,A2=2φ0φ2+(φ2)2. |
Thus, upon comparing both sides of (5.12), we get
φ0(μ,κ)=γ. |
m=0
φ1(μ,κ)=γ(1−γ)κ℘Γ(℘+1). |
m=1
φ2(μ,κ)=γ(1−γ)(1−2γ)κ2℘Γ(2℘+1). |
m=2
φ3(μ,κ)=(γ−5γ2+8γ3−4γ4)κ3℘Γ(3℘+1)−(γ2−2γ3+γ4)(Γ(2℘+1)Γ(℘+1)2)κ3℘Γ(3℘+1). |
In the same manner, the YTDM remaining elements, as denoted by ρm with m≥3 are easy to calculate. Thus, we define the series of possibilities as follows:
φ(μ,κ)=∞∑m=0φm(μ,κ)=φ0(μ,κ)+φ1(μ,κ)+φ2(μ,κ)+φ3(μ,κ)+⋯ |
φ(μ,κ)=γ+γ(1−γ)κ℘Γ(℘+1)+γ(1−γ)(1−2γ)κ2℘Γ(2℘+1)+(γ−5γ2+8γ3−4γ4)κ3℘Γ(3℘+1)−(γ2−2γ3+γ4)(Γ(2℘+1)Γ(℘+1)2)κ3℘Γ(3℘+1)+⋯ |
Hence the YTDM solution at ℘=1 as follows:
φ(μ,κ)=γexpκ1−γ+γexpκ. | (5.13) |
Consider the Fisher equation in time-fractional domain, as given by
∂℘φ∂κ℘=∂2φ∂μ2+6φ(1−φ), 0<℘≤1, | (5.14) |
with the following initial condition:
φ(μ,0)=1(1+expμ)2. |
Applying the Yang transform, we get
Y(∂℘φ∂κ℘)=Y(∂2φ∂μ2+6φ(1−φ)). | (5.15) |
By applying the Yang transform differential property, we have that
1u℘{M(u)−uφ(0)}=Y(∂2φ∂μ2+6φ(1−φ)), | (5.16) |
M(u)=uφ(0)+u℘Y(∂2φ∂μ2+6φ(1−φ)). | (5.17) |
On taking the inverse Yang transform, we have that
φ(μ,κ)=φ(0)+Y−1[u℘{Y(∂2φ∂μ2+6φ(1−φ))}],φ(μ,κ)=1(1+expμ)2+Y−1[u℘{Y(∂2φ∂μ2+6φ(1−φ))}]. | (5.18) |
By employing the homotopy perturbation technique given in (3.9), we get
∞∑k=0ϵkφk(μ,κ)=1(1+expμ)2+ϵ(Y−1[u℘Y[(∞∑k=0ϵkφk(μ,κ))μμ+6∞∑k=0ϵkφk(μ,κ)−6∞∑k=0ϵkHk(φ)]]). | (5.19) |
where He's polynomials are given as
H0(φ)=φ20,H1(φ)=2φ0φ1,H2(φ)=2φ0φ2+(φ2)2 |
When we compare the same ϵ power coefficient, we get
ϵ0:φ0(μ,κ)=1(1+expμ)2,ϵ1:φ1(μ,κ)=Y−1(u℘Y[∂2φ0∂μ2+6φ0−6φ20])=10expμ(1+expμ)3κ℘Γ(℘+1),ϵ2:φ2(μ,κ)=Y−1(u℘Y[∂2φ1∂μ2+6φ1−12φ0φ1])=50expμ(−1+2expμ)(1+expμ)4κ2℘Γ(2℘+1),ϵ3:φ3(μ,κ)=Y−1(u℘Y[∂2φ2∂μ2φ2−12φ0φ2−6(φ2)2+6φ2])=50expμ(5−6expμ−15exp2μ+20exp3μ−12expμΓ(2℘+1)(Γ(℘+1))2)κ3℘(1+expμ)6Γ(3℘+1),... |
Thus on taking ϵ→1, we can calculate the solution with the convergent series form as
φ(μ,κ)=φ0(μ,κ)+φ1(μ,κ)+φ2(μ,κ)+φ3(μ,κ)+⋯=1(1+expμ)2+10expμ(1+expμ)3κ℘Γ(℘+1)+50expμ(−1+2expμ)(1+expμ)4κ2℘Γ(2℘+1)+50expμ(5−6expμ−15exp2μ+20exp3μ−12expμΓ(2℘+1)(Γ(℘+1))2)κ3℘(1+expμ)6Γ(3℘+1)+⋯ |
Solution via the YTDM
Applying the Yang transform to (5.14), we get
Y{∂℘φ∂κ℘}=Y[∂2φ∂μ2+6φ(1−φ)]. | (5.20) |
By applying the Yang transform differential property, we have that
1u℘{M(u)−uφ(0)}=Y[∂2φ∂μ2+6φ(1−φ)], | (5.21) |
M(u)=uφ(0)+u℘Y[∂2φ∂μ2+6φ(1−φ)]. | (5.22) |
On taking the inverse Yang transform, we have that
φ(μ,κ)=φ(0)+Y−1[u℘{Y(∂2φ∂μ2+6φ(1−φ))}],φ(μ,κ)=1(1+expμ)2+Y−1[u℘{Y(∂2φ∂μ2+6φ(1−φ))}]. | (5.23) |
The infinite series form solution for the function φ(μ,κ) is given as
φ(μ,κ)=∞∑m=0φm(μ,κ). | (5.24) |
Thus the nonlinear terms can be defined by the Adomian polynomial φ2=∑∞m=0Am. Using specific concepts, Eq (5.23) can be rewritten in the following form:
∞∑m=0φm(μ,κ)=φ(μ,0)+Y−1[u℘Y[∂2φ∂μ2+6φ−6∞∑m=0Am]],∞∑m=0φm(μ,κ)=1(1+expμ)2+Y−1[u℘Y[∂2φ∂μ2+6φ−6∞∑m=0Am]]. | (5.25) |
Now, by applying the Adomian polynomials Q1 the nonlinear terms can be decomposed as given in (4.8):
A0=φ20,A1=2φ0φ1,A2=2φ0φ2+(φ2)2. |
Thus, upon comparing both sides of (5.25), we have that
φ0(μ,κ)=1(1+expμ)2. |
m=0
φ1(μ,κ)=10expμ(1+expμ)3κ℘Γ(℘+1). |
m=1
φ2(μ,κ)=50expμ(−1+2expμ)(1+expμ)4κ2℘Γ(2℘+1). |
m=2
φ3(μ,κ)=50expμ(5−6expμ−15exp2μ+20exp3μ−12expμΓ(2℘+1)(Γ(℘+1))2)κ3℘(1+expμ)6Γ(3℘+1). |
In the same manner, the YTDM remaining elements, as denoted by ρm with m≥3 are easy to calculate. Thus, we define the series of possibilities as follows:
φ(μ,κ)=∞∑m=0φm(μ,κ)=φ0(μ,κ)+φ1(μ,κ)+φ2(μ,κ)+φ3(μ,κ)+⋯ |
φ(μ,κ)=1(1+expμ)2+10expμ(1+expμ)3κ℘Γ(℘+1)+50expμ(−1+2expμ)(1+expμ)4κ2℘Γ(2℘+1)+50expμ(5−6expμ−15exp2μ+20exp3μ−12expμΓ(2℘+1)(Γ(℘+1))2)κ3℘(1+expμ)6Γ(3℘+1)+⋯ |
Hence, the YTDM solution at ℘=1 is given as
φ(μ,κ)=1(1−expμ−5κ)2. | (5.26) |
Consider the Fisher equation time-fractional domain, as given by
∂℘φ∂κ℘=∂2φ∂μ2+φ(1−φ6), 0<℘≤1, | (5.27) |
with the following initial condition:
φ(μ,0)=1(1+exp32μ)13. |
Applying the Yang transform, we get
Y(∂℘φ∂κ℘)=Y(∂2φ∂μ2+φ(1−φ6)). | (5.28) |
