
The rapid development and wide application of artificial intelligence is deeply affecting all aspects of human society. Combine artificial intelligence with the accounting industry, use computers to efficiently and automatically process accounting information, and let the accounting industry move towards the intelligent era. This can help people reduce the workload and speed up work efficiency. In recent years, with the rapid development of economy and technology, the use of financial instrument vouchers has exploded, but the processing requirements of financial instrument vouchers have become more and more efficient. Traditional accounting information processing methods, due to the staff's energy and ability, it is often difficult to quickly and accurately handle accounting information. This makes the processing of accounting information lack of timeliness, the degree of utilization of accounting information by enterprises is relatively low, and the demand for intelligent processing of accounting information is constantly pressing. In view of the above problems, this paper uses image processing technology to intelligently identify the content of accounting information to achieve automatic ticket input, improve work efficiency, reduce error rate and reduce labor costs. By simulating the actual 230 invoice images, the results show that the recognition accuracy rate is as high as 98.7%. The results show that the method is effective and has great application value, which is of great significance to the artificial intelligence of accounting information processing.
Citation: Juanjuan Tian, Li Li. Research on artificial intelligence of accounting information processing based on image processing[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 8411-8425. doi: 10.3934/mbe.2022391
[1] | Li Sun, Bing Song . Feature adaptive multi-view hash for image search. Electronic Research Archive, 2023, 31(9): 5845-5865. doi: 10.3934/era.2023297 |
[2] | Huixia Liu, Zhihong Qin . Deep quantization network with visual-semantic alignment for zero-shot image retrieval. Electronic Research Archive, 2023, 31(7): 4232-4247. doi: 10.3934/era.2023215 |
[3] | Jingqian Xu, Ma Zhu, Baojun Qi, Jiangshan Li, Chunfang Yang . AENet: attention efficient network for cross-view image geo-localization. Electronic Research Archive, 2023, 31(7): 4119-4138. doi: 10.3934/era.2023210 |
[4] | Abul Bashar . Employing combined spatial and frequency domain image features for machine learning-based malware detection. Electronic Research Archive, 2024, 32(7): 4255-4290. doi: 10.3934/era.2024192 |
[5] | Yixin Sun, Lei Wu, Peng Chen, Feng Zhang, Lifeng Xu . Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation. Electronic Research Archive, 2023, 31(9): 5340-5361. doi: 10.3934/era.2023271 |
[6] | Haijun Wang, Wenli Zheng, Yaowei Wang, Tengfei Yang, Kaibing Zhang, Youlin Shang . Single hyperspectral image super-resolution using a progressive upsampling deep prior network. Electronic Research Archive, 2024, 32(7): 4517-4542. doi: 10.3934/era.2024205 |
[7] | Zengyu Cai, Liusen Xu, Jianwei Zhang, Yuan Feng, Liang Zhu, Fangmei Liu . ViT-DualAtt: An efficient pornographic image classification method based on Vision Transformer with dual attention. Electronic Research Archive, 2024, 32(12): 6698-6716. doi: 10.3934/era.2024313 |
[8] | Xiongfei Li, Shuyu Li, Hao Xu, Yixuan Zhang . A differentially private distributed collaborative XGBoost method. Electronic Research Archive, 2024, 32(4): 2865-2879. doi: 10.3934/era.2024130 |
[9] | Longkui Jiang, Yuru Wang, Xinhe Ji . Calibrated deep attention model for 3D pose estimation in the wild. Electronic Research Archive, 2023, 31(3): 1556-1569. doi: 10.3934/era.2023079 |
[10] | Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang . A polygonal topology optimization method based on the alternating active-phase algorithm. Electronic Research Archive, 2024, 32(2): 1191-1226. doi: 10.3934/era.2024057 |
The rapid development and wide application of artificial intelligence is deeply affecting all aspects of human society. Combine artificial intelligence with the accounting industry, use computers to efficiently and automatically process accounting information, and let the accounting industry move towards the intelligent era. This can help people reduce the workload and speed up work efficiency. In recent years, with the rapid development of economy and technology, the use of financial instrument vouchers has exploded, but the processing requirements of financial instrument vouchers have become more and more efficient. Traditional accounting information processing methods, due to the staff's energy and ability, it is often difficult to quickly and accurately handle accounting information. This makes the processing of accounting information lack of timeliness, the degree of utilization of accounting information by enterprises is relatively low, and the demand for intelligent processing of accounting information is constantly pressing. In view of the above problems, this paper uses image processing technology to intelligently identify the content of accounting information to achieve automatic ticket input, improve work efficiency, reduce error rate and reduce labor costs. By simulating the actual 230 invoice images, the results show that the recognition accuracy rate is as high as 98.7%. The results show that the method is effective and has great application value, which is of great significance to the artificial intelligence of accounting information processing.
The relationship among different biological populations is complex and very important and is an essential part of the research on the development of ecology. Due to the prevalence and importance of predation in nature, studying the dynamic relationship between predator and prey has always been one of the dominant topics.
In the 1920s and 1930s, as the pioneers of mathematical ecology, Lotka [1] and Volterra [2] proposed the famous Lotka-Volterra model independently, which is used to discribe the interaction between two groups composed of predators and preys:
{du(t)dt=a1u(t)−b1u(t)v(t),dv(t)dt=−a2v(t)+b2u(t)v(t). |
Here, we assume an ecosystem that includes two groups of predators and preys. The predator survives on prey, and the system has no population exchange relationship with the outside world. In order to establish a mathematical model describing the system, the prey and predator population are regarded as the basic variables, which are represented by u(t) and v(t), respectively. The natural increment of the prey population is proportional to the number of itself, and if the proportional constant is a1>0, and if the mortality rate of predator population is proportional to its own number, the proportional constant is a2>0, and b1>0 and b2>0 are positive constant. Lotka-Volterra model is a basic model to describe the predator-prey relationship between predator and prey.
In 1975, Landahl and Hanson [3] and Tognetti [4] proposed a stage structure model and used different equations to describe individual behavior at different stages. In the last two decades, Zhang et al. [5] proposed and discussed a delayed predator-prey model with stage structure and nonlocal diffusion, and they studied the existence and exact asymptotic behavior of traveling wave solutions. Zhang and Xu [6,7] considered the predator-prey model with nonlocal delay and stage structure, and further studied the global stability. One can also see [8,9,10,11,12,13,14].
Recently, Hong and Weng [15] studied the delayed predator-prey model with local diffusion and nonlocal spatial effects, and they investigated the stability of the equilibria and the existence of traveling wave solutions connecting the zero equilibrium point and the unique positive equilibrium point.
{∂u1∂t=D1∂2u1∂x2+a1u2(x,t)−d1u1(x,t)−a11u21(x,t)−ˆae−d1τ∫+∞−∞G(x,y,τ)u2(y,t−τ)dy,∂u2∂t=D2∂2u2∂x2+ˆae−d1τ∫+∞−∞G(x,y,τ)u2(y,t−τ)dy−d2u2(x,t)−q2e2u2(x,t)−a22u22(x,t)−a23u2(x,t)v(x,t)1+mu2(x,t),∂v∂t=D3∂2v∂x2+[a2−b2v(x,t)]v(x,t)−q3e3v(x,t)+a32u2(x,t)v(x,t)1+mu2(x,t), |
where G(x,y,τ)=1√4D1πτe−(x−y)24D1τ. The model considered the Holling Ⅱ functional response function. Although Holling type functional response functions are widely used, they do not consider the effect of predator density on predation rate. For this reason, some scholars have proposed a ratio dependent functional response function, and the results are also supported by many experimental facts. For results about stage structure, we refer to [16,17].
In 2001, Skalaski and Gilliam [18] compared the statistical data in some predator-prey systems, and found that the predator-dependent functional response function model has a high degree of fit with the data. The Beddington-DeAngelis functional response function is more practical in reality. This function maintains all the characteristics of the proportional dependent functional response function and avoids the singular behavior caused by the low density state, so it can better reflect the predator-prey effect (we refer to [19,20,21] for details).
In 2017, Khajanchi and Banerjee [22] introduced a persistent prey refuge in a stage structured predator-prey model with a ratio dependent functional response and obtained sufficient conditions for permanence and global asymptotic stability by constructing a suitable Lyapunov function.
{dxi(t)dt=αxm(t)−βxi(t)−δ1xi(t),dxm(t)dt=βxi(t)−δ2xm(t)−γx2m(t)−η(1−θ)xm(t)y(t)g(1−θ)xm(t)+hy(t),dy(t)dt=μ(1−θ)xm(t)y(t)g(1−θ)xm(t)+hy(t)−δ3y(t), |
where α represents the growth rate of juvenile prey. The conversion coefficient from juvenile prey to adult prey is proportional to the existing juvenile prey, and the proportional constant is β. γ represents the intraspecific competition rate of adult prey. δ1, δ2, and δ3 represent the natural mortality of juvenile prey, adult prey, and predator, respectively. We introduced an adult prey shelter θxm, θ∈(0,1), which measures the strength of the prey shelter. For related work, Cheng and Yuan [23] considered the existence and stability of traveling wave solutions of Holling-Tanner predator-prey model with nonlocal diffusion and Holling type I functional response.
The local Laplacian operator to represent the spatial diffusion phenomenon cannot accurately describe the spatial and temporal behavior of species. In fact, spatial nonlocal effects are ubiquitous in nature. As for a biological population, it will move in a large spatial range than be limited to a small range, which leads to the occurrence of spatial nonlocal effects. Accordingly, many researchers have introduced convolution operators into the research models to describe the movement of individuals in the whole space and used convolution operators to describe the spatial diffusion process (see [24,25,26]).
In this paper, motivated by the results in [15], we consider the influence of Beddington-DeAngelis functional response function on the existence of traveling wave solutions of the model and consider the stage structure of the prey population and divide the prey population into two categories: Juvenile and adult. For many mammals, the juvenile prey is hidden in the cave and fed by their parents, so they do not have to go out to find food; thus, we have reason to think that the juvenile prey is not at risk of being attacked by predators. Our model is as follows:
{∂u1∂t=D1∂2u1∂x2+a1u2−d1u1−a11u21−ˆae−d1τ∫+∞−∞G(x,y,τ)u2(y,t−τ)dy,∂u2∂t=D2∂2u2∂x2+ˆae−d1τ∫+∞−∞G(x,y,τ)u2(y,t−τ)dy−d2u2−q2e2u2−a12u22−βu2v1+mu2+wv,∂v∂t=D5∂2v∂x2+a2v−b2v−a55v2−q5e5v+β1u2v1+mu2+wv, | (1.1) |
where G(x,y,τ)=1√4πD1τe−(x−y)24D1τ, β1β is the rate at which nutrients are converted to predators for reproduction. u1(x,t), u2(x,t) and v(x,t) are the population density of juvenile prey population, adult prey population and predator population at position x and moment t, respectively. ˆae−d1τ∫+∞−∞G(x,y,τ)u2(y,t−τ)dy represents the number of prey species converted from juvenile to adult at position x and moment t. Here, the application of nonlocal Fourier transform and convolution shows that the function value at position x is not only related to this point, but also affected by the surrounding area. τ>0 is a time delay, indicating that the change rate of the unit population at moment t depends on the number of populations at moment t−τ. D1>0, D2>0 and D5>0 are the diffusion coefficients. a1>0 and a2>0 are the birth rates of juvenile prey and predator populations respectively. d1>0, d2>0 and b2>0 are the mortality of juvenile prey population, adult prey population and predator population, respectively. a12>0 and a55>0 are the overcrowding rates of adult prey population and predator population respectively. q2e2u2(x,t)>0 and q5e5v(x,t)>0 represent capture items of adult prey population and predator population, respectively, and m and w are positive constant.
We take the intial condition
u1(x,0)=δ1(x)>0,u2(x,t)=δ2(x,t)≥0,δ2(x,0)>0,v(x,0)=δ3(x)>0,x∈R,−τ≤t≤0. |
Based on the above discussion, we first study the stability of equilibrium points of the delayed predator-prey model with stage structure and Beddington-DeAngelis functional response function using the linear stability method. Then, we establish the existence of traveling wave solutions of (1.1) by constructing a new pair of upper and lower solutions, combined with the Schauder fixed point theorem.