By applying the Yang transform differential property, we have that
1u℘{M(u)−uφ(0)}=Y(∂2φ∂μ2+φ(1−φ6)), | (5.29) |
M(u)=uφ(0)+u℘Y(∂2φ∂μ2+φ(1−φ6)). | (5.30) |
On taking the inverse Yang transform, we have that
φ(μ,κ)=φ(0)+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ6))}],φ(μ,κ)=1(1+exp32μ)13+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ6))}]. | (5.31) |
By employing the homotopy perturbation technique given in (3.9), we get
∞∑k=0ϵkφk(μ,κ)=1(1+exp32μ)13+ϵ(Y−1[u℘Y[(∞∑k=0ϵkφk(μ,κ))μμ+∞∑k=0ϵkφk(μ,κ)−∞∑k=0ϵkHk(φ)]]). | (5.32) |
where He's polynomials are given as
H0(φ)=φ70,H1(φ)=7φ60φ1. |
When we compare the same ϵ power coefficient, we get
ϵ0:φ0(μ,κ)=1(1+exp32μ)13,ϵ1:φ1(μ,κ)=Y−1(u℘Y[∂2φ0∂μ2+φ0−φ70])=5exp32μ4(1+exp32μ)43κ℘Γ(℘+1),ϵ2:φ2(μ,κ)=Y−1(u℘Y[∂2φ1∂μ2+φ1−7φ60φ1])=25exp32μ(exp32μ−3)16(1+exp32μ)73κ2℘Γ(2℘+1),... |
Thus on taking ϵ→1, we can calculate the solution with the convergent series form as
φ(μ,κ)=φ0(μ,κ)+φ1(μ,κ)+φ2(μ,κ)+⋯=1(1+exp32μ)13+5exp32μ4(1+exp32μ)43κ℘Γ(℘+1)+25exp32μ(exp32μ−3)16(1+exp32μ)73κ2℘Γ(2℘+1)+⋯ |
Solution via the YTDM
Applying the Yang transform to (5.27), we get
Y{∂℘φ∂κ℘}=Y[∂2φ∂μ2+φ(1−φ6)]. | (5.33) |
By applying the Yang transform differential property, we have that
1u℘{M(u)−uφ(0)}=Y[∂2φ∂μ2+φ(1−φ6)], | (5.34) |
M(u)=uφ(0)+u℘Y[∂2φ∂μ2+φ(1−φ6)]. | (5.35) |
On taking the inverse Yang transform, we have that
φ(μ,κ)=φ(0)+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ6))}],φ(μ,κ)=1(1+exp32μ)13+Y−1[u℘{Y(∂2φ∂μ2+φ(1−φ6))}]. | (5.36) |
The infinite series form solution for the function φ(μ,κ) is stated as
φ(μ,κ)=∞∑m=0φm(μ,κ). | (5.37) |
Thus the nonlinear terms can be defined by the Adomian polynomial φ2=∑∞m=0Am. Using specific concepts, (5.36) can be rewritten in the following form:
∞∑m=0φm(μ,κ)=φ(μ,0)+Y−1[u℘Y[∂2φ∂μ2+φ−∞∑m=0Am]],∞∑m=0φm(μ,κ)=1(1+exp32μ)13+Y−1[u℘Y[∂2φ∂μ2+φ−∞∑m=0Am]]. | (5.38) |
Now, by applying the Adomian polynomials Q1 the nonlinear terms can be decomposed as given in (4.8):
A0=φ70,A1=7φ60φ1. |
Thus, upon comparing both sides of (5.38), we have that
φ0(μ,κ)=1(1+exp32μ)13. |
m=0
φ1(μ,κ)=5exp32μ4(1+exp32μ)43κ℘Γ(℘+1). |
m=1
φ2(μ,κ)=25exp32μ(exp32μ−3)16(1+exp32μ)73κ2℘Γ(2℘+1). |
In the same manner, the YTDM remaining elements, as denoted by ρm with m≥2 are easy to calculate. Thus, we define the series of possibilities as follows:
φ(μ,κ)=∞∑m=0φm(μ,κ)=φ0(μ,κ)+φ1(μ,κ)+φ2(μ,κ)+⋯ |
φ(μ,κ)=1(1+exp32μ)13+5exp32μ4(1+exp32μ)43κ℘Γ(℘+1)+25exp32μ(exp32μ−3)16(1+exp32μ)73κ2℘Γ(2℘+1)+⋯ |
Hence, the YTDM solution at ℘=1 is given as
φ(μ,κ)={12tanh(158κ−34μ)+12}13. | (5.39) |
Figure 1a shows the exact solution and Figure 1b shows the YTDM and HPYTM solutions at ℘=1 for Example 1 given 0≤κ≤1. The validity of the proposed methods is demonstrated in Table 1 via a comparison of the exact solution and our method solutions for Example 1. Figure 2a shows the exact solution graph while Figure 2b presents the solution obtained via the proposed methods. Also Figure 2c and 2d respectively show the 3D and 2D solution graphs at different values of ℘=1,0.8,0.7,0.6 for 0≤μ≤1 and κ=0.5. Table 2 presents the (AE) comparison between the exact solution and the solutions of our approaches at various fractional orders for Example 2. From the figures and tables, it is clear that the fractional order solution converges to the exact solution as the value of ℘ shifts from fractional order to integer order. Graphical views of the exact solution and our method solutions for Example 3 are respectively shown in Figure 3a and 3b. The absolute error graph for the same problem is shown in Figure 4, whereas Table 3 presents the absolute error comparison between the exact solution and the solutions of our approaches at various fractional orders for Example 3. From the figures and tables it is clear that the HPYTM and YTDM solutions are in good Contact with the accurate solutions of the targeted problem.