Note that the second and third equations of system (1.1) are independent of u1(x,t), and only related to themselves and each other. Thus, it is sufficient to consider the last two equations on their own. For simplicity of notation, we denote u2(x,t) by u(x,t). Then, we consider the following system:
{∂u∂t=D2∂2u∂x2+ˆae−d1τ∫+∞−∞G(x,y,τ)u(y,t−τ)dy−d2u−q2e2u−a12u2−βuv1+mu+wv,∂v∂t=D5∂2v∂x2+a2v−b2v−a55v2−q5e5v+β1uv1+mu+wv. | (2.1) |
In order to facilitate the discussion of subsequent issues, we write here
ϑ1:=ˆae−d1−d2−q2e2, | (2.2) |
ϑ2:=a2−b2−q5e5. | (2.3) |
Obviously, the system (2.1) has three equilibrium points, which are expressed as
E0(0,0),E1(ϑ1a12,0),E2(0,ϑ2a55). |
For any constant equilibrium point (u∗,v∗), we linearize the system (2.1) in (u∗,v∗), and obtain
{∂u∂t=D2∂2u∂x2+ˆae−d1τ∫+∞−∞G(x,y,τ)u(y,t−τ)dy−d2u−q2e2u−2a12u∗u−βv∗+wβv∗2(1+mu∗+wv∗)2u−βu∗+mβu∗2(1+mu∗+wv∗)2v,∂v∂t=D5∂2v∂x2+a2v−b2v−2a55v∗v−q5e5v+β1v∗+wβ1v∗2(1+mu∗+wv∗)2u+βu∗+mβu∗2(1+mu∗+wv∗)2v. | (2.4) |
The system (2.4) has a non-trivial solution in the form of (c1,c2)Teλt+iσx (see [27]) if and only if the corresponding determinant of the system (2.4) coefficient matrix is 0, where λ is a complex number and σ is a real number.
|χ1(λ,σ,u∗,v∗)+βv∗+wβv∗2(1+mu∗+wv∗)2βu∗+mβu∗2(1+mu∗+wv∗)2−β1v∗+wβ1v∗2(1+mu∗+wv∗)2χ2(λ,σ,u∗,v∗)−βu∗+mβu∗2(1+mu∗+wv∗)2|=0, |
equal to
[χ1(λ,σ,u∗,v∗)+βv∗(1+wv∗)(1+mu∗+wv∗)2][χ2(λ,σ,u∗,v∗)−βu∗(1+mu∗)(1+mu∗+wv∗)2]+ββ1u∗v∗(1+mu∗)(1+wv∗)(1+mu∗+wv∗)4=0, | (2.5) |
where
χ1(λ,σ,u∗,v∗):=λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12u∗, | (2.6) |
χ2(λ,σ,u∗,v∗):=λ+D5σ2−a2+b2+q5e5+2a55v∗. | (2.7) |
Theorem 2.1. Suppose that ϑ1≤0 and ϑ2≤0, then the zero equilibrium point E0(0,0) is stable; conversely, assume that either ϑ1>0 or ϑ2>0, then the zero equilibrium point E0(0,0) is unstable.
Proof. Substituting E0(0,0) into (2.5), where u∗=v∗=0, we get
χ1(λ,σ,0,0)χ2(λ,σ,0,0)=0, | (2.8) |
equal to
[λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2][λ+D5σ2−a2+b2+q5e5]=0, | (2.9) |
then
λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2=0 or λ+D5σ2−a2+b2+q5e5=0. |
If λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2=0, according to the Eq (2.2), we can get
λ1=−D2σ2+ˆae−d1τ−λτe−D2σ2τ−d2−q2e2=−D2σ2+ˆae−d1τ−λτe−D2σ2τ+ϑ1−ˆae−d1τ=−D2σ2−ˆae−d1τ(1−e−λτe−D2σ2τ)+ϑ1, |
then when ϑ1≤0, λ1<0.
If λ+D5σ2−a2+b2+q5e5=0, according to the Eq (2.3), we can get
λ2=−D5σ2+a2−b2−q5e5=−D5σ2+ϑ2, |
then when ϑ2≤0, λ2<0.
Accordingly, if ϑ1≤0 and ϑ2≤0, the zero equilibrium point E0(0,0) is stable; if either ϑ1>0 or ϑ2>0, we see that there exists at least a (λ0,σ0) satisfying (2.9) such that λ0>0. Therefore, the zero equilibrium point E0(0,0) are unstable.
Theorem 2.2. Suppose that ϑ1≥0 and ϑ2+β1ϑ1a121+mϑ1a12≤0, then the boundary equilibrium point E1(ϑ1a12,0) is stable; conversely, assume that either ϑ1<0 or ϑ2+β1ϑ1a121+mϑ1a12>0, then the boundary equilibrium point E1(ϑ1a12,0) is unstable.
Proof. Substituting E1(ϑ1a12,0) into (2.5), where u∗=ϑ1a12=¯u, v∗=0, we get
χ1(λ,σ,¯u,0)[χ2(λ,σ,¯u,0)−β1¯u1+m¯u]=0, |
equal to
[λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12¯u][λ+D5σ2−a2+b2+q5e5−β1¯u1+m¯u]=0, | (2.10) |
then
λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12¯u=0 or λ+D5σ2−a2+b2+q5e5−β1¯u1+m¯u=0. |
If λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12¯u=0, according to the Eq (2.2), we can get
λ1=−D2σ2+ˆae−d1τ−λτe−D2σ2τ−d2−q2e2−2a12¯u=−D2σ2+ˆae−d1τ−λτe−D2σ2τ−d2−q2e2−2a12ϑ1a12=−D2σ2+ˆae−d1τ−λτe−D2σ2τ+ϑ1−ˆae−d1τ−2ϑ1=−D2σ2−ˆae−d1τ(1−e−λτe−D2σ2τ)−ϑ1, |
then when ϑ1≥0, λ1<0.
If λ+D5σ2−a2+b2+q5e5−β1¯u1+m¯u=0, according to the Eq (2.3), we can get
λ2=−D5σ2+a2−b2−q5e5+β1¯u1+m¯u=−D5σ2+ϑ2+β1ϑ1a121+mϑ1a12, |
then when ϑ2+β1ϑ1a121+mϑ1a12≤0, λ2<0.
Accordingly, if ϑ1≥0 and ϑ2+β1ϑ1a121+mϑ1a12≤0, the boundary equilibrium E1(ϑ1a12,0) is stable; if either ϑ1<0 or ϑ2+β1ϑ1a121+mϑ1a12>0, we see that there exists at least a (λ0,σ0) satisfying (2.10) such that λ0>0. Therefore, the boundary equilibrium E1(ϑ1a12,0) is unstable.
Theorem 2.3. Suppose that ϑ1−βϑ2a551+wϑ2a55≤0 and ϑ2≥0, then the boundary equilibrium point E2(0,ϑ2a55) is stable; conversely, assume that either ϑ1−βϑ2a551+wϑ2a55>0 or ϑ2<0, then the boundary equilibrium point E2(0,ϑ2a55) is unstable.
Proof. Substituting E2(0,ϑ2a55) into (2.5), where u∗=0, v∗=ϑ2a55=¯v, we get
[χ1(λ,σ,0,¯v)+β¯v1+w¯v]χ2(λ,σ,0,¯v)=0, |
equal to
[λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+β¯v1+w¯v][λ+D5σ2−a2+b2+q5e5+2a55¯v]=0, | (2.11) |
then
λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+β¯v1+w¯v=0 or λ+D5σ2−a2+b2+q5e5+2a55¯v=0. |
If λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+β¯v1+w¯v=0, according to the Eq (2.2), we can get
λ1=−D2σ2+ˆae−d1τ−λτe−D2σ2τ−d2−q2e2−β¯v1+w¯v=−D2σ2+ˆae−d1τ−λτe−D2σ2τ−d2−q2e2−βϑ2a551+wϑ2a55=−D2σ2+ˆae−d1τ−λτe−D2σ2τ+ϑ1−ˆae−d1τ−βϑ2a551+wϑ2a55=−D2σ2−ˆae−d1τ(1−e−λτe−D2σ2τ)+ϑ1−βϑ2a551+wϑ2a55, |
then when ϑ1−βϑ2a551+wϑ2a55≤0, λ1<0.
If λ+D5σ2−a2+b2+q5e5+2a55¯v=0, according to the Eq (2.3), we can get
λ2=−D5σ2+a2−b2−q5e5−2a55¯v=−D5σ2+ϑ2−2a55ϑ2a55=−D5σ2−ϑ2, |
then when ϑ2≥0, λ2<0.
Accordingly, if ϑ1−βϑ2a551+wϑ2a55≤0 and ϑ2≥0, the boundary equilibrium E2(0,ϑ2a55) is stable; if either ϑ1−βϑ2a551+wϑ2a55>0 or ϑ2<0, we see that there exists at least a (λ0,σ0) satisfying (2.11) such that λ0>0. Therefore, the boundary equilibrium E2(0,ϑ2a55) is unstable.
Considering the actual background of our model, we will assume that ϑ1>0 and ϑ2>0 in the following discussion, so the above three equilibrium points E0(0,0), E1(ϑ1a12,0), E2(0,ϑ2a55) are non-negative equilibrium points. Now we shall discuss the possibility of the positive equilibrium point.
The positive equilibrium point E3(u+,v+) of system (2.1) satisfies the system
ϑ1−a12u−βv1+mu+wv=0, | (2.12) |
ϑ2−a55v+β1u1+mu+wv=0. | (2.13) |
From the Eq (2.12), we have form
v=ϑ1+mϑ1u−a12u−ma12u2wa12u−wϑ1+β, |
Substituting the above equation into the Eq (2.13), we can get
ϑ2−a55ϑ1+mϑ1u−a12u−ma12u2wa12u−wϑ1+β+β1u1+mu+wv=0, |
expand and simplify to get the function
f(u)=A0u3+A1u2+A2u+A3, |
where
A0=m2a55a12β+w2a212β1,A1=2ma12a55β+2wa12ββ1+mwa12βϑ2−2w2a12β1ϑ1−m2a55βϑ1,A2=wa12βϑ2+a12a55β+mβ2ϑ22+β2β1+w2β1ϑ21−2ma55βϑ1−mwβϑ1ϑ2−2wββ1ϑ1,A3=β2ϑ2−a55βϑ1−wβϑ1ϑ2. |
Next we shall analyze the existence of positive roots of the function f(u), and assume that f(u)=A0u3+A1u2+A2u+A3 has a unique positive root u+. Obviously, the main part of the function f(u) is A0=m2a55a12β+w2a212β1>0, so we assume A3=β2ϑ2−a55βϑ1−wβϑ1ϑ2≤0. Therefore,
f(+∞)=+∞,f(−∞)=−∞,f(0)=A3≤0,f′(u)=3A0u2+2A1u+A2. |
The discriminant of the derivative f′(u) is Δ=(2A1)2−4×3A0A2=4A21−12A0A2, let Δ0=A21−3A0A2, thus Δ=4Δ0. The system (2.1) has the unique positive equilibrium E3(u+,v+) if and only if the function f(u) has a unique positive root u+.
1) If Δ0>0, then the function f(u) has two zero roots u1 and u2, which are equivalent to
u1=−A1−√Δ03A0,u2=−A1+√Δ03A0. |
(a). If A1>0 and A2≥0, then u1<u2≤0, f(u) is increasing in [0,+∞). If f(0)=A3<0, then f(u)=0 has a unique positive root; if f(0)=A3=0, then f(u)=0 has no positive root.
(b). If A1>0 and A2<0, then u1<0, u2>0, f(u) is decreasing in [0,u2), and is increasing in [u2,+∞). Since f(0)=A3≤0, f(u)=0 has a unique positive root.
(c). If A1<0 and A2≤0, then u1≤0, u2>0, f(u) is decreasing in [0,u2), and is increasing in [u2,+∞). Since f(0)=A3≤0, f(u)=0 has a unique positive root.
(d). If A1<0 and A2>0, then u1>u2>0, f(u) is increasing in [0,u1) and [u2,+∞), and is decreasing in [u1,u2). If f(0)=A3<0, f(u1)<0, f(u2)<0, then f(u)=0 has a unique positive root; if f(0)=A3=0, f(u1)>0, f(u2)=0, then f(u)=0 has a unique positive root; otherwise, f(u)=0 has two positive roots or no positive roots.
(e). If A1=0 and A2<0, then u1<0, u2>0, f(u) is decreasing in [0,u2), and is increasing in [u2,+∞). Since f(0)=A3≤0, f(u)=0 has a unique positive root.
2) If Δ0<0, f(0)=A3<0, then the function f(u) is monotonically increasing in [0,+∞), thus f(u)=0 has a unique positive root.
3) If Δ0=0, f(0)=A3<0, then the function f(u) is monotonically increasing in [0,+∞), thus f(u)=0 has a unique positive root.
Summarizing the above discussion, we get the following conclusions.
Lemma 2.1. Suppose that A0>0, A3≤0, equation f(u)=0 has a unique positive root u+ if and only if one of the following six conditions holds:
B1). Δ0>0, A1>0, A2≥0, A3<0;
B2). Δ0>0, A1>0, A2<0, A3≤0;
B3). Δ0>0, A1<0, A2≤0, A3≤0;
B4). Δ0>0, A1<0, A2>0, A3≤0;
B5). Δ0>0, A1=0, A2<0, A3≤0;
B6). Δ0≤0, A3≤0.
f(u) has a unique positive root u+, through the Eq (2.13) we can get
v=ϑ1+mϑ1u−a12u−ma12u2wa12u−wϑ1+β=(ϑ1−a12u)(1+mu)w(a12u−ϑ1)+β=1+mu−w+βϑ1−a12u. |
As βϑ1−a12u+>w, that is, u+>ϑ1−wβa12, there exists a unique corresponding v+. Thus, the system (2.1) has a unique positive equilibrium point E3(u+,v+).
Theorem 2.4 (The existence condition of E3). Suppose ϑ1>0, ϑ2>0 and a12u+<ϑ1<βw+a12u+, then the system (2.1) has a unique positive equilibrium point E3(u+,v+), where u+>0 is the only positive root of f(u)=0.
Theorem 2.5 (The stability of E3). Assume that the unique positive equilibrium point E3(u+,v+) exists, if a12≥mβv+(1+mu++wv+)2, then E3(u+,v+) is stable.
Proof. Substituting E3(u+,v+) into (2.5), whereu∗=u+, v∗=v+, we get
[χ1(λ,σ,u+,v+)+βv+(1+wv+)(1+mu++wv+)2][χ2(λ,σ,u+,v+)−β1u+(1+mu+)(1+mu++wv+)2]+ββ1u+v+(1+mu+)(1+wv+)(1+mu++wv+)4=0, |
Here we introduce some representations
γ1=β1(1+mu+)(1+mu++wv+)2,γ2=β(1+wv+)(1+mu++wv+)2, |
such that
[λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12u++γ2v+][λ+D5σ2−a2+b2+q5e5+2a55v+−γ1u+]+γ1γ2u+v+=0. | (2.14) |
where γ1,γ2,u+,v+>0.