κ=0.001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
γ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000900000000 | 0.100001000000000 | 1.0000000000E-07 | 2.2624000000E-06 | 9.1005000000E-06 |
0.2 | 0.200001600000000 | 0.200002000000000 | 4.0000000000E-07 | 4.7247000000E-06 | 1.8401000000E-05 |
0.3 | 0.300002100000000 | 0.300003000000000 | 9.0000000000E-07 | 7.3870000000E-06 | 2.7901500000E-05 |
0.4 | 0.400002400000000 | 0.400004000000000 | 1.6000000000E-06 | 1.0249300000E-05 | 3.7602000000E-05 |
0.5 | 0.500002500000000 | 0.500005000000000 | 2.5000000000E-06 | 1.3311600000E-05 | 4.7502500000E-05 |
0.6 | 0.600002400000000 | 0.600006000000000 | 3.6000000000E-06 | 1.6574000000E-05 | 5.7603000000E-05 |
0.7 | 0.700002100000000 | 0.700007000000000 | 4.9000000000E-06 | 2.0036200000E-05 | 6.7903500000E-05 |
0.8 | 0.800001600000000 | 0.800008000000000 | 6.4000000000E-06 | 2.3698600000E-05 | 7.8404000000E-05 |
0.9 | 0.900000900000000 | 0.900009000000000 | 8.1000000000E-06 | 2.7561000000E-05 | 8.9104500000E-05 |
1.0 | 1.000000000000000 | 1.000010000000000 | 1.0000000000E-05 | 3.1624000000E-05 | 1.0000500000E-04 |
κ=0.0001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
μ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.250125015600000 | 0.250125015600000 | 0.0000000000E+00 | 1.8906890000E-04 | 6.6430520000E-04 |
0.1 | 0.225763248100000 | 0.225763245200000 | 2.9000000000E-09 | 1.7916820000E-04 | 6.2951110000E-04 |
0.2 | 0.202760871700000 | 0.202760866000000 | 5.7000000000E-09 | 1.6852090000E-04 | 5.9209510000E-04 |
0.3 | 0.181203221400000 | 0.181203213600000 | 7.8000000000E-09 | 1.5733420000E-04 | 5.5278500000E-04 |
0.4 | 0.161148032900000 | 0.161148023400000 | 9.5000000000E-09 | 1.4581750000E-04 | 5.1231600000E-04 |
0.5 | 0.142625699300000 | 0.142625688500000 | 1.0800000000E-08 | 1.3417360000E-04 | 4.7140140000E-04 |
0.6 | 0.125640540500000 | 0.125640528900000 | 1.1600000000E-08 | 1.2259260000E-04 | 4.3070870000E-04 |
0.7 | 0.110172940000000 | 0.110172927700000 | 1.2300000000E-08 | 1.1124550000E-04 | 3.9083840000E-04 |
0.8 | 0.096182157570000 | 0.096182145000000 | 1.2570000000E-08 | 1.0027947000E-04 | 3.5230901000E-04 |
0.9 | 0.083609606820000 | 0.083609594320000 | 1.2500000000E-08 | 8.9816590000E-05 | 3.1554770000E-04 |
1.0 | 0.072382381010000 | 0.072382368820000 | 1.2190000000E-08 | 7.9951180000E-05 | 2.8088627000E-04 |
κ=0.0001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
μ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.793750129200000 | 0.793750133900000 | 4.7000000000E-09 | 7.5012100000E-05 | 2.6345310000E-04 |
0.1 | 0.773431238400000 | 0.773431242500000 | 4.1000000000E-09 | 7.8561700000E-05 | 2.7591940000E-04 |
0.2 | 0.752229901300000 | 0.752229905000000 | 3.7000000000E-09 | 8.1668800000E-05 | 2.8683080000E-04 |
0.3 | 0.730270700500000 | 0.730270703800000 | 3.3000000000E-09 | 18.4278900000E-05 | 2.9599690000E-04 |
0.4 | 0.707690367400000 | 0.707690370200000 | 2.8000000000E-09 | 8.6354800000E-05 | 3.0328690000E-04 |
0.5 | 0.684633165000000 | 0.684633167100000 | 2.1000000000E-09 | 8.7877000000E-05 | 3.0863230000E-04 |
0.6 | 0.661246165700000 | 0.661246167400000 | 1.7000000000E-09 | 8.8844000000E-05 | 3.1202730000E-04 |
0.7 | 0.637674763400000 | 0.637674764500000 | 1.1000000000E-09 | 8.9269700000E-05 | 3.1352190000E-04 |
0.8 | 0.614058694900000 | 0.614058695500000 | 6.0000000000E-10 | 8.9182600000E-05 | 3.1321500000E-04 |
0.9 | 0.590528767000000 | 0.590528767200000 | 2.0000000000E-10 | 8.8621500000E-05 | 3.1124330000E-04 |
1.0 | 0.567204388900000 | 0.567204388600000 | 3.0000000000E-10 | 8.7632900000E-05 | 3.0777110000E-04 |
In the present article, a fractional view analysis of the time-fractional Fisher's equation is shown through the use of two different analytical methods. In the Caputo manner, the fractional derivative is taken. The following strategies are shown to be the most effective for solving fractional partial differential equations. The behavior of the graphs and tables confirm the strong agreement between the exact and proposed techniques results. The suggested techniques provide series form solutions with a higher rate of convergence to the exact results. Furthermore, fractional-order problem solutions have been proven to converge to integer-order problem solutions. The reliability of the proposed techniques have been confirmed by the convergence phenomena.
The authors extends their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia, for funding this work through a research group program under grant number R.G.P.-2/21/43.
[1] | A. Loverro, Fractional calculus: History, definitions and applications for the engineer. Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, 2004, 1–28. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Book review: Theory and Applications of Fractional Differential Equations, 13 (2006), 101–102. https://doi.org/10.1142/s0218348x07003447 |
[3] | I. Podlubny, Fractional Differential Equations, 198 Academic Press, 1999, San Diego, California, USA. |
[4] |
M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
![]() |
[5] |
Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Appl. Math. Comput., 178 (2006), 527–533. https://doi.org/10.1016/j.amc.2005.11.072 doi: 10.1016/j.amc.2005.11.072
![]() |
[6] |
S. Murtaza, F. Ali, A. Aamina, N. A. Sheikh, I. Khan, K. S. Nisar, Exact analysis of non-linear fractionalized Jeffrey fluid, a novel approach of Atangana-Baleanu fractional model, Comput. Mater. Con., 65 (2020), 2033–2047. https://doi.org/10.32604/cmc.2020.011817 doi: 10.32604/cmc.2020.011817
![]() |
[7] |
F. Ali, S. Murtaza, N. Sheikh, I. Khan, Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana-Balaenu and Caputo-Fabrizio fractional models, Chaos Soliton. Fract., 129 (2019), 1–15. https://doi.org/10.1016/j.chaos.2019.08.013 doi: 10.1016/j.chaos.2019.08.013
![]() |
[8] |
N. Iqbal, T. Botmart, W. Mohammed, A. Ali, Numerical investigation of fractional-order Kersten-Krasil shchik coupled KdV-mKdV system with Atangana-Baleanu derivative, Adv. Contin. Discrete Models, 2022 (2022), 37. https://doi.org/10.1186/s13662-022-03709-5 doi: 10.1186/s13662-022-03709-5
![]() |
[9] |
H. Yasmin, N. Iqbal, A comparative study of the fractional coupled Burgers and Hirota-Satsuma KdV equations via analytical techniques, Symmetry, 14 (2022), 1364. https://doi.org/10.3390/sym14071364 doi: 10.3390/sym14071364
![]() |
[10] |
A. Goswami, J. Singh, D. Kumar, S. Gupta, Sushila, An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85–99. https://doi.org/10.1016/j.joes.2019.01.003 doi: 10.1016/j.joes.2019.01.003
![]() |
[11] |
N. Iqbal, A. Albalahi, M. Abdo, W. Mohammed, Analytical analysis of fractional-order Newell-Whitehead-Segel equation: A modified homotopy perturbation transform method, J. Funct. Space., 2022. https://doi.org/10.1155/2022/3298472 doi: 10.1155/2022/3298472
![]() |
[12] |
V. Martynyuk, M. Ortigueira, Fractional model of an electrochemical capacitor, Signal Proc., 107 (2015), 355–360. https://doi.org/10.1016/j.sigpro.2014.02.021 doi: 10.1016/j.sigpro.2014.02.021
![]() |
[13] |
C. Lorenzo, T. Hartley, Initialization, conceptualization, and application in the generalized (fractional) calculus, Crit. Rev. Biomed. Eng., 35 (2007), 447–553. https://doi.org/10.1615/critrevbiomedeng.v35.i6.10 doi: 10.1615/critrevbiomedeng.v35.i6.10
![]() |
[14] |
M. Kbiri Alaoui, K. Nonlaopon, A. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order Cahn-Hilliard and Gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
![]() |
[15] |
M. Alshammari, N. Iqbal, D. Ntwiga, A comparative study of fractional-order diffusion model within Atangana-Baleanu-Caputo operator, J. Funct. Space., 2022 (2022), 1–12. https://doi.org/10.1155/2022/9226707 doi: 10.1155/2022/9226707
![]() |
[16] |
Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
![]() |
[17] |
K. Nonlaopon, A. Alsharif, A. Zidan, A. Khan, Y. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
![]() |
[18] |
M. Rawashdeh, Approximate solutions for coupled systems of nonlinear PDEs using the reduced differential transform method, Math. Comput. Appl., 19 (2014), 161–171. https://doi.org/10.3390/mca19020161 doi: 10.3390/mca19020161
![]() |
[19] |
S. El-Wakil, A. Elhanbaly, M. Abdou, Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput., 182 (2006), 313–324. https://doi.org/10.1016/j.amc.2006.02.055 doi: 10.1016/j.amc.2006.02.055
![]() |
[20] |
H. Khan, A. Khan, M. Al-Qurashi, R. Shah, D. Baleanu, Modified modelling for heat like equations within Caputo operator, Energies, 13 (2020), 2002. https://doi.org/10.3390/en13082002 doi: 10.3390/en13082002
![]() |
[21] |
A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 1–24. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
![]() |
[22] |
G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145–154. https://doi.org/10.1016/0898-1221(94)90132-5 doi: 10.1016/0898-1221(94)90132-5
![]() |
[23] |
G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247x(88)90170-9 doi: 10.1016/0022-247x(88)90170-9
![]() |
[24] |
J. He, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/s0045-7825(99)00018-3 doi: 10.1016/s0045-7825(99)00018-3
![]() |
[25] |
J. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-Linear Mech., 35 (2000), 37–43. https://doi.org/10.1016/s0020-7462(98)00085-7 doi: 10.1016/s0020-7462(98)00085-7
![]() |
[26] | J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Soliton. Fract., 26 (2005). |
[27] |
N. Iqbal, A. Akgul, A. Bariq, M. Mossa Al-Sawalha, A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Space., 2022 (2022), 1–14. https://doi.org/10.1155/2022/3341754 doi: 10.1016/j.physleta.2005.10.005
![]() |
[28] |
J. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005
![]() |
[29] |
W. He, N. Chen, I. Dassios, N. Shah, J. Chung, Fractional system of Korteweg-De Vries equations via Elzaki transform, Mathematics, 9 (2021), 673. https://doi.org/10.3390/math9060673 doi: 10.3390/math9060673