Due to λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12u++γ2v+≠0, with the help of Eqs (2.3) and (2.13), the Eq (2.14) can be transformed into
λ=−γ1γ2u+v+λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12u++γ2v+−(D5σ2−a2+b2+q5e5+2a55v+−γ1u+)=−γ1γ2u+v+λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12u++γ2v+−(D5σ2+ϑ2+2β1u+1+mu++wv+−β1(1+mu+)u+(1+mu++wv+)2)=−γ1γ2u+v+λ+D2σ2−ˆae−d1τ−λτe−D2σ2τ+d2+q2e2+2a12u++γ2v+−(D5σ2+ϑ2+β1u+1+mu++wv++wβ1u+v+(1+mu++wv+)2). |
λ=μ+iω is a complex number, that is, Reλ=μ, Imλ=ω, (λ,σ)=(μ+iω,σ). The real part of λ is Reλ=μ<0. Otherwise, Reλ=μ≥0 is not established, and the counter-proof method proves as follows.
Suppose that there exists (λ1,σ1)=(μ1+iω1,σ1), μ1≥0. Using Euler formula to split the real and imaginary parts of λ. Let
A(μ1,ω1,σ1)=μ1+D2σ21−ˆae−d1τ−μ1τe−D2σ21τcos(ω1τ)+d2+q2e2+2a12u++γ2v+,B(μ1,ω1,σ1)=ω1+ˆae−d1τ−μ1τe−D2σ21τsin(ω1τ), |
then
0≤μ1=−Aγ1γ2u+v+A2+B2−(D5σ2+ϑ2+β1u+1+mu++wv++wβ1u+v+(1+mu++wv+)2)≤−[−ˆae−d1τ−μ1τe−D2σ21τcos(ω1τ)+d2+q2e2+2a12u++γ2v+]γ1γ2u+v+A2+B2−(D5σ2+ϑ2+β1u+1+mu++wv++wβ1u+v+(1+mu++wv+)2)=(−γ1γ2u+v+)ˆae−d1τ−ˆae−d1τ−μ1τe−D2σ21τcos(ω1τ)+a12u++γ2v+−βv+1+mu++wv+A2+B2−(D5σ2+ϑ2+β1u+1+mu++wv++wβ1u+v+(1+mu++wv+)2)≤(−γ1γ2u+v+)a12u++γ2v+−βv+1+mu++wv+A2+B2−(D5σ2+ϑ2+β1u+1+mu++wv++wβ1u+v+(1+mu++wv+)2)=(−γ1γ2u+v+)a12u+−mβu+v+(1+mu++wv+)2A2+B2−(D5σ2+ϑ2+β1u+1+mu++wv++wβ1u+v+(1+mu++wv+)2)<0, |
as a12≥mβv+(1+mu++wv+)2. This is a contradiction.
Consequently, assume that the unique positive equilibrium point E3(u+,v+) exists, if a12≥mβv+(1+mu++wv+)2, then E3(u+,v+) is stable.
In this section, by using the Schauder fixed point theorem and the method of constructing upper and lower solutions by cross iteration, the existence of traveling wave solutions of the connecting equilibrium points E0 and E3 of the system (2.1) is obtained. The traveling wave solution of the system (2.1) is a special translation invariant solution in the form of (u(x,t),v(x,t))=(ϕ(x+ct),ψ(x+ct)), where the wave velocity c>0, ϕ and ψ are wave profile functions, and the wave profile propagates in one-dimensional space domain at a constant speed c>0. Substituting (u(x,t),v(x,t))=(ϕ(x+ct),ψ(x+ct)) into system (2.1) and replacing x+ct with t, we get
{D2ϕ′′(t)−cϕ′(t)+f2(ϕ,ψ)(t)=0,D5ψ′′(t)−cψ′(t)+f5(ϕ,ψ)(t)=0, | (3.1) |
satisfy the following asymptotic boundary value conditions
limt→−∞(ϕ(t),ψ(t))=(0,0),limt→+∞(ϕ(t),ψ(t))=(u+,v+), |
where
f2(ϕ,ψ)(t)=ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ(t−y−cτ)dy−(d2+q2e2)ϕ(t)−a12ϕ2(t)−βϕ(t)ψ(t)1+mϕ(t)+wψ(t),f5(ϕ,ψ)(t)=(a2−b2−q5e5)ψ(t)−a55ψ2(t)+β1ϕ(t)ψ(t)1+mϕ(t)+wψ(t). |
In this section, we discuss the existence of upper and lower solutions. Firstly, we give the definition of the upper and lower solutions of the system (3.1).
Definition 3.1. Let ¯ρ(t)=(¯ϕ(t),¯ψ(t)), ρ_(t)=(ϕ_(t),ψ_(t)), t∈R be two continuous functions, then ¯ρ(t)=(¯ϕ(t),¯ψ(t)) and ρ_(t)=(ϕ_(t),ψ_(t)), t∈R are the upper and lower solutions of the system (3.1), respectively. If there exists a finite set of points S={si∈R,i=1,2,⋯,n}, where s1<s2<⋯<sn, such that ¯ρ(t) and ρ_(t) are twice continuously differentiable on R∖S, and for any t∈R∖S, satisfy
D2¯ϕ′′(t)−c¯ϕ′(t)+f2(¯ϕ,ψ_)(t)≤0,D5¯ψ′′(t)−c¯ψ′(t)+f5(¯ϕ,¯ψ)(t)≤0, |
and
D2ϕ_′′(t)−cϕ_′(t)+f2(ϕ_,¯ψ)(t)≥0,D5ψ_′′(t)−cψ_′(t)+f5(ϕ_,ψ_)(t)≥0. |
Now linearizing the system (3.1) at (0,0), we obtain
{D2ϕ′′(t)−cϕ′(t)+ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ(t−y−cτ)dy−(d2+q2e2)ϕ(t)=0,D5ψ′′(t)−cψ′(t)+(a2−b2−q5e5)ψ(t)=0. | (3.2) |
Substituting ϕ(t)=eλt and ψ(t)=eλt into the system (3.2), due to ∫+∞−∞1√4πD1τe−y24D1τe−λ(y+cτ)dy=e(D1λ2−cλ)τ, we get
Δ1(λ,c)=0,Δ2(λ,c)=0, |
where
{Δ1(λ,c)=D2λ2−cλ+ˆae−d1τe(D1λ2−cλ)τ−d2−q2e2,Δ2(λ,c)=D5λ2−cλ+a2−b2−q5e5. |
Lemma 3.1. If ˆae−d1τe(D1λ2−cλ)τ−d2−q2e2>0, let c∗1=√4D2(ˆae−d1τe(D1λ2−cλ)τ−d2−q2e2), then the following conclusions hold.
1). If c>c∗1, then Δ1(λ,c)=0 has two different positive roots λ1(c) and λ2(c), we may set 0<λ1(c)<λ2(c);
2). If 0<c<c∗1, then Δ1(λ,c)=0 has no real root.
Lemma 3.2. If a2−b2−q5e5>0, write c∗2=√4D5(a2−b2−q5e5), then the following conclusions hold.
1). If c>c∗2, then Δ2(λ,c)=0 has two different positive roots λ3(c) and λ4(c), we may set 0<λ3(c)<λ4(c);
2). If 0<c<c∗2, then Δ2(λ,c)=0 has no real root.
Proof. We regard Δ1(λ,c)=0 and Δ2(λ,c)=0 as a quadratic equation with one variable λ, and consider the existence of the solution of the equation according to the size of the respective discriminant Δ and 0.
Lemma 3.3. Assume that a12u+≥(3+2√2)βv+1+mu++wv+ and a55v+≥2√2β1u+1+mu++wv+ hold, there exist ε1∈(0,(√2−1)u+) and ε2∈(0,v+2) such that
{−a12ε21+(2√2−2)a12u+ε1+βu+v+1+mu++wv+−2β(u+−ε1)v+1+m(u+−ε1)+2wv+>ε0,−a55ε22+a55v+ε2−β1u+v+1+mu++wv++β1(u+−ε1)(v+−ε2)1+m(u+−ε1)+w(v+−ε2)>ε0, | (3.3) |
where ε0>0 is a constant.
Proof. Let
g1(ε1)=−a12ε21+(2√2−2)a12u+ε1,g2(ε1)=−βu+v+1+mu++wv++2β(u+−ε1)v+1+m(u+−ε1)+2wv+,g3(ε2)=−a55ε22+a55v+ε2,g4(ε2)=β1u+v+1+mu++wv+−β1(u+−ε1)(v+−ε2)1+m(u+−ε1)+w(v+−ε2). |
g1(ε1) is a quadratic function with respect to ε1. The image opens down through the origin, and the symmetry axis is x=(√2−1)u+>0, so that g1(ε1) is increasing in (0,(√2−1)u+). Thus, g1(0)=0 and the maximum value is max{g1(ε1)}=g1((√2−1)u+)=(3−2√2)a12(u+)2; g2(ε1) is decreasing with respect to ε1 and the maximum value is max{g2(ε1)}<g2(0)=βu+v+1+mu++2wv+. According to the assumption of a12u+≥(3+2√2)βv+1+mu++wv+, then (3−2√2)a12(u+)2≥βu+v+1+mu++2wv+, there exists ε1∈(0,(√2−1)u+), so that g1(ε1)>g2(ε1). The first inequality is proved.
g3(ε2) is a quadratic function with respect to ε2. The image opening goes down through the origin, and the symmetry axis is x=v+2>0, so that g3(ε2) is increasing in (0,v+2). Thus, g3(0)=0 and the maximum value is max{g3(ε2)}=g3(v+2)=14a55(v+)2; g4(ε2) is increasing in (0,v+2) with respect to ε2, then the maximum value is max{g4(ε2)}<g4(v+2)=β1u+v+1+mu++wv+−β1(u+−ε1)v+21+m(u+−ε1)+wv+2, here −β1(u+−ε1)v+21+m(u+−ε1)+wv+2 is increasing for ε1∈(0,(√2−1)u+) with respect to ε1, such that
max{g4(ε2)}<g4(v+2)=β1u+v+1+mu++wv+−β1(u+−ε1)v+21+m(u+−ε1)+wv+2<β1u+v+1+mu++wv+−β1(u+−(√2−1)u+)v+21+m(u+−(√2−1)u+)+wv+2<β1u+v+1+mu++wv+−β1(2−√22)u+v+1+mu++wv+=√22β1u+v+1+mu++wv+. |
According to the assumption of a55v+≥2√2β1u+1+mu++wv+, then 14a55(v+)2≥√22β1u+v+1+mu++wv+, there exists ε2∈(0,v+2), so that g3(ε2)>g4(ε2). The second inequality is proved.
For the unique positive equilibrium (u+,v+), we know that ϑ1−a12u+−βv+1+mu++wv+=0 and ϑ2−a55v++β1u+1+mu++wv+=0, thereby
1). If ϑ1>(4+2√2)βv+1+mu++wv+ holds, then a12u+=ϑ1−βv+1+mu++wv+>(3+2√2)βv+1+mu++wv+;
2). If ϑ2>(2√2−1)β1u+1+mu++wv+ holds, then a55v+=ϑ2+β1u+1+mu++wv+>2√2β1u+1+mu++wv+.
Remark 3.1. Suppose ϑ1>(4+2√2)βv+1+mu++wv+ and ϑ2>(2√2−1)β1u+1+mu++wv+ hold, Lemma 3.3 holds.
In addition, from a12u+≥(3+2√2)βv+1+mu++wv+ we can deduce
a12≥βv+(1+mu++wv+)u+=mβv+(1+mu++wv+)mu+≥mβv+(1+mu++wv+)2. |
As a12≥mβv+(1+mu++wv+)2, the unique positive equilibrium (u+,v+) is stable.
Let c∗=max{c∗1,c∗2}. For fixed c>c∗, take constant η∈(1,min{2,λ2λ1,λ4λ3,λ1+λ3λ1,λ1+λ3λ3}), then there are Δ1(ηλ1,c)<0 and Δ2(ηλ3,c)<0.
Let η>1, q>1 be large enough and λ>0 be small enough. Here ε1∈(0,(√2−1)u+) and ε2∈(0,v+2). We write λi=λi(c)>0(i=1,2,3,4). The continuous functions (¯ϕ(t),¯ψ(t)) and (ϕ_(t),ψ_(t)) are defined as follows:
¯ϕ(t)={eλ1t,t≤t1,u++u+e−λt,t≥t1,¯ψ(t)={eλ3t+qeηλ3t,t≤t2,v++v+e−λt,t≥t2, |
ϕ_(t)={eλ1t−qeηλ1t,t≤t3,u+−ε1e−λt,t≥t3,ψ_(t)={eλ3t−qeηλ3t,t≤t4,v+−ε2e−λt,t≥t4. |
It is easy to know that (¯ϕ(t),¯ψ(t)) and (ϕ_(t),ψ_(t)) have the following properties:
1) There are two constants N1>0 and N2>0 such that (0,0)≤(ϕ_(t),ψ_(t))≤(¯ϕ(t),¯ψ(t))≤(N1,N2);
2) limt→−∞(¯ϕ(t),¯ψ(t))=(0,0),limt→+∞(ϕ_(t),ψ_(t))=limt→+∞(¯ϕ(t),¯ψ(t))=(u+,v+);
3) For all t∈R, ¯ϕ′(t+)≤¯ϕ′(t−), ϕ′_(t+)≥ϕ′_(t−).
Remark 3.2. According to the definition of (¯ϕ(t),¯ψ(t)) and (ϕ_(t),ψ_(t)), we know
¯ϕ(t)≤min{eλ1t,u++u+e−λt},¯ψ(t)≤min{eλ3t+qeηλ3t,v++v+e−λt},ϕ_(t)≥max{eλ1t−qeηλ1t,u+−ε1e−λt},ψ_(t)≥max{eλ3t−qeηλ3t,v+−ε2e−λt}. |
Remark 3.3. If q>1 is large enough, then it is clear that t1≥max{t2,t3,t4}.
Lemma 3.4. Assume that ϑ1>(4+2√2)βv+1+mu++wv+ and ϑ2>(2√2−1)β1u+1+mu++wv+ hold, and q>1 is large enough, then (¯ϕ(t),¯ψ(t)) and (ϕ_(t),ψ_(t)) are a pair of upper and lower solutions of system (3.1).
Proof. We first consider ¯ϕ(t). According to the function definition, we have
¯ϕ(t)={eλ1t,t≤t1u++u+e−λt,t≥t1,¯ϕ(t)≤min{eλ1t,u++u+e−λt}. |
According to the definition of upper and lower solutions Definition 3.1, we want to prove that D2¯ϕ′′(t)−c¯ϕ′(t)+f2(¯ϕ,ψ_)(t)≤0, where ψ_(t)≥max{eλ3t−qeηλ3t,v+−ε2e−λt}.
If t≤t1, then ¯ϕ(t)=eλ1t, ¯ϕ′(t)=λ1eλ1t and ¯ϕ′′(t)=λ21eλ1t. In addition, we note that if t−y−cτ≤t1, then ¯ϕ(t−y−cτ)=eλ1(t−y−cτ); if t−y−cτ≥t1, then ¯ϕ(t−y−cτ)≤eλ1(t−y−cτ). Thus,
D2¯ϕ′′(t)−c¯ϕ′(t)+f2(¯ϕ,¯ψ)(t)=D2¯ϕ′′(t)−c¯ϕ′(t)+ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τ¯ϕ(t−y−cτ)dy−(d2+q2e2)¯ϕ(t)−a12¯ϕ2(t)−β¯ϕ(t)ψ_(t)1+m¯ϕ(t)+wψ_(t)≤D2¯ϕ′′(t)−c¯ϕ′(t)+ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τ¯ϕ(t−y−cτ)dy−(d2+q2e2)¯ϕ(t)≤D2(λ21eλ1t)−c(λ1eλ1t)+ˆae−d1τeλ1te(D1λ2−cλ)τ−(d2+q2e2)eλ1t=eλ1t(D2λ21−cλ1+ˆae−d1τe(D1λ2−cλ)τ−d2−q2e2)=eλ1tΔ1(λ1,c)=0. |
If t≥t1, then ¯ϕ(t)=u++u+e−λt, here ψ_(t)≥v+−ε2e−λt, ¯ϕ′(t)=−λu+e−λt and ¯ϕ′′(t)=λ2u+e−λt. In addition, we note that if t−y−cτ≥t1, then ¯ϕ(t−y−cτ)=u++u+e−λ(t−y−cτ); if t−y−cτ≤t1, then ¯ϕ(t−y−cτ)≤u++u+e−λ(t−y−cτ). Thus,
D2¯ϕ′′(t)−c¯ϕ′(t)+f2(¯ϕ,¯ψ)(t)=D2¯ϕ′′(t)−c¯ϕ′(t)+ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τ¯ϕ(t−y−cτ)dy−(d2+q2e2)¯ϕ(t)−a12¯ϕ2(t)−β¯ϕ(t)ψ_(t)1+m¯ϕ(t)+wψ_(t)≤D2(λ2u+e−λt)−c(−λu+e−λt)+ˆae−d1τu++ˆae−d1τu+e−λte(D1λ2+cλ)τ−(d2+q2e2)(u++u+e−λt)−a12(u++u+e−λt)2−β(u++u+e−λt)ψ_(t)1+m(u++u+e−λt)+wψ_(t)=u+e−λt(D2λ2+cλ+ˆae−d1τe(D1λ2+cλ)τ−d2−q2e2)+u+(ˆae−d1τ−d2−q2e2−a12u+)−2a12(u+)2e−λt−a12(u+)2e−2λt−β(u++u+e−λt)ψ_(t)1+m(u++u+e−λt)+wψ_(t)=u+e−λtΔ1(−λ,c)−2a12(u+)2e−λt−a12(u+)2e−2λt−β(u++u+e−λt)ψ_(t)1+m(u++u+e−λt)+wψ_(t)+βu+v+1+mu++wv+=u+e−λt[Δ1(−λ,c)−2a12u+]−u+[a12u+e−2λt+β(1+e−λt)ψ_(t)1+m(u++u+e−λt)+wψ_(t)−βv+1+mu++wv+]. |
According to the premise assumption, Δ1(0,c)−2a12u+=ϑ1−2a12u+=βu+v+1+mu++wv+−a12u+<0 can be obtained, so there is a constant ˜λ1>0, which makes Δ1(−λ,c)−2a12u+<0 for ∀λ∈(0,˜λ1).
Let I1(λ,t):=a12u+e−2λt+β(1+e−λt)ψ_(t)1+m(u++u+e−λt)+wψ_(t)−βv+1+mu++wv+, where t≥t1 and ψ_(t)≥v+−ε2e−λt≥0. β(1+e−λt)ψ_(t)1+m(u++u+e−λt)+wψ_(t) is increasing with respect to ψ_(t), thus
I1(λ,t)≥a12u+e−2λt+β(1+e−λt)(v+−ε2e−λt)1+m(u++u+e−λt)+w(v+−ε2e−λt)−βv+1+mu++wv+. |
Here t≥t1, (t1<0). Therefore, t is divided into t∈[t1,0] and t>0 for discussion.
If t∈[t1,0], from the hypothesis we know that
I1(λ,t)≥a12u+e−2λt+β(1+e−λt)(v+−ε2e−λt)1+m(u++u+e−λt)+w(v+−ε2e−λt)−βv+1+mu++wv+≥a12u++β(1+e−λt)(v+−ε2e−λt)1+m(u++u+e−λt)+w(v+−ε2e−λt)−βv+1+mu++wv+>(2+2√2)βv+1+mu++wv++β(1+e−λt)(v+−ε2e−λt)1+m(u++u+e−λt)+w(v+−ε2e−λt)>0. |
If t>0, here ε2∈(0,v+2), we have that
β(1+e−λt)(v+−ε2e−λt)1+m(u++u+e−λt)+w(v+−ε2e−λt)≥β(1+e−λt)(v+−ε2e−λt)min1+m(u++u+e−λt)+w(v+−ε2e−λt)min≥β(1+e−λt)v+21+mu+(1+e−λt)+wv+2>0. |
Since a12u+e−2λt and β(1+e−λt)v+21+mu+(1+e−λt)+wv+2 are decreasing about the variable t on t>0, furthermore, I1(λ,0)=a12u++2β(v+−ε2)1+2mu++w(v+−ε2)−βv+1+mu++wv+>(2+2√2)βv+1+mu++wv++2β(v+−ε2)1+2mu++w(v+−ε2)>0 and I1(λ,+∞)=0, then I1(λ,t)>0 for ∀t≥t1.
In consequence, ¯ϕ satisfies the upper solution definition, that is, D2¯ϕ′′(t)−c¯ϕ′(t)+f2(¯ϕ,ψ_)(t)≤0.
Next we consider ¯ψ(t). According to the function definition, we have
¯ψ(t)={eλ3t+qeηλ3t,t≤t2v++v+e−λt,t≥t2,¯ψ(t)≤min{eλ3t+qeηλ3t,v++v+e−λt}. |
According to the definition of upper and lower solutions Definition 3.1, we want to prove that D5¯ψ′′(t)−c¯ψ′(t)+f5(¯ϕ,¯ψ)(t)≤0, where ¯ϕ(t)≤min{eλ1t,u++u+e−λt}.
If t≤t2, then ¯ψ(t)=eλ3t+qeηλ3t, here ¯ϕ(t)≤eλ1t, ¯ψ′(t)=λ3eλ3t+qηλ3eηλ3t and ¯ψ′′(t)=λ23eλ3t+qη2λ23eηλ3t. Thus,
D5¯ψ′′(t)−c¯ψ′(t)+f5(¯ϕ,¯ψ)(t)=D5¯ψ′′(t)−c¯ψ′(t)+(a2−b2−q5e5)¯ψ(t)−a55¯ψ2(t)+β1¯ϕ(t)¯ψ(t)1+m¯ϕ(t)+w¯ψ(t)≤D5(λ23eλ3t+qη2λ23eηλ3t)−c(λ3eλ3t+qηλ3eηλ3t)+(a2−b2−q5e5)(eλ3t+qeηλ3t)−a55(eλ3t+qeηλ3t)2+β1eλ1t(eλ3t+qeηλ3t)1+meλ1t+w(eλ3t+qeηλ3t)=eλ3t(D5λ23−cλ3+a2−b2−q5e5)+qeηλ3t(D5η2λ23−cηλ3+a2−b2−q5e5)−a55(eλ3t+qeηλ3t)2+β1eλ1t(eλ3t+qeηλ3t)1+meλ1t+w(eλ3t+qeηλ3t)=eλ3tΔ2(λ3,c)+qeηλ3tΔ2(ηλ3,c)−a55(eλ3t+qeηλ3t)2+β1eλ1t(eλ3t+qeηλ3t)1+meλ1t+w(eλ3t+qeηλ3t)≤qeηλ3tΔ2(ηλ3,c)+β1eλ1t(eλ3t+qeηλ3t)=eηλ3t[qΔ2(ηλ3,c)+β1e(λ1+λ3−ηλ3)t+qβ1eλ1t]≤eηλ3t{q[Δ2(ηλ3,c)+β1eλ1t]+β1}. |
Here q>1 is large enough, then −t2>0 is also large enough. q[Δ2(ηλ3,c)+β1eλ1t]+β1 is increasing about the variable t on t≤t2 for ∀t≤t2, so there exists q[Δ2(ηλ3,c)+β1eλ1t]+β1<0, thus eηλ3t{q[Δ2(ηλ3,c)+β1eλ1t]+β1}<0 for ∀t≤t2.
If t≥t2, then ¯ψ(t)=v++v+e−λt, here ¯ϕ(t)≤u++u+e−λt, ¯ψ′(t)=−λv+e−λt and ¯ψ′′(t)=λ2v+e−λt. Thus,
D5¯ψ′′(t)−c¯ψ′(t)+f5(¯ϕ,¯ψ)(t)=D5¯ψ′′(t)−c¯ψ′(t)+(a2−b2−q5e5)¯ψ(t)−a55¯ψ2(t)+β1¯ϕ(t)¯ψ(t)1+m¯ϕ(t)+w¯ψ(t)≤D5(λ2v+e−λt)−c(−λv+e−λt)+(a2−b2−q5e5)(v++v+e−λt)−a55(v++v+e−λt)2+β1(u++u+e−λt)(v++v+e−λt)1+m(u++u+e−λt)+w(v++v+e−λt)=v+e−λt(D5λ2+cλ+a2−b2−q5e5)+v+(a2−b2−q5e5−a55v+)−2a55(v+)2e−λt−a55(v+)2e−2λt+β1(u++u+e−λt)(v++v+e−λt)1+m(u++u+e−λt)+w(v++v+e−λt)=v+e−λtΔ2(−λ,c)−2a55(v+)2e−λt−a55(v+)2e−2λt+β1u+v+(1+e−λt)21+mu+(1+e−λt)+wv+(1+e−λt)−β1u+v+1+mu++wv+=v+e−λt[Δ2(−λ,c)−a55v+]−v+[a55v+e−λt+a55v+e−2λt−β1u+(1+e−λt)21+mu+(1+e−λt)+wv+(1+e−λt)+β1u+1+mu++wv+]. |
Because of Δ2(0,c)−a55v+=ϑ2−a55v+=−β1u+1+mu++wv+<0, there is a constant ˜λ2>0, which makes Δ2(−λ,c)−a55v+<0 for ∀λ∈(0,˜λ2).
Let I2(λ,t):=a55v+e−λt+a55v+e−2λt−β1u+(1+e−λt)21+mu+(1+e−λt)+wv+(1+e−λt)+β1u+1+mu++wv+, we have that
I2(λ,t)=a55v+e−λt+a55v+e−2λt−β1u+(1+e−λt)21+mu+(1+e−λt)+wv+(1+e−λt)+β1u+1+mu++wv+>a55v+e−λt+a55v+e−2λt−β1u+(1+e−λt)21+mu++wv++β1u+1+mu++wv+=a55v+e−λt+a55v+e−2λt−β1u+1+mu++wv+(2e−λt+e−2λt)=e−λt{(a55v+−2β1u+1+mu++wv+)+(a55v+−β1u+1+mu++wv+)e−λt}. |
According to the premise hypothesis, a55v+>2√2β1u+1+mu++wv+ can be obtained, thus I2(λ,t)>0 for ∀t≥t2.
In consequence, ¯ψ satisfies the upper solution definition, that is, D5¯ψ′′(t)−c¯ψ′(t)+f5(¯ϕ,¯ψ)(t)≤0.
We next consider ϕ_(t). According to the function definition, we have
ϕ_(t)={eλ1t−qeηλ1t,t≤t3u+−ε1e−λt,t≥t3,ϕ_(t)≥max{eλ1t−qeηλ1t,u+−ε1e−λt}. |
According to the definition of upper and lower solutions Definition 3.1, we want to prove that D2ϕ_′′(t)−cϕ_′(t)+f2(ϕ_,¯ψ)(t)≥0, where ¯ψ(t)≤min{eλ3t+qeηλ3t,v++v+e−λt}.