![]() |
[30] |
N. Shah, P. Agarwal, J. Chung, E. El-Zahar, Y. Hamed, Analysis of optical solitons for nonlinear Schrodinger Equation with detuning term by iterative transform method, Symmetry, 12 (2020), 1850. https://doi.org/10.3390/sym12111850 doi: 10.3390/sym12111850
![]() |
[31] |
A. N. Kolmogorov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, 1 (1937), 1–25. https://doi.org/10.1007/bf01190613 doi: 10.1007/bf01190613
![]() |
[32] |
A. Mironer, D. Dosanjh, Coupled diffusion of heat and vorticity in a gaseous vortex, Int. J. Heat Mass Tran., 12 (1969), 1231–1248. https://doi.org/10.1016/0017-9310(69)90168-9 doi: 10.1016/0017-9310(69)90168-9
![]() |
[33] |
A. Ammerman, L. Cavalli-Sforza, Measuring the rate of spread of early farming in europe, Man, 6 (1971), 674. https://doi.org/10.2307/2799190 doi: 10.2307/2799190
![]() |
[34] |
M. Bramson, Maximal displacement of branching brownian motion, Commun. Pure Appl. Math., 31 (1978), 531–581. https://doi.org/10.1002/cpa.3160310502 doi: 10.1002/cpa.3160310502
![]() |
[35] |
J. Canosa, Diffusion in nonlinear multiplicative media, J. Math. Phys., 10 (1969), 1862–1868. https://doi.org/10.1063/1.1664771 doi: 10.1063/1.1664771
![]() |
[36] | X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A, 131 (1988), 277–279. |
[37] | J. R. Branco, J. A. Ferreira, P. De Oliveira, Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, Appl. Numer. Math., 57 (2007), 89–102. |
[38] | J. E. Macías-Díaz, I. E. Medina-Ramírez, A. Puri, Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Comput. Appl. Math., 231 (2009), 851–868. |
[39] | X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A, 131 (1988), 277–279. |
[40] | A. M. Wazwaz, A. Gorguis, An analytic study of Fisher's equation by using Adomian decomposition method, Appl. Math. Comput., 154 (2004), 609–620. |
[41] |
M. Rostamian, A. Shahrezaee, A meshless method to the numerical solution of an inverse reaction-diffusion-convection problem, Int. J. Comput. Math., 94 (2016), 597–619. https://doi.org/10.1080/00207160.2015.1119816 doi: 10.1080/00207160.2015.1119816
![]() |
[42] |
H. Gu, B.Lou, M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714–1768. https://doi.org/10.1016/j.jfa.2015.07.002 doi: 10.1016/j.jfa.2015.07.002
![]() |
[43] |
P. Sunthrayuth, R. Ullah, A. Khan, R. Shah, J. Kafle, I. Mahariq, et al., Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations, J. Funct. Space., 2021 (2021), 1–10. https://doi.org/10.1155/2021/1537958 doi: 10.1155/2021/1537958
![]() |
[44] |
M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
![]() |
[45] |
Y. Zhao, D. Baleanu, M. Baleanu, D. Cheng, X. Yang, Mappings for special functions on Cantor sets and special integral transforms via local fractional operators, Abstr. Appl. Anal., 2013 (2013), 1–6. https://doi.org/10.1155/2013/316978 doi: 10.1155/2013/316978
![]() |
[46] |
P. Sunthrayuth, H. Alyousef, S. El-Tantawy, A. Khan, N. Wyal, Solving fractional-order diffusion equations in a plasma and fluids via a novel transform, J. Funct. Space., 2022 (2022), 1–19. https://doi.org/10.1155/2022/1899130 doi: 10.1155/2022/1899130
![]() |
[47] |
M. Alaoui, R. Fayyaz, A. Khan, M. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
![]() |
1. | Wedad Albalawi, Rasool Shah, Kamsing Nonlaopon, Lamiaa S. El-Sherif, Samir A. El-Tantawy, Laplace Residual Power Series Method for Solving Three-Dimensional Fractional Helmholtz Equations, 2023, 15, 2073-8994, 194, 10.3390/sym15010194 | |
2. | Muhammad Naeem, Humaira Yasmin, Rasool Shah, Nehad Ali Shah, Kamsing Nonlaopon, Investigation of Fractional Nonlinear Regularized Long-Wave Models via Novel Techniques, 2023, 15, 2073-8994, 220, 10.3390/sym15010220 | |
3. | Badriah M. Alotaibi, Rasool Shah, Kamsing Nonlaopon, Sherif. M. E. Ismaeel, Samir A. El-Tantawy, Investigation of the Time-Fractional Generalized Burgers–Fisher Equation via Novel Techniques, 2022, 15, 2073-8994, 108, 10.3390/sym15010108 | |
4. | Thongchai Botmart, Badriah Alotaibi, Rasool Shah, Lamiaa El-Sherif, Samir El-Tantawy, A Reliable Way to Deal with the Coupled Fractional Korteweg-De Vries Equations within the Caputo Operator, 2022, 14, 2073-8994, 2452, 10.3390/sym14112452 | |
5. | M. Mossa Al-Sawalha, Osama Y. Ababneh, Rasool Shah, Amjad khan, Kamsing Nonlaopon, Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators, 2022, 8, 2473-6988, 2308, 10.3934/math.2023120 | |
6. | Pongsakorn Sunthrayuth, Muhammad Naeem, Nehad Ali Shah, Rasool Shah, Jae Dong Chung, Numerical Simulations of the Fractional Systems of Volterra Integral Equations within the Chebyshev Pseudo-Spectral Method, 2022, 14, 2073-8994, 2575, 10.3390/sym14122575 | |
7. | M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Osama Y. Ababneh, Numerical investigation of fractional-order wave-like equation, 2022, 8, 2473-6988, 5281, 10.3934/math.2023265 | |
8. | Muhammad Naeem, Humaira Yasmin, Nehad Ali Shah, Jeevan Kafle, Kamsing Nonlaopon, Analytical Approaches for Approximate Solution of the Time-Fractional Coupled Schrödinger–KdV Equation, 2022, 14, 2073-8994, 2602, 10.3390/sym14122602 | |
9. | Nidhish Kumar Mishra, Mashael M. AlBaidani, Adnan Khan, Abdul Hamid Ganie, Numerical Investigation of Time-Fractional Phi-Four Equation via Novel Transform, 2023, 15, 2073-8994, 687, 10.3390/sym15030687 | |