If t≤t3, then ϕ_(t)=eλ1t−qeηλ1t, here ¯ψ(t)≤eλ3t+qeηλ3t, ϕ_′(t)=λ1eλ1t−qηλ1eηλ1t and ϕ_′′(t)=λ21eλ1t−qη2λ21eηλ1t. In addition, we note that if t−y−cτ≥t3, then ¯ϕ(t−y−cτ)=eλ1(t−y−cτ)−qeηλ1(t−y−cτ); if t−y−cτ≤t3, then ¯ϕ(t−y−cτ)≥eλ1(t−y−cτ)−qeηλ1(t−y−cτ). Thus,
D2ϕ_′′(t)−cϕ_′(t)+f2(ϕ_,¯ψ)(t)=D2ϕ_′′(t)−cϕ_′(t)+ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ_(t−y−cτ)dy−(d2+q2e2)ϕ_(t)−a12ϕ_2(t)−βϕ_(t)¯ψ(t)1+mϕ_(t)+w¯ψ(t)≥D2(λ21eλ1t−qη2λ21eηλ1t)−c(λ1eλ1t−qηλ1eηλ1t)+ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τ(eλ1(t−y−cτ)−qeηλ1(t−y−cτ))dy−(d2+q2e2)(eλ1t−qeηλ1t)−a12(eλ1t−qeηλ1t)2−β(eλ1t−qeηλ1t)¯ψ(t)1+m(eλ1t−qeηλ1t)+w¯ψ(t)=eλ1t(D2λ21−cλ1+ˆae−d1τe(D1λ21−cλ1)τ−d2−q2e2)−qeηλ1t(D2η2λ21−cηλ1+ˆae−d1τe(D1η2λ21−cηλ1)τ−d2−q2e2)−a12(eλ1t−qeηλ1t)2−β(eλ1t−qeηλ1t)¯ψ(t)1+m(eλ1t−qeηλ1t)+w¯ψ(t)=eλ1tΔ1(λ1,c)−qeηλ1tΔ1(ηλ1,c)−a12(eλ1t−qeηλ1t)2−β(eλ1t−qeηλ1t)¯ψ(t)1+m(eλ1t−qeηλ1t)+w¯ψ(t)≥eλ1tΔ1(λ1,c)−qeηλ1tΔ1(ηλ1,c)−a12(eλ1t−qeηλ1t)2−β(eλ1t−qeηλ1t)(eλ3t+qeηλ3t)1+m(eλ1t−qeηλ1t)+w(eλ3t+qeηλ3t)≥−qeηλ1tΔ1(ηλ1,c)−a12e2λ1t−βeλ1t(eλ3t+qeηλ3t)=−eηλ1t[qΔ1(ηλ1,c)+a12e(2λ1−ηλ1)t+βe(λ1+λ3−ηλ1)t+qβe(λ1+ηλ3−ηλ1)t]≥−eηλ1t[qΔ1(ηλ1,c)+a12+β+qβe(λ1+ηλ3−ηλ1)t]=−eηλ1t{q[Δ1(ηλ1,c)+βe(λ1+ηλ3−ηλ1)t]+(a12+β)}. |
Here q>1 is large enough, then −t3>0 is also large enough. q[Δ1(ηλ1,c)+βe(λ1+ηλ3−ηλ1)t]+(a12+β) is increasing about the variable t on t≤t3 for ∀t≤t3, so there exists q[Δ1(ηλ1,c)+βe(λ1+ηλ3−ηλ1)t]+(a12+β)<0, thus −eηλ1t{q[Δ1(ηλ1,c)+βe(λ1+ηλ3−ηλ1)t]+(a12+β)}>0 for ∀t≤t3.
If t>t3, then ϕ_(t)=u+−ε1e−λt, here ¯ψ(t)≤v++v+e−λt, ϕ_′(t)=λε1e−λt and ϕ_′′(t)=−λ2ε1e−λt. In addition, we note that if t−y−cτ≥t3, then ϕ_(t−y−cτ)=u+−ε1e−λ(t−y−cτ); if t−y−cτ≤t3, then ϕ_(t−y−cτ)≥u+−ε1e−λ(t−y−cτ). Thus,
D2ϕ_′′(t)−cϕ_′(t)+f2(ϕ_,¯ψ)(t)=D2ϕ_′′(t)−cϕ_′(t)+ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ_(t−y−cτ)dy−(d2+q2e2)ϕ_(t)−a12ϕ_2(t)−βϕ_(t)¯ψ(t)1+mϕ_(t)+w¯ψ(t)≥D2(−λ2ε1e−λt)−c(λε1e−λt)+ˆae−d1τu+−ˆae−d1τε1e−λte(D1λ2+cλ)τ−(d2+q2e2)(u+−ε1e−λt)−a12(u+−ε1e−λt)2−β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t)=−ε1e−λt(D2λ2+cλ+ˆae−d1τe(D1λ2+cλ)τ−d2−q2e2)+u+(ˆae−d1τ−d2−q2e2)+2a12u+ε1e−λt−a12ε21e−2λt−β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t)=−ε1e−λtΔ1(−λ,c)+2a12u+ε1e−λt−a12ε21e−2λt+βu+v+1+mu++wv+−β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t)=ε1e−λt[−Δ1(−λ,c)+(4−2√2)a12u+]+(2√2−2)a12u+ε1e−λt−a12ε21e−2λt+βu+v+1+mu++wv+−β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t). |
According to the premise assumption, we can obtain that −Δ1(−λ,c)+(4−2√2)a12u+=−ϑ1+(4−2√2)a12u+=(3−2√2)a12u+−βv+1+mu++wv+>0, so there is a constant ˜λ3>0, which makes −Δ1(−λ,c)+(4−2√2)a12u+>0 for ∀λ∈(0,˜λ3).
Let I3(λ,t)=(2√2−2)a12u+ε1e−λt−a12ε21e−2λt+βu+v+1+mu++wv+−β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t), we have that
I3(λ,t)=(2√2−2)a12u+ε1e−λt−a12ε21e−2λt+βu+v+1+mu++wv+−β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t)≥(2√2−2)a12u+ε1e−λt−a12ε21e−2λt+βu+v+1+mu++wv+−β(u+−ε1e−λt)(v++v+e−λt)1+m(u+−ε1e−λt)+w(v++v+e−λt), |
where t≥t3. Therefore, I3(λ,0)=−a12ε21+(2√2−2)a12u+ε1+βu+v+1+mu++wv+−2β(u+−ε1)v+1+m(u+−ε1)+2wv+.
From Remark 3.1, we can see that ϑ1>(4+2√2)βv+1+mu++wv+is established, there is ε1∈(0,(√2−1)u+), making −a12ε21+(2√2−2)a12u+ε1+βu+v+1+mu++wv+−2β(u+−ε1)v+1+m(u+−ε1)+2wv+>ε0>0. We have I3(λ,0)>0, here ε1∈(0,(√2−1)u+). We can choose a small enough δ1>0, such that δ∗:=ε1+δ1 for ∀δ∈[ε1,δ∗] satisfying
−a12δ2+(2√2−2)a12u+δ+βu+v+1+mu++wv+−β(u+−δ)(2v++δ)1+m(u+−δ)+w(2v++δ)>ε02>0. |
We want to prove that I3(λ,t)>0 for ∀t>t3. Here t>t3(t3<0), therefore, t is divided into t∈(t3,0] and t>0 two parts to discuss.
If t∈(t3,0], let ν(t):=ε1e−λt, μ(t):=v++v+e−λt. Select ˜λ3>0 small enough such that for any given λ∈(0,˜λ3), we have
ν(t3)=ε1e−λt3=δ∗,μ(t3)=v++v+e−λt3=δ∗, |
which leads to ε1≤ν(t)≤δ∗ and ε1≤μ(t)≤δ∗. So we get I3(λ,t)>0 for ∀t∈(t3,0].
If t≥0, here −β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t)<0, based on the assumption that λ>0 is small enough,
[−β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t)]′t=−βε1λe−λt¯ψ(t)[1+ω¯ψ(t)]−β(u+−ε1e−λt)¯ψ′(t)[1+m(u+−ε1e−λt)][1+m(u+−ε1e−λt)+w¯ψ(t)]2, |
where ¯ψ(t)>0 and ¯ψ′(t)<0. Thus we have the function −β(u+−ε1e−λt)¯ψ(t)1+m(u+−ε1e−λt)+w¯ψ(t)is increasing about the variable t on t≥0; the function (2√2−2)a12u+ε1e−λt−a12ε21e−2λt>0 is decreasing about the variable t on t≥0. We can get that
I3(λ,0)>0,I3(λ,+∞)=0. |
So we get I3(λ,t)>0 for ∀t≥0. Thus, I3(λ,t)>0 for ∀t>t3. In consequence, ϕ_ satisfies lower solution definition, that is, D2ϕ_′′(t)−cϕ_′(t)+f2(ϕ_,¯ψ)(t)≥0.
We finally consider ψ_(t). According to the function definition, we have
ψ_(t)={eλ3t−qeηλ3t,t≤t4v+−ε2e−λt,t≥t4,ψ_(t)≥max{eλ3t−qeηλ3t,v+−ε2e−λt}. |
According to the definition of upper and lower solutions Definition 3.1, we want to prove that D5ψ_′′(t)−cψ_′(t)+f5(ϕ_,ψ_)(t)≥0, where ϕ_(t)≥max{eλ1t−qeηλ1t,u+−ε1e−λt}.
If t≤t4, then ψ_(t)=eλ3t−qeηλ3t, ψ_′(t)=λ3eλ3t−qηλ3eηλ3t and ψ_′′(t)=λ23eλ3t−qη2λ23eηλ3t. Thus,
D5ψ_′′(t)−cψ_′(t)+f5(ϕ_,ψ_)(t)=D5ψ_′′(t)−cψ_′(t)+(a2−b2−q5e5)ψ_(t)−a55ψ_2(t)+β1ϕ_(t)ψ_(t)1+mϕ_(t)+wψ_(t)=D5(λ23eλ3t−qη2λ23eηλ3t)−c(λ3eλ3t−qηλ3eηλ3t)+(a2−b2−q5e5)(eλ3t−qeηλ3t)−a55(eλ3t−qeηλ3t)2+β1ϕ_(t)(eλ3t−qeηλ3t)1+mϕ_(t)+w(eλ3t−qeηλ3t)=eλ3t(D5λ23−cλ3+a2−b2−q5e5)−qeηλ3t(D5η2λ23−cηλ3+a2−b2−q5e5)−a55(eλ3t−qeηλ3t)2+β1ϕ_(t)(eλ3t−qeηλ3t)1+mϕ_(t)+w(eλ3t−qeηλ3t)≥−qeηλ3tΔ2(ηλ3,c)−a55e2λ3t≥eηλ3t[−qΔ2(ηλ3,c)−a55]>0, |
here η∈(1,min{2,λ2λ1,λ4λ3,λ1+λ3λ1,λ1+λ3λ3}) and q>1is large enough.
If t≥t4, then ψ_(t)=v+−ε2e−λt, here ϕ_(t)≥u+−ε1e−λt, ψ_′(t)=λε2v+e−λt and ψ_′′(t)=−λ2ε2v+e−λt. Thus,
D5ψ_′′(t)−cψ_′(t)+f5(ϕ_,ψ_)(t)=D5ψ_′′(t)−cψ_′(t)+(a2−b2−q5e5)ψ_(t)−a55ψ_2(t)+β1ϕ_(t)ψ_(t)1+mϕ_(t)+wψ_(t)≥D5(−λ2ε2v+e−λt)−c(λε2v+e−λt)+(a2−b2−q5e5)(v+−ε2e−λt)−a55(v+−ε2e−λt)2+β1(u+−ε1e−λt)(v+−ε2e−λt)1+m(u+−ε1e−λt)+w(v+−ε2e−λt)=−ε2e−λt(D5λ2+cλ+a2−b2−q5e5)+v+(a2−b2−q5e5−a55v+)+2a55ε2(v+)2e−λt−a55(ε2)2e−2λt+β1(u+−ε1e−λt)(v+−ε2e−λt)1+m(u+−ε1e−λt)+w(v+−ε2e−λt)=−ε2e−λtΔ2(−λ,c)+2a55ε2(v+)2e−λt−a55(ε2)2e−2λt−β1u+v+1+mu++wv++β1(u+−ε1e−λt)(v+−ε2e−λt)1+m(u+−ε1e−λt)+w(v+−ε2e−λt)=ε2e−λt[−Δ2(−λ,c)+a55v+]+a55ε2(v+)2e−λt−a55(ε2)2e−2λt−β1u+v+1+mu++wv++β1(u+−ε1e−λt)(v+−ε2e−λt)1+m(u+−ε1e−λt)+w(v+−ε2e−λt). |
Because of −Δ2(0,c)+a55v+=−ϑ2+a55v+=β1u+1+mu++wv+>0, there is a constant ˜λ4>0, which makes −Δ2(−λ,c)+a55v+>0 for ∀λ∈(0,˜λ4).
Let I4(λ,t):=a55ε2(v+)2e−λt−a55(ε2)2e−2λt−β1u+v+1+mu++wv++β1(u+−ε1e−λt)(v+−ε2e−λt)1+m(u+−ε1e−λt)+w(v+−ε2e−λt), where t≥t4. Therefore, I4(λ,0)=−a55ε22+a55v+ε2−β1u+v+1+mu++wv++β1(u+−ε1)(v+−ε2)1+m(u+−ε1)+w(v+−ε2)>0 and I4(λ,+∞)=0.