10. | Azzh Saad Alshehry, Rasool Shah, Nehad Ali Shah, Ioannis Dassios, A Reliable Technique for Solving Fractional Partial Differential Equation, 2022, 11, 2075-1680, 574, 10.3390/axioms11100574 | |
11. | Muhammad Naeem, Humaira Yasmin, Rasool Shah, Nehad Ali Shah, Jae Dong Chung, A Comparative Study of Fractional Partial Differential Equations with the Help of Yang Transform, 2023, 15, 2073-8994, 146, 10.3390/sym15010146 | |
12. | Azzh Saad Alshehry, Roman Ullah, Nehad Ali Shah, Rasool Shah, Kamsing Nonlaopon, Implementation of Yang residual power series method to solve fractional non-linear systems, 2023, 8, 2473-6988, 8294, 10.3934/math.2023418 | |
13. | Sultan Alyobi, Rasool Shah, Adnan Khan, Nehad Ali Shah, Kamsing Nonlaopon, Fractional Analysis of Nonlinear Boussinesq Equation under Atangana–Baleanu–Caputo Operator, 2022, 14, 2073-8994, 2417, 10.3390/sym14112417 | |
14. | Fatemah Mofarreh, Asfandyar Khan, Rasool Shah, Alrazi Abdeljabbar, A Comparative Analysis of Fractional-Order Fokker–Planck Equation, 2023, 15, 2073-8994, 430, 10.3390/sym15020430 | |
15. | Haifa A. Alyousef, Rasool Shah, Kamsing Nonlaopon, Lamiaa S. El-Sherif, Samir A. El-Tantawy, An Efficient Analytical Method for Analyzing the Nonlinear Fractional Klein–Fock–Gordon Equations, 2022, 14, 2073-8994, 2640, 10.3390/sym14122640 | |
16. | Wedad Albalawi, Rasool Shah, Nehad Ali Shah, Jae Dong Chung, Sherif M. E. Ismaeel, Samir A. El-Tantawy, Analyzing Both Fractional Porous Media and Heat Transfer Equations via Some Novel Techniques, 2023, 11, 2227-7390, 1350, 10.3390/math11061350 | |
17. | Haifa A. Alyousef, Rasool Shah, Nehad Ali Shah, Jae Dong Chung, Sherif M. E. Ismaeel, Samir A. El-Tantawy, The Fractional Analysis of a Nonlinear mKdV Equation with Caputo Operator, 2023, 7, 2504-3110, 259, 10.3390/fractalfract7030259 | |
18. | Rasool Shah, Fatemah Mofarreh, ElSayed M. Tag, Nivin A. Ghamry, Implementation of Analytical Techniques for the Solution of Nonlinear Fractional Order Sawada–Kotera–Ito Equation, 2023, 7, 2504-3110, 299, 10.3390/fractalfract7040299 | |
19. | Azzh Saad Alshehry, Humaira Yasmin, Fazal Ghani, Rasool Shah, Kamsing Nonlaopon, Comparative Analysis of Advection–Dispersion Equations with Atangana–Baleanu Fractional Derivative, 2023, 15, 2073-8994, 819, 10.3390/sym15040819 | |
20. | Dowlath Fathima, Reham A. Alahmadi, Adnan Khan, Afroza Akhter, Abdul Hamid Ganie, An Efficient Analytical Approach to Investigate Fractional Caudrey–Dodd–Gibbon Equations with Non-Singular Kernel Derivatives, 2023, 15, 2073-8994, 850, 10.3390/sym15040850 | |
21. | Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan, Innovative approach for developing solitary wave solutions for the fractional modified partial differential equations, 2023, 8, 2473-6988, 27775, 10.3934/math.20231422 | |
22. | Nidhish Kumar Mishra, Mashael M. AlBaidani, Adnan Khan, Abdul Hamid Ganie, Two Novel Computational Techniques for Solving Nonlinear Time-Fractional Lax’s Korteweg-de Vries Equation, 2023, 12, 2075-1680, 400, 10.3390/axioms12040400 | |
23. | Abdul Hamid Ganie, Mashael M. AlBaidani, Adnan Khan, A Comparative Study of the Fractional Partial Differential Equations via Novel Transform, 2023, 15, 2073-8994, 1101, 10.3390/sym15051101 | |
24. | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid, Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions, 2024, 9, 2473-6988, 13642, 10.3934/math.2024666 | |
25. | Muhammad Usman, Hidayat Ullah Khan, Zareen A Khan, Hussam Alrabaiah, Study of nonlinear generalized Fisher equation under fractional fuzzy concept, 2023, 8, 2473-6988, 16479, 10.3934/math.2023842 | |
26. | Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan, Innovative approach for developing solitary wave solutions for the fractional modified partial differential equations, 2023, 8, 2473-6988, 27775, 10.3934/math.20221422 | |
27. | Fangfang Wu, Chuangui Lu, Yingying Wang, Na Hu, Lattice Boltzmann Model for a Class of Time Fractional Partial Differential Equation, 2023, 12, 2075-1680, 959, 10.3390/axioms12100959 | |
28. | Aisha A. Alderremy, Humaira Yasmin, Rasool Shah, Ali M. Mahnashi, Shaban Aly, Numerical simulation and analysis of Airy's-type equation, 2023, 21, 2391-5471, 10.1515/phys-2023-0144 | |
29. | Abdul Hamid Ganie, Saurav Mallik, Mashael M. AlBaidani, Adnan Khan, Mohd Asif Shah, Novel analysis of nonlinear seventh-order fractional Kaup–Kupershmidt equation via the Caputo operator, 2024, 2024, 1687-2770, 10.1186/s13661-024-01895-7 | |
30. | Azzh Saad Alshehry, Humaira Yasmin, Abdul Hamid Ganie, Rasool Shah, Heat transfer performance of magnetohydrodynamic multiphase nanofluid flow of Cu–Al2O3/H2O over a stretching cylinder, 2023, 21, 2391-5471, 10.1515/phys-2023-0142 | |
31. | Mamta Kapoor, Simran Kour, A semi-analytical approach via yang transform on fractional-order navier-stokes equation, 2024, 99, 0031-8949, 015234, 10.1088/1402-4896/ad1283 | |
32. | Abedel-Karrem Alomari, Wael Mahmoud Mohammad Salameh, Mohammad Alaroud, Nedal Tahat, Predictor Laplace Fractional Power Series Method for Finding Multiple Solutions of Fractional Boundary Value Problems, 2024, 16, 2073-8994, 1152, 10.3390/sym16091152 | |
33. | Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Amjid Ali, Imran Khan, Fractional-order view analysis of Fisher’s and foam drainage equations within Aboodh transform, 2024, 41, 0264-4401, 489, 10.1108/EC-08-2023-0475 | |