From Remark 3.1, we can see that ϑ2>(2√2−1)β1u+1+mu++wv+, there are ε1∈(0,(√2−1)u+) and ε2∈(0,v+2), making −a55ε22+a55v+ε2−β1u+v+1+mu++wv++β1(u+−ε1)(v+−ε2)1+m(u+−ε1)+w(v+−ε2)>ε0>0. We have that I4(λ,0)>0, here ε1∈(0,(√2−1)u+) and ε2∈(0,v+2). We can choose a small enough δ2>0 such that δ∗∗:=ε2+δ2 for ∀δ∈[ε2,δ∗∗] satisfying
−a55δ2+a55v+δ−β1u+v+1+mu++wv++β1(u+−ε1)(v+−δ)1+m(u+−ε1)+w(v+−δ)>0. |
We want to prove that I4(λ,t)>0 for ∀t≥t4. Here t≥t4, (t4<0), therefore, t is divided into t∈[t4,0] and t>0 to discuss.
If t∈(t4,0], let ν(t):=ε2e−λt. Select ˜λ4>0 small enough such that for any given λ∈(0,˜λ4), we have ν(t4)=ε2e−λt4=δ∗∗, which leads to ε2≤ν(t)≤δ∗∗. So we get I4(λ,t)>0 for ∀t∈(t4,0].
If t≥0, here β1(u+−ε1e−λt)(v+−ε2e−λt)1+m(u+−ε1e−λt)+w(v+−ε2e−λt)>0, according to the assumption that λ>0 is small enough, we have the function β1(u+−ε1e−λt)(v+−ε2e−λt)1+m(u+−ε1e−λt)+w(v+−ε2e−λt) is increasing about the variable t on t≥0; the function a55ε2(v+)2e−λt−a55(ε2)2e−2λt>0 is decreasing about the variable t on t≥0. We can get
I4(λ,0)>0,I4(λ,+∞)=0. |
So we get I4(λ,t)>0 for ∀t≥0. Thus, I4(λ,t)>0 for ∀t>t4. In consequence, ψ_ satisfies the following solution definition, that is, D5ψ_′′(t)−cψ_′(t)+f5(ϕ_,ψ_)(t)≥0.
Let ˜λ=min{˜λ1,˜λ2,˜λ3,˜λ4}, select λ∈(0,˜λ), so that (¯ϕ(t),¯ψ(t)) and (ϕ_(t),ψ_(t)) satisfy the upper and lower solution definition Definition 3.1, which proves the existence of the upper and lower solutions of the system (3.1).
For μ>0, define
Bμ(R,R2)={(ϕ,ψ)∈C(R,R2):supt∈R|(ϕ,ψ)(t)|e−μ|t|<∞} |
and
|(ϕ,ψ)|μ=supt∈R|(ϕ,ψ)(t)|e−μ|t|, |
it is easy to know that (Bμ(R,R2),| ⋅ |μ) is a Banach space.
Define Ω={(ϕ,ψ)∈C(R,R2):0≤ϕ(t)≤N1,0≤ψ(t)≤N2,t∈R}, let η1 and η2 be two constants, satisfying
η1≥d2+q2e2+2a12N1+βN2(1+ωN2),η2≥2a55N2+b2+q5e5−a2. | (3.4) |
Define the operator H=(H1,H2):Ω⟶C(R,R2) as
H1(ϕ,ψ)(t)=f2(ϕ,ψ)(t)+η1ϕ(t),H2(ϕ,ψ)(t)=f5(ϕ,ψ)(t)+η2ψ(t), |
the system (3.1) becomes the following form
{D2ϕ′′(t)−cϕ′(t)−η1ϕ(t)+H1(ϕ,ψ)(t)=0,D5ψ′′(t)−cψ′(t)−η2ψ(t)+H2(ϕ,ψ)(t)=0. | (3.5) |
Let
λ11=c−√c2+4η1D22D2<0,λ12=c+√c2+4η1D22D2>0,λ21=c−√c2+4η2D52D5<0,λ22=c+√c2+4η2D52D5>0. |
In this paper, we take the above μ to satisfy 0<μ<min{−λ11,λ12,−λ21,λ22}.
Define the operator F=(F1,F2):Ω⟶C(R,R2) as
F1(ϕ,ψ)(t)=1D2(λ12−λ11)[∫t−∞eλ11(t−s)H1(ϕ,ψ)(s)ds+∫+∞teλ12(t−s)H1(ϕ,ψ)(s)ds],F2(ϕ,ψ)(t)=1D5(λ22−λ21)[∫t−∞eλ21(t−s)H2(ϕ,ψ)(s)ds+∫+∞teλ22(t−s)H2(ϕ,ψ)(s)ds]. |
Define the set Γ={(ϕ,ψ)∈Ω:(ϕ_(t),ψ_(t))≤(ϕ(t),ψ(t))≤(¯ϕ(t),¯ψ(t))}. Obviously, Γ is not empty and is a bounded closed convex set. The operator F=(F1,F2) for ∀(ϕ,ψ)∈Γ satisfying
{D2F1(ϕ,ψ)′′(t)−cF1(ϕ,ψ)′(t)−η1F1(ϕ,ψ)(t)+H1(ϕ,ψ)(t)=0,D5F2(ϕ,ψ)′′(t)−cF2(ϕ,ψ)′(t)−η2F2(ϕ,ψ)(t)+H2(ϕ,ψ)(t)=0. |
The fixed point of F is the solution of system (3.5), which is the solution of system (3.1).
Previously, we find a pair of upper and lower solutions (¯ϕ(t),¯ψ(t)) and (ϕ_(t),ψ_(t)) of the system (3.1) satisfying properties P1), P2) and P3). We will find the traveling wave solutions of the system (3.1) in the profile set Γ.
Lemma 3.5. For sufficiently large η1 and η2 satisfying (3.4), we have
H1(ϕ1,ψ1)(t)≥H1(ϕ2,ψ1)(t),H1(ϕ1,ψ1)(t)≤H1(ϕ1,ψ2)(t),H2(ϕ1,ψ1)(t)≥H2(ϕ2,ψ1)(t),H2(ϕ1,ψ1)(t)≥H2(ϕ1,ψ2)(t), |
for t∈R with 0≤ϕ2(t)≤ϕ1(t)≤N1,0≤ψ2(t)≤ψ1(t)≤N2.
Proof. According to the definition of operator H=(H1,H2), we know that
H1(ϕ,ψ)(t)=f2(ϕ,ψ)(t)+η1ϕ(t)=ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ(t−y−cτ)dy−(d2+q2e2)ϕ(t)−a12ϕ2(t)−βϕ(t)ψ(t)1+mϕ(t)+wψ(t)+η1ϕ(t),H2(ϕ,ψ)(t)=f5(ϕ,ψ)(t)+η2ψ(t)=(a2−b2−q5e5)ψ(t)−a55ψ2(t)+β1ϕ(t)ψ(t)1+mϕ(t)+wψ(t)+η2ψ(t). |
The derivative of H2(ϕ,ψ)(t) with respect to variable ϕ is obtained
∂H2(ϕ,ψ)∂ϕ=β1ψ(1+ωψ)[1+mϕ+wψ]2>0, |
the derivative ∂H2(ϕ,ψ)∂ϕ>0, so that H2 is increasing with respect to the variable ϕ.
The derivative of H2(ϕ,ψ)(t) with respect to variable ψ is obtained
∂H2(ϕ,ψ)∂ψ=a2−b2−q5e5−2a55ψ(t)+β1ϕ(1+mϕ)[1+mϕ+wψ]2+η2, |
Since (3.4) knows η2≥2a55N2+b2+q5e5−a2>2a55ψ(t)+b2+q5e5−a2−β1ϕ(1+mϕ)[1+mϕ+wψ]2, the derivative ∂H2(ϕ,ψ)∂ψ>0, thus H2 is increasing with respect to the variable ψ.
The derivative of H1(ϕ,ψ)(t) with respect to variable ψ is obtained
∂H1(ϕ,ψ)∂ψ=−βϕ(1+mϕ)[1+mϕ+wψ]2<0, |
the derivative ∂H1(ϕ,ψ)∂ψ<0, so that H1is decreasing with respect to the variable ψ.
The derivative of H1(ϕ,ψ)(t) with respect to variable ϕ is obtained
∂H1(ϕ,ψ)∂ϕ=[ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ(t−y−cτ)dy]′ϕ−d2−q2e2−2a12ϕ(t)−βψ(1+ωψ)[1+mϕ+wψ]2+η1, |
where [ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ(t−y−cτ)dy]′ϕ>0, 0≤ϕ(t)≤N1, 0≤ψ(t)≤N2 and βψ(1+ωψ)[1+mϕ+wψ]2≤βψ(1+ωψ)≤βN2(1+ωN2). Since (3.4) knows η1≥d2+q2e2+2a12N1+βN2(1+ωN2)>d2+q2e2+2a12ϕ(t)+βψ(1+ωψ)[1+mϕ+wψ]2−[ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τϕ(t−y−cτ)dy]ϕ, the derivative ∂H1(ϕ,ψ)∂ϕ>0, thus H1 is increasing with respect to the variable ϕ.
In consequence, H1 is increasing with respect to the variable ϕ and is decreasing with respect to the variable ψ; H2 is increasing with respect to the variable ϕ and is increasing with respect to the variable ψ. The above lemma holds.
Lemma 3.6. For sufficiently large η1 and η2 satisfying (3.4), we have
F1(ϕ1,ψ1)(t)≥F1(ϕ2,ψ1)(t),F1(ϕ1,ψ1)(t)≤F1(ϕ1,ψ2)(t),F2(ϕ1,ψ1)(t)≥F2(ϕ2,ψ1)(t),F2(ϕ1,ψ1)(t)≥F2(ϕ1,ψ2)(t), |
for t∈R with 0≤ϕ2(t)≤ϕ1(t)≤N1,0≤ψ2(t)≤ψ1(t)≤N2.
Proof. According to the definition of the operator F=(F1,F2) and the lemma 3.5, we know that
F1(ϕ1,ψ1)(t)−F1(ϕ2,ψ1)(t)=1D2(λ12−λ11){∫t−∞eλ11(t−s)[H1(ϕ1,ψ1)(s)−H1(ϕ2,ψ1)(s)]ds+∫+∞teλ12(t−s)[H1(ϕ1,ψ1)(s)−H1(ϕ2,ψ1)(s)]ds}≥0, |
thus F1(ϕ1,ψ1)(t)≥F1(ϕ2,ψ1)(t). Similarly, other conclusions can be proved. The above lemma is established.
Lemma 3.7. F:Γ⟶Γ is completely continuous.
Proof. The proof process is divided into three parts.
Step1. F=(F1,F2) is continuous with respect to the norm | ⋅ |μ on Bμ(R,R2). We first prove the continuity of H.
We can notice that
∫+∞−∞G(τ,y)eμ|y+cτ|dy≤∫+∞−∞1√4πD1τe−y24D1τeμ(|y|+cτ)dy=∫+∞−∞1√4πD1τe−(|y|−2D1μτ)24D1τe(D1μ2+cμ)τdy=e(D1μ2+cμ)τ. |
If Φ=(ϕ1,ψ1), Ψ=(ϕ2,ψ2)∈Bμ(R,R2). We get
|H1(ϕ1,ψ1)(t)−H1(ϕ2,ψ2)(t)|e−μ|t|=|f2(ϕ1,ψ1)(t)−f2(ϕ2,ψ2)(t)+η1[ϕ1(t)−ϕ2(t)]|e−μ|t|≤|f2(ϕ1,ψ1)(t)−f2(ϕ2,ψ2)(t)|e−μ|t|+η1|ϕ1(t)−ϕ2(t)|e−μ|t|=|ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τ[ϕ1(t−y−cτ)−ϕ2(t−y−cτ)]dy−(d2+q2e2)[ϕ1(t)−ϕ2(t)]−a12[ϕ21(t)−ϕ22(t)]−[βϕ1(t)ψ1(t)1+mϕ1(t)+wψ1(t)−βϕ2(t)ψ2(t)1+mϕ2(t)+wψ2(t)]|e−μ|t|+η1|ϕ1(t)−ϕ2(t)|e−μ|t|≤{ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τ|ϕ1(t−y−cτ)−ϕ2(t−y−cτ)|dy+(d2+q2e2)|ϕ1(t)−ϕ2(t)|+a12|ϕ1(t)+ϕ2(t)||ϕ1(t)−ϕ2(t)|+|βϕ1(t)ψ1(t)1+mϕ1(t)+wψ1(t)−βϕ2(t)ψ2(t)1+mϕ2(t)+wψ2(t)|}e−μ|t|+η1|ϕ1(t)−ϕ2(t)|e−μ|t|≤ˆae−d1τ∫+∞−∞1√4πD1τe−y24D1τeμ|y+cτ|dy|ϕ1(t)−ϕ2(t)|μ+(d2+q2e2)|Φ−Ψ|μ+2a12N1|Φ−Ψ|μ+(βN1+mβN21+βN2+mβN22)|Φ−Ψ|μ+η1|Φ−Ψ|μ≤κ1|Φ−Ψ|μ, |
where κ1=ˆae−d1τe(D1μ2+cμ)τ+d2+q2e2+2a12N1+βN1+mβN21+βN2+mβN22+η1. Thus, H1:Bμ(R,R2)⟶Bμ(R,R2) is continuous with respect to the norm | ⋅ |μ.