34. | Humaira Yasmin, Analytical investigation of convective phenomena with nonlinearity characteristics in nanostratified liquid film above an inclined extended sheet, 2024, 13, 2191-9097, 10.1515/ntrev-2024-0064 | |
35. | Mubashir Qayyum, Aneeza Tahir, Syed Tauseef Saeed, Ali Akgül, Series-form solutions of generalized fractional-fisher models with uncertainties using hybrid approach in Caputo sense, 2023, 172, 09600779, 113502, 10.1016/j.chaos.2023.113502 | |
36. | Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan, Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations, 2023, 8, 2473-6988, 25845, 10.3934/math.20231318 | |
37. | Chaeyoung Lee, Yunjae Nam, Minjoon Bang, Seokjun Ham, Junseok Kim, Numerical investigation of the dynamics for a normalized time-fractional diffusion equation, 2024, 9, 2473-6988, 26671, 10.3934/math.20241297 | |
38. | Abdulrahman B. M. Alzahrani, Ghadah Alhawael, Analytical Methods for Fractional Differential Equations: Time-Fractional Foam Drainage and Fisher’s Equations, 2023, 15, 2073-8994, 1939, 10.3390/sym15101939 | |
39. | Zainab Alsheekhhussain, Khaled Moaddy, Rasool Shah, Saleh Alshammari, Mohammad Alshammari, M. Mossa Al-Sawalha, Aisha Abdullah Alderremy, Extension of the Optimal Auxiliary Function Method to Solve the System of a Fractional-Order Whitham–Broer–Kaup Equation, 2023, 8, 2504-3110, 1, 10.3390/fractalfract8010001 | |
40. | Basma Abdul Hadi Ibrahim, Nihad Shareef Khalaf, Samer R. Yaseen, 2024, 3061, 0094-243X, 040039, 10.1063/5.0203677 | |
41. | Mashael M. AlBaidani, Abdul Hamid Ganie, Fahad Aljuaydi, Adnan Khan, Application of Analytical Techniques for Solving Fractional Physical Models Arising in Applied Sciences, 2023, 7, 2504-3110, 584, 10.3390/fractalfract7080584 | |
42. | Abdulrahman B. M. Alzahrani, Ghadah Alhawael, Novel Computations of the Time-Fractional Coupled Korteweg–de Vries Equations via Non-Singular Kernel Operators in Terms of the Natural Transform, 2023, 15, 2073-8994, 2010, 10.3390/sym15112010 | |
43. | Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Roman Ullah, Asfandyar Khan, Fractional-order modeling: Analysis of foam drainage and Fisher's equations, 2023, 21, 2391-5471, 10.1515/phys-2023-0115 | |
44. | Zhiling Li, Gao Wang, Jianping Yin, Hongxin Xue, Jinqin Guo, Yong Wang, Manguo Huang, Development and Performance Analysis of an Atomic Layer Thermopile Sensor for Composite Heat Flux Testing in an Explosive Environment, 2023, 12, 2079-9292, 3582, 10.3390/electronics12173582 | |
45. | Maria Vasilyeva, Nana Adjoah Mbroh, Mehrube Mehrubeoglu, Lower-Dimensional Model of the Flow and Transport Processes in Thin Domains by Numerical Averaging Technique, 2023, 9, 2311-5521, 4, 10.3390/fluids9010004 | |
46. | Mashael M. AlBaidani, Abdul Hamid Ganie, Adnan Khan, Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform, 2023, 7, 2504-3110, 812, 10.3390/fractalfract7110812 | |
47. | Hami Gündoǧdu, Hardik Joshi, Numerical Analysis of Time-Fractional Cancer Models with Different Types of Net Killing Rate, 2025, 13, 2227-7390, 536, 10.3390/math13030536 | |
48. | Soobin Kwak, Yunjae Nam, Seungyoon Kang, Junseok Kim, Computational analysis of a normalized time-fractional Fisher equation, 2025, 166, 08939659, 109542, 10.1016/j.aml.2025.109542 | |
49. | Aljawhara H. Almuqrin, Sherif M. E. Ismaeel, C. G. L. Tiofack, A. Mohamadou, Badriah Albarzan, Weaam Alhejaili, Samir A. El-Tantawy, Solving fractional physical evolutionary wave equations using advanced techniques, 2025, 2037-4631, 10.1007/s12210-025-01320-w |
κ=0.001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
γ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000900000000 | 0.100001000000000 | 1.0000000000E-07 | 2.2624000000E-06 | 9.1005000000E-06 |
0.2 | 0.200001600000000 | 0.200002000000000 | 4.0000000000E-07 | 4.7247000000E-06 | 1.8401000000E-05 |
0.3 | 0.300002100000000 | 0.300003000000000 | 9.0000000000E-07 | 7.3870000000E-06 | 2.7901500000E-05 |
0.4 | 0.400002400000000 | 0.400004000000000 | 1.6000000000E-06 | 1.0249300000E-05 | 3.7602000000E-05 |
0.5 | 0.500002500000000 | 0.500005000000000 | 2.5000000000E-06 | 1.3311600000E-05 | 4.7502500000E-05 |
0.6 | 0.600002400000000 | 0.600006000000000 | 3.6000000000E-06 | 1.6574000000E-05 | 5.7603000000E-05 |
0.7 | 0.700002100000000 | 0.700007000000000 | 4.9000000000E-06 | 2.0036200000E-05 | 6.7903500000E-05 |
0.8 | 0.800001600000000 | 0.800008000000000 | 6.4000000000E-06 | 2.3698600000E-05 | 7.8404000000E-05 |
0.9 | 0.900000900000000 | 0.900009000000000 | 8.1000000000E-06 | 2.7561000000E-05 | 8.9104500000E-05 |
1.0 | 1.000000000000000 | 1.000010000000000 | 1.0000000000E-05 | 3.1624000000E-05 | 1.0000500000E-04 |
κ=0.0001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
μ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.250125015600000 | 0.250125015600000 | 0.0000000000E+00 | 1.8906890000E-04 | 6.6430520000E-04 |
0.1 | 0.225763248100000 | 0.225763245200000 | 2.9000000000E-09 | 1.7916820000E-04 | 6.2951110000E-04 |
0.2 | 0.202760871700000 | 0.202760866000000 | 5.7000000000E-09 | 1.6852090000E-04 | 5.9209510000E-04 |
0.3 | 0.181203221400000 | 0.181203213600000 | 7.8000000000E-09 | 1.5733420000E-04 | 5.5278500000E-04 |
0.4 | 0.161148032900000 | 0.161148023400000 | 9.5000000000E-09 | 1.4581750000E-04 | 5.1231600000E-04 |
0.5 | 0.142625699300000 | 0.142625688500000 | 1.0800000000E-08 | 1.3417360000E-04 | 4.7140140000E-04 |
0.6 | 0.125640540500000 | 0.125640528900000 | 1.1600000000E-08 | 1.2259260000E-04 | 4.3070870000E-04 |
0.7 | 0.110172940000000 | 0.110172927700000 | 1.2300000000E-08 | 1.1124550000E-04 | 3.9083840000E-04 |
0.8 | 0.096182157570000 | 0.096182145000000 | 1.2570000000E-08 | 1.0027947000E-04 | 3.5230901000E-04 |
0.9 | 0.083609606820000 | 0.083609594320000 | 1.2500000000E-08 | 8.9816590000E-05 | 3.1554770000E-04 |
1.0 | 0.072382381010000 | 0.072382368820000 | 1.2190000000E-08 | 7.9951180000E-05 | 2.8088627000E-04 |
κ=0.0001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
μ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.793750129200000 | 0.793750133900000 | 4.7000000000E-09 | 7.5012100000E-05 | 2.6345310000E-04 |
0.1 | 0.773431238400000 | 0.773431242500000 | 4.1000000000E-09 | 7.8561700000E-05 | 2.7591940000E-04 |
0.2 | 0.752229901300000 | 0.752229905000000 | 3.7000000000E-09 | 8.1668800000E-05 | 2.8683080000E-04 |
0.3 | 0.730270700500000 | 0.730270703800000 | 3.3000000000E-09 | 18.4278900000E-05 | 2.9599690000E-04 |
0.4 | 0.707690367400000 | 0.707690370200000 | 2.8000000000E-09 | 8.6354800000E-05 | 3.0328690000E-04 |
0.5 | 0.684633165000000 | 0.684633167100000 | 2.1000000000E-09 | 8.7877000000E-05 | 3.0863230000E-04 |
0.6 | 0.661246165700000 | 0.661246167400000 | 1.7000000000E-09 | 8.8844000000E-05 | 3.1202730000E-04 |
0.7 | 0.637674763400000 | 0.637674764500000 | 1.1000000000E-09 | 8.9269700000E-05 | 3.1352190000E-04 |
0.8 | 0.614058694900000 | 0.614058695500000 | 6.0000000000E-10 | 8.9182600000E-05 | 3.1321500000E-04 |
0.9 | 0.590528767000000 | 0.590528767200000 | 2.0000000000E-10 | 8.8621500000E-05 | 3.1124330000E-04 |
1.0 | 0.567204388900000 | 0.567204388600000 | 3.0000000000E-10 | 8.7632900000E-05 | 3.0777110000E-04 |
κ=0.001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
γ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000900000000 | 0.100001000000000 | 1.0000000000E-07 | 2.2624000000E-06 | 9.1005000000E-06 |
0.2 | 0.200001600000000 | 0.200002000000000 | 4.0000000000E-07 | 4.7247000000E-06 | 1.8401000000E-05 |
0.3 | 0.300002100000000 | 0.300003000000000 | 9.0000000000E-07 | 7.3870000000E-06 | 2.7901500000E-05 |
0.4 | 0.400002400000000 | 0.400004000000000 | 1.6000000000E-06 | 1.0249300000E-05 | 3.7602000000E-05 |
0.5 | 0.500002500000000 | 0.500005000000000 | 2.5000000000E-06 | 1.3311600000E-05 | 4.7502500000E-05 |
0.6 | 0.600002400000000 | 0.600006000000000 | 3.6000000000E-06 | 1.6574000000E-05 | 5.7603000000E-05 |
0.7 | 0.700002100000000 | 0.700007000000000 | 4.9000000000E-06 | 2.0036200000E-05 | 6.7903500000E-05 |
0.8 | 0.800001600000000 | 0.800008000000000 | 6.4000000000E-06 | 2.3698600000E-05 | 7.8404000000E-05 |
0.9 | 0.900000900000000 | 0.900009000000000 | 8.1000000000E-06 | 2.7561000000E-05 | 8.9104500000E-05 |
1.0 | 1.000000000000000 | 1.000010000000000 | 1.0000000000E-05 | 3.1624000000E-05 | 1.0000500000E-04 |
κ=0.0001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
μ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.250125015600000 | 0.250125015600000 | 0.0000000000E+00 | 1.8906890000E-04 | 6.6430520000E-04 |
0.1 | 0.225763248100000 | 0.225763245200000 | 2.9000000000E-09 | 1.7916820000E-04 | 6.2951110000E-04 |
0.2 | 0.202760871700000 | 0.202760866000000 | 5.7000000000E-09 | 1.6852090000E-04 | 5.9209510000E-04 |
0.3 | 0.181203221400000 | 0.181203213600000 | 7.8000000000E-09 | 1.5733420000E-04 | 5.5278500000E-04 |
0.4 | 0.161148032900000 | 0.161148023400000 | 9.5000000000E-09 | 1.4581750000E-04 | 5.1231600000E-04 |
0.5 | 0.142625699300000 | 0.142625688500000 | 1.0800000000E-08 | 1.3417360000E-04 | 4.7140140000E-04 |
0.6 | 0.125640540500000 | 0.125640528900000 | 1.1600000000E-08 | 1.2259260000E-04 | 4.3070870000E-04 |
0.7 | 0.110172940000000 | 0.110172927700000 | 1.2300000000E-08 | 1.1124550000E-04 | 3.9083840000E-04 |
0.8 | 0.096182157570000 | 0.096182145000000 | 1.2570000000E-08 | 1.0027947000E-04 | 3.5230901000E-04 |
0.9 | 0.083609606820000 | 0.083609594320000 | 1.2500000000E-08 | 8.9816590000E-05 | 3.1554770000E-04 |
1.0 | 0.072382381010000 | 0.072382368820000 | 1.2190000000E-08 | 7.9951180000E-05 | 2.8088627000E-04 |
κ=0.0001 | Exact solution | Proposed techniques solution | AE of our methods | AE of our methods | AE of our methods |
μ | ℘=1 | ℘=1 | ℘=1 | ℘=0.9 | ℘=0.8 |
0 | 0.793750129200000 | 0.793750133900000 | 4.7000000000E-09 | 7.5012100000E-05 | 2.6345310000E-04 |
0.1 | 0.773431238400000 | 0.773431242500000 | 4.1000000000E-09 | 7.8561700000E-05 | 2.7591940000E-04 |
0.2 | 0.752229901300000 | 0.752229905000000 | 3.7000000000E-09 | 8.1668800000E-05 | 2.8683080000E-04 |
0.3 | 0.730270700500000 | 0.730270703800000 | 3.3000000000E-09 | 18.4278900000E-05 | 2.9599690000E-04 |
0.4 | 0.707690367400000 | 0.707690370200000 | 2.8000000000E-09 | 8.6354800000E-05 | 3.0328690000E-04 |
0.5 | 0.684633165000000 | 0.684633167100000 | 2.1000000000E-09 | 8.7877000000E-05 | 3.0863230000E-04 |
0.6 | 0.661246165700000 | 0.661246167400000 | 1.7000000000E-09 | 8.8844000000E-05 | 3.1202730000E-04 |
0.7 | 0.637674763400000 | 0.637674764500000 | 1.1000000000E-09 | 8.9269700000E-05 | 3.1352190000E-04 |
0.8 | 0.614058694900000 | 0.614058695500000 | 6.0000000000E-10 | 8.9182600000E-05 | 3.1321500000E-04 |
0.9 | 0.590528767000000 | 0.590528767200000 | 2.0000000000E-10 | 8.8621500000E-05 | 3.1124330000E-04 |
1.0 | 0.567204388900000 | 0.567204388600000 | 3.0000000000E-10 | 8.7632900000E-05 | 3.0777110000E-04 |