Similarly, we can prove that H2:Bμ(R,R2)⟶Bμ(R,R2) is continuous with respect to the norm | ⋅ |μ.
|H2(ϕ1,ψ1)(t)−H2(ϕ2,ψ2)(t)|e−μ|t|=|f5(ϕ1,ψ1)(t)−f5(ϕ2,ψ2)(t)+η2[ϕ1(t)−ϕ2(t)]|e−μ|t|≤|f5(ϕ1,ψ1)(t)−f5(ϕ2,ψ2)(t)|e−μ|t|+η2|ϕ1(t)−ϕ2(t)|e−μ|t|=|(a2−b2−q5e5)[ϕ1(t)−ϕ2(t)]−a55[ψ21(t)−ψ22(t)]+[β1ϕ1(t)ψ1(t)1+mϕ1(t)+wψ1(t)−β1ϕ2(t)ψ2(t)1+mϕ2(t)+wψ2(t)]|e−μ|t|+η2|ϕ1(t)−ϕ2(t)|e−μ|t|≤{(a2+b2+q5e5)|ϕ1(t)−ϕ2(t)|+a55|ϕ1(t)+ϕ2(t)||ϕ1(t)−ϕ2(t)|+|β1ϕ1(t)ψ1(t)1+mϕ1(t)+wψ1(t)−β1ϕ2(t)ψ2(t)1+mϕ2(t)+wψ2(t)|}e−μ|t|+η2|ϕ1(t)−ϕ2(t)|e−μ|t|≤(a2+b2+q5e5)|Φ−Ψ|μ+2a55N2|Φ−Ψ|μ+(β1N1+mβ1N21+β1N2+mβ1N22)|Φ−Ψ|μ+η2|Φ−Ψ|μ≤κ2|Φ−Ψ|μ, |
where κ2=a2+b2+q5e5+2a55N2+β1N1+mβ1N21+β1N2+mβ1N22+η2. Thus H2:Bμ(R,R2)⟶Bμ(R,R2) is continuous with respect to the norm | ⋅ |μ.
Next we prove that F1 and F2 are continuous with respect to the norm | ⋅ |μ on Bμ(R,R2). Because t∈R, we divide it into t>0 and t≤0 for discussion.
For t>0, due to |H1(ϕ1,ψ1)(t)−H1(ϕ2,ψ2)(t)|e−μ|t|≤κ1|Φ−Ψ|μ, thus
|F1(ϕ1,ψ1)(t)−F1(ϕ2,ψ2)(t)|e−μ|t|=e−μtD2(λ12−λ11)[∫t−∞eλ11(t−s)+∫+∞teλ12(t−s)]|H1(ϕ1,ψ1)(s)−H1(ϕ2,ψ2)(s)|ds≤κ1e−μtD2(λ12−λ11)[∫0−∞eλ11(t−s)+∫t0eλ11(t−s)+∫+∞teλ12(t−s)]eμ|s|ds|Φ−Ψ|μ=κ1D2(λ12−λ11)[e(λ11−μ)t∫0−∞e(−λ11−μ)sds+e(λ11−μ)t∫t0e(−λ11+μ)sds+e(λ12−μ)t∫+∞te(−λ12+μ)sds]|Φ−Ψ|μ=κ1D2(λ12−λ11)[2μλ211−μ2e(λ11−μ)t+λ12−λ11(μ−λ11)(λ12−μ)]|Φ−Ψ|μ≤κ1D2(λ12−λ11)[2μλ211−μ2+λ12−λ11(μ−λ11)(λ12−μ)]|Φ−Ψ|μ. |
For t≤0, due to |H1(ϕ1,ψ1)(t)−H1(ϕ2,ψ2)(t)|e−μ|t|≤κ1|Φ−Ψ|μ, thus
|F1(ϕ1,ψ1)(t)−F1(ϕ2,ψ2)(t)|e−μ|t|=e−μ(−t)D2(λ12−λ11)[∫t−∞eλ11(t−s)+∫+∞teλ12(t−s)]|H1(ϕ1,ψ1)(s)−H1(ϕ2,ψ2)(s)|ds≤κ1eμtD2(λ12−λ11)[∫t−∞eλ11(t−s)+∫0teλ12(t−s)+∫+∞0eλ12(t−s)]eμ|s|ds|Φ−Ψ|μ=κ1D2(λ12−λ11)[e(λ11+μ)t∫t−∞e(−λ11−μ)sds+e(λ12+μ)t∫0te(−λ12−μ)sds+e(λ12+μ)t∫+∞0e(−λ12+μ)sds]|Φ−Ψ|μ=κ1D2(λ12−λ11)[2μλ212−μ2e(λ12+μ)t+λ11−λ12(λ11+μ)(λ12+μ)]|Φ−Ψ|μ≤κ1D2(λ12−λ11)[2μλ212−μ2−λ12−λ11(λ11+μ)(λ12+μ)]|Φ−Ψ|μ. |
Therefore, F1:Bμ(R,R2)⟶Bμ(R,R2) is continuous with respect to the norm | ⋅ |μ on Bμ(R,R2).
Similarly, F2:Bμ(R,R2)⟶Bμ(R,R2) is continuous with respect to the norm | ⋅ |μ on Bμ(R,R2).
Step2. F(Γ)⊂Γ, that is, for any (ϕ,ψ)∈Γ, we have F(ϕ,ψ)∈Γ.
Since (ϕ_(t),ψ_(t))≤(ϕ(t),ψ(t))≤(¯ϕ(t),¯ψ(t)), according to the Lemma 3.6 can get
F1(ϕ_,¯ψ)≤F1(ϕ,ψ)≤F1(¯ϕ,ψ_),F2(ϕ_,ψ_)≤F2(ϕ,ψ)≤F2(¯ϕ,¯ψ). |
Next we prove that F1(¯ϕ,ψ_)≤¯ϕ.
Without losing generality, we assume the finite point set S={si∈R,i=1,2,…,n}, where s1<s2<⋯<sn, and define s0=0, sn+1=+∞.
According to the definition of Definition 3.1, we have H1(¯ϕ,ψ_)(t)≤−D2¯ϕ′′(t)+c¯ϕ′(t)+η1¯ϕ(t) for t∈R∖S.
Due to the properties P3) of (¯ϕ(t),¯ψ(t)) and (ϕ_(t),ψ_(t)), that is, ¯ϕ′(t+)≤¯ϕ′(t−) and ϕ′_(t+)≥ϕ′_(t−) for ∀t∈R. Then,
F1(¯ϕ,ψ_)(t)=1D2(λ12−λ11)[∫t−∞eλ11(t−s)+∫+∞teλ12(t−s)]H1(¯ϕ,ψ_)ds=1D2(λ12−λ11)×n∑j=0∫sj+1sjmin{eλ11(t−s),eλ12(t−s)}H1(¯ϕ,ψ_)(t)ds≤1D2(λ12−λ11)×n∑j=0∫sj+1sjmin{eλ11(t−s),eλ12(t−s)}[−D2¯ϕ′′(t)+c¯ϕ′(t)+η1¯ϕ(t)]ds=¯ϕ(t)+1λ12−λ11×{n∑j=0∫sj+1sjmin{eλ11(t−s),eλ12(t−s)}[¯ϕ′(sj+)−¯ϕ′(sj−)]}≤¯ϕ(t). |
In fact, through the continuity of F1(¯ϕ,ψ_)(t) and ¯ϕ(t), the above inequality holds for t∈R.
Similarly, we can get F1(ϕ_,¯ψ)≥ϕ_, F2(ϕ_,ψ_)≥ψ_, F2(¯ϕ,¯ψ)≤¯ψ, then ϕ_≤F1(ϕ,ψ)≤¯ϕ, ψ_≤F2(ϕ,ψ)≤¯ψ. Therefore, F(ϕ,ψ)∈Γ for ∀(ϕ,ψ)∈Γ.
Step3. F:Γ⟶Γ is compact.
For any (ϕ,ψ)∈Γ,
F′2(ϕ,ψ)(t)=λ21eλ21tD5(λ22−λ21)∫t−∞e−λ21−sH2(ϕ,ψ)(s)ds+λ22eλ22tD5(λ22−λ21)∫+∞te−λ22sH2(ϕ,ψ)(s)ds. |
Therefore, we have
|F′2(ϕ,ψ)(t)|μ=supt∈R|λ21eλ21tD5(λ22−λ21)∫t−∞e−λ21sH2(ϕ,ψ)(s)ds+λ22eλ22tD5(λ22−λ21)∫+∞te−λ22sH2(ϕ,ψ)(s)ds|e−μ|t|≤|λ21|D5(λ22−λ21)supt∈R{eλ21t−μ|t|∫t−∞e−λ21seμ|s|e−μ|s|H2(ϕ,ψ)(s)ds}+λ22D5(λ22−λ21)supt∈R{eλ22t−μ|t|∫+∞te−λ22seμ|s|e−μ|s|H2(ϕ,ψ)(s)ds}≤|λ21|D5(λ22−λ21)|H2(ϕ,ψ)|μsupt∈R{eλ21t−μ|t|∫t−∞e−λ21seμ|s|ds}+λ22D5(λ22−λ21)|H2(ϕ,ψ)|μsupt∈R{eλ22t−μ|t|∫+∞te−λ22seμ|s|ds}. |
If t > 0 , then
\begin{align*} \left|F_{2}^{\prime}\left( \phi, \psi\right)\left( t\right)\right|_{\mu} \leq&\dfrac{\left| \lambda_{21}\right| }{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{21}-\mu\right)t }\int_{-\infty}^{t}e^{-\lambda_{21}s}e^{\mu\left| s\right| }ds\right\rbrace \\ &+\dfrac{\lambda_{22}}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{22}-\mu\right)t }\int_{t}^{+\infty}e^{-\lambda_{22}s}e^{\mu\left| s\right| }ds\right\rbrace\\ = &\dfrac{\left| \lambda_{21}\right| }{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{21}-\mu\right)t}\left[ \int_{-\infty}^{0}e^{\left( -\lambda_{21}-\mu\right) s }ds+\int_{0}^{t}e^{\left(\mu-\lambda_{21}\right) s }ds\right] \right\rbrace \\ &+\dfrac{\lambda_{22}}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{22}-\mu\right)t}\int_{t}^{+\infty}e^{\left( \mu-\lambda_{22}\right)s}ds\right\rbrace\\ = &\dfrac{\left| \lambda_{21}\right| }{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace \dfrac{e^{\left( \lambda_{21}-\mu\right)t }}{-\lambda_{21}-\mu}+\dfrac{1-e^{\left( \lambda_{21}-\mu\right)t }}{\mu-\lambda_{21}}\right\rbrace \\ &+\dfrac{\lambda_{22}}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace \dfrac{1}{\lambda_{22}-\mu}\right\rbrace\\ \leq&\dfrac{1}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left[\dfrac{\lambda_{21}}{\lambda_{21}+\mu}+\dfrac{\lambda_{22}}{\lambda_{22}-\mu}\right]\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}. \end{align*} |
If t < 0 , then
\begin{align*} \left|F_{2}^{\prime}\left( \phi, \psi\right)\left( t\right)\right|_{\mu} \leq&\dfrac{\left| \lambda_{21}\right| }{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{21}+\mu\right)t }\int_{-\infty}^{t}e^{-\lambda_{21}s}e^{\mu\left| s\right| }ds\right\rbrace \\ &+\dfrac{\lambda_{22}}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{22}+\mu\right)t }\int_{t}^{+\infty}e^{-\lambda_{22}s}e^{\mu\left| s\right| }ds\right\rbrace\\ = &\dfrac{\left| \lambda_{21}\right| }{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{21}+\mu\right)t} \int_{-\infty}^{t}e^{\left(-\lambda_{21}-\mu\right)s}ds \right\rbrace\\ &+\dfrac{\lambda_{22}}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace e^{\left( \lambda_{22}+\mu\right)t}\left[ \int_{t}^{0}e^{\left(-\lambda_{22}-\mu\right)s}ds+\int_{0}^{+\infty}e^{\left(\mu-\lambda_{22}\right)s}ds\right] \right\rbrace\\ = &\dfrac{\left|\lambda_{21}\right| }{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace-\dfrac{1}{\lambda_{21}+\mu}\right\rbrace \\ &+\dfrac{\lambda_{22}}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}\sup\limits_{t\in \mathbb{R} }\left\lbrace\dfrac{1}{\lambda_{22}+\mu}+\dfrac{2\mu}{\lambda_{22}^{2}-\mu^{2}}e^{\left(\lambda_{22}+\mu\right)t}\right\rbrace\\ \leq&\dfrac{1}{D_{5}\left(\lambda_{22}-\lambda_{21}\right)}\left[\dfrac{\lambda_{21}}{\lambda_{21}+\mu}+\dfrac{\lambda_{22}}{\lambda_{22}-\mu}\right]\left|H_{2}\left( \phi, \psi\right)\right|_{\mu}. \end{align*} |
Therefore, F_{2}:B_{\mu}\left(\mathbb{R}, \mathbb{R}^{2} \right)\longrightarrow B_{\mu}\left(\mathbb{R}, \mathbb{R}^{2} \right) is continuous with respect to the norm \left|\ \cdot\ \right|_{\mu} , and the set \Gamma is uniformly bounded.
Thus there exists the constant M_{2} such that \left| F_{2}^{\prime}\left(\phi, \psi\right)\left(t\right)\right|_{\mu} \leq M_{2} ; Similarly, there exists constant M_{1} such that \left| F_{1}^{\prime}\left(\phi, \psi\right)\left(t\right)\right|_{\mu}\leq M_{1} . Therefore, \mathit{\boldsymbol{F}} is equicontinuous on \Gamma and \mathit{\boldsymbol{F}}\left(\Gamma\right) is uniformly bounded.
Next we prove that \mathit{\boldsymbol{F}}:\Gamma\longrightarrow\Gamma is compact. Define \mathit{\boldsymbol{F}}^{n}\left(\phi, \psi\right) as follows
\begin{align*} \mathit{\boldsymbol{F}}^{n}\left( \phi, \psi\right) = \begin{cases} &\mathit{\boldsymbol{F}}\left( \phi, \psi\right)\left( t\right), \quad\quad t\in\left[ -n, n\right], \\ &\mathit{\boldsymbol{F}}\left( \phi, \psi\right)\left( n\right), \quad\quad t\in\left( n, +\infty\right), \\ &\mathit{\boldsymbol{F}}\left( \phi, \psi\right)\left(-n\right), \quad\quad t\in\left( -\infty, -n\right). \end{cases} \end{align*} |
For any n\geq1 , \mathit{\boldsymbol{F}}^{n}\left(\Gamma\right) is uniformly bounded equicontinuous.
Now, in the interval \left[ -n, n\right] , it follows from Ascoli-Arzela Theorem that \mathit{\boldsymbol{F}}^{n} is compact.
In addition, in B_{\mu}\left(\mathbb{R}, \mathbb{R}^{2} \right) we have \mathit{\boldsymbol{F}}^{n}\longrightarrow\mathit{\boldsymbol{F}} , as n\longrightarrow +\infty . For any \left(\phi, \psi\right)\in\Gamma ,
\begin{align*} \sup\limits_{t\in \mathbb{R} }\left|\mathit{\boldsymbol{F}}^{n}\left( \phi, \psi\right)\left( t\right)-\mathit{\boldsymbol{F}}\left( \phi, \psi\right)\left( t\right)\right|e^{-\mu\left|t \right|} = \sup\limits_{t\in \left( -\infty, -n\right) \bigcup\left( n, +\infty\right)}\left|\mathit{\boldsymbol{F}}^{n}\left( \phi, \psi\right)\left( t\right)-\mathit{\boldsymbol{F}}\left( \phi, \psi\right)\left( t\right)\right|e^{-\mu\left|t \right|} \leq2\left(N_{1}+N_{2} \right)e^{-\mu n}&,\\ n\longrightarrow +\infty&. \end{align*} |
In consequence, \mathit{\boldsymbol{F}} is compact.
Theorem 3.1. Assume that the unique positive equilibrium E_{3}\left(u^{+}, v^{+}\right) exists and satisfies
\begin{align*} \vartheta_{1} > \dfrac{\left(4+2\sqrt{2} \right)\beta v^{+} }{1+mu^{+}+wv^{+}},\quad \vartheta_{2} > \dfrac{\left( 2\sqrt{2}-1\right) \beta_{1} u^{+} }{1+mu^{+}+wv^{+}}, \end{align*} |
then for every c > c^{*} , There is always a traveling wave solution \left(\phi^{*}\left(t\right), \psi^{*}\left(t\right) \right) connecting the equilibrium points \left(0, 0\right) and \left(u^{+}, v^{+}\right) with the wave velocity c in the system (2.1). Moreover
\begin{align*} \lim\limits_{t\to-\infty}\phi^{*}\left(t\right)e^{-\lambda_{1}t} = \lim\limits_{t\to+\infty}\psi^{*}\left(t\right)e^{-\lambda_{3}t} = 1. \end{align*} |
Proof. According to the Lemma 3.5, Lemma 3.6 and Schauder fixed point theorem, it can be concluded that the operator \mathit{\boldsymbol{F}} has a fixed point \left(\phi^{*}\left(t\right), \psi^{*}\left(t\right) \right) in \Gamma , so \left(\phi^{*}\left(t\right), \psi^{*}\left(t\right) \right) is the solution of the system (3.1).
In order to prove that the solution is a traveling wave solution, only the asymptotic conditions need to be verified. According to the property P2 ) of \left(\overline{\phi}\left(t\right), \overline{\psi}\left(t\right) \right) and \left(\underline{\phi}\left(t\right), \underline{\psi}\left(t\right) \right) , and \left(\underline{\phi}\left(t\right), \underline{\psi}\left(t\right) \right)\leq\left(\phi^{*}\left(t\right), \psi^{*}\left(t\right) \right)\leq \left(\overline{\phi}\left(t\right), \overline{\psi}\left(t\right) \right) , we have
\begin{align*} &\lim\limits_{t\to-\infty}\left(\phi^{*}\left(t\right) , \psi^{*}\left(t\right) \right) = \left( 0, 0\right), \\ &\lim\limits_{t\to+\infty}\left(\phi^{*}\left(t\right) , \psi^{*}\left(t\right) \right) = \left( u^{+}, v^{+}\right). \end{align*} |
Because of \underline{\phi}\leq\phi^{*}\leq\overline{\phi} and \underline{\psi}\leq\psi^{*}\leq\overline{\psi} , then
\begin{align*} &e^{\lambda_{1}t}-qe^{\eta\lambda_{1}t}\leq\phi^{*}\left(t\right)\leq e^{\lambda_{1}t}, \quad\quad t < \min\left\lbrace t_{1}, t_{3} \right\rbrace, \\ &e^{\lambda_{3}t}-qe^{\eta\lambda_{3}t}\leq\psi^{*}\left(t\right)\leq e^{\lambda_{3}t}+qe^{\eta\lambda_{3}t}, \quad\quad t < \min\left\lbrace t_{2}, t_{4} \right\rbrace. \end{align*} |
Consequently,
\begin{align*} &1-qe^{\left( \eta-1\right) \lambda_{1}t}\leq\phi^{*}e^{-\lambda_{1}t}\left(t\right)\leq1, \quad\quad t < \min\left\lbrace t_{1}, t_{3} \right\rbrace, \\ &1-qe^{\left( \eta-1\right) \lambda_{3}t}\leq\psi^{*}\left(t\right)e^{-\lambda_{3}t}\leq 1+qe^{\left( \eta-1\right)\lambda_{3}t}, \quad\quad t < \min\left\lbrace t_{2}, t_{4} \right\rbrace. \end{align*} |
The above conclusion is proved.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that there is no conflicts of interest.
[1] | J. Wang, Y. Su, Artificial intelligence and accounting model reform, Commun. Finance Account., 22 (2017), 41-43. Available from: https://d.wanfangdata.com.cn/periodical/cktx201722011. |
[2] | C. Zhang, Analysis of intelligent improvement of accounting information processing, Commun. Finance Account., 34 (2017), 102-105. Available from: https://d.wanfangdata.com.cn/periodical/cktx201734030. |
[3] | C. Alippi, F. Pessina, M. Roveri, An adaptive system for automatic invoice-documents classification, in IEEE International Conference on Image Processing 2005, 2 (2005), Ⅱ-526. https://doi.org/10.1109/ICIP.2005.1530108 |
[4] |
Y. Zhang, C. Zhang, S. Yu, J. Yang, Classification of bill image based on frame line detection, J. Nanjing Univ. Sci. Technol. (Nat. Sci.), 31 (2007), 409-413. https://doi.org/10.14177/j.cnki.32-1397n.2007.04.022 doi: 10.14177/j.cnki.32-1397n.2007.04.022
![]() |
[5] | F. Y. Bu, Q. G. Hu, Y. Wang, A valid frame line removal algorithm for financial document, Comput. Knowl. Technol., 12 (2016), 148-150. Available from: https://d.wanfangdata.com.cn/periodical/dnzsyjs-itrzyksb201623062. |
[6] | H. Jin, T. Xia, B. Wang, Research on adaptive character segmentation and extraction algorithm, J. Xi'an Univ. Technol., 32 (2016), 399-402+415. Available from: https://xuebao.xaut.edu.cn/__local/2/53/FA/00833B6F761060DF2461CB46334_A0C213DD_120738.pdf?e=.pdf. |
[7] | W. Sun, A study on XBRL based value chain accounting information processing, in 2017 6th International Conference on Industrial Technology and Management (ICITM), (2017), 171-175. https://doi.org/10.1109/ICITM.2017.7917916 |
[8] |
W. Cui, L. Ren, Y. Liu, Invoice number recognition algorithm based on numerical structure characteristics, J. Data Acquis. Process., 32 (2017), 119-125. https://doi.org/10.16337/j.1004-9037.2017.01.014 doi: 10.16337/j.1004-9037.2017.01.014
![]() |
[9] |
H. Ouyang, D. Fan, D. Li, Invoice seal recognition for multi-feature fusion decision making, Comput. Eng. Des., 39 (2018), 2842-2847. https://doi.org/10.16208/j.issn1000-7024.2018.09.026 doi: 10.16208/j.issn1000-7024.2018.09.026
![]() |
[10] | F. Jiang, H. Chen, L. J. Zhang, FCN-biLSTM based VAT invoice recognition and processing, in Edge Computing - EDGE 2018, (2018), 135-143. https://doi.org/10.1007/978-3-319-94340-4_11 |
[11] |
J. Shen, L. Han, Design process optimization and profit calculation module development simulation analysis of financial accounting information system based on particle swarm optimization (PSO), Inf. Syst. e-Bus. Manage., 18 (2020), 809-822. https://doi.org/10.1007/s10257-018-00398-0 doi: 10.1007/s10257-018-00398-0
![]() |
[12] |
Y. Xu, C. Lv, S. Li, P. Xin, S. Ma, H. Zou, et al., Review of development of visual neural computing, Comput. Eng. Appl., 53 (2017), 30-34. https://doi.org/10.3778/j.issn.1002-8331.1709-0474 doi: 10.3778/j.issn.1002-8331.1709-0474
![]() |
[13] |
Q. Wang, P. Lu, Research on application of artificial intelligence in computer network technology, Int. J. Pattern Recognit. Artif. Intell., 33 (2019), 1959015. https://doi.org/10.1142/S0218001419590158 doi: 10.1142/S0218001419590158
![]() |
[14] |
X. Liu, Y. Li, Q. Wang, Multi-view hierarchical bidirectional recurrent neural network for depth video sequence based action recognition, Int. J. Pattern Recognit. Artif. Intell., 32 (2018), 1850033. https://doi.org/10.1142/S0218001418500337 doi: 10.1142/S0218001418500337
![]() |
[15] |
Y. Hou, Q. Wang, Research and improvement of content-based image retrieval framework, Int. J. Pattern Recognit. Artif. Intell., 32 (2018), 1850043. https://doi.org/10.1142/S021800141850043X doi: 10.1142/S021800141850043X
![]() |
[16] |
Q. Peng, G. Ji, L. Xie, S. Zhang, Application of convolutional neural network in vehicle recognition, J. Front. Comput. Sci. Technol., 12 (2018), 282-291. https://doi.org/10.3778/j.issn.1673-9418.1704055 doi: 10.3778/j.issn.1673-9418.1704055
![]() |
[17] | X. Zhao, Z. Sun, M. Xia, Vehicle image recognition method based on local learning, J. Zhejiang Univ. Technol., 45 (2017), 439-444. http://xb.qks.zjut.edu.cn/CN/Y2017/V45/I4/439 |
[18] |
L. Shi, S. Qiang, License plate character recognition based on combined support vector machine. Comput. Eng. Des., 38 (2017), 1619-1623. https://doi.org/10.16208/j.issn1000-7024.2017.06.040 doi: 10.16208/j.issn1000-7024.2017.06.040
![]() |
[19] |
Q. Gao, Y. Liang, Q. Pan, Y. Chen, H. Zhang, The problem existed in face recognition using SVD and its solution, J. Image Graphics, 11 (2006), 1784-1791. https://doi.org/10.11834/jig.2006012312 doi: 10.11834/jig.2006012312
![]() |
[20] |
M. Adil, M. K. Khan, M. Jamjoom, A. Farouk, MHADBOR: AI-enabled administrative distance based opportunistic load balancing scheme for an agriculture internet of things network, IEEE Micro, 42 (2022), 41-50. https://doi.org/10.1109/MM.2021.3112264 doi: 10.1109/MM.2021.3112264
![]() |
[21] |
K. C. Rim, P. K. Kim, H. Ko, K. Bae, T. G. Kwon, Restoration of dimensions for ancient drawing recognition, Electronics, 10 (2021), 2269. https://doi.org/10.3390/electronics10182269 doi: 10.3390/electronics10182269
![]() |
[22] | A. Xing, X. Tao, R. Peng, Thinking about the accounting industry in the era of artificial intelligence, Account. Learn., 160 (2017), 112+114. Available from: http://www.ckxx.cbpt.cnki.net/WKG/WebPublication/paperDigest.aspx?paperID=9d9ee325-d998-420c-9e18-d24984315f65. |
[23] | T. Shi, The impact of the rise of artificial intelligence on the future accounting industry, Mod. Bus., 28 (2017), 122-123. https://doi.org/10.14097/j.cnki.5392/2017.28.053 |
[24] |
M. Ren, Research on the functional transformation of accounting personnel under artificial intelligence, Mod. Bus. Ind., 38 (2017), 68-69. https://doi.org/10.19311/j.cnki.1672-3198.2017.23.030 doi: 10.19311/j.cnki.1672-3198.2017.23.030
![]() |
[25] | R. Sarkar, S. Halder, S. Malakar, N. Das, S. Basu, M. Nasipuri, Text line extraction from handwritten document pages based on line contour estimation, in 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), (2012), 1-8. https://doi.org/10.1109/ICCCNT.2012.6395873 |
[26] | W. Wang, An image skew correction method by using directional white run-length, Sci. Technol. Eng., 12 (2012), 5642-5644. Available from: http://www.stae.com.cn/jsygc/article/abstract/121573?st=article_issue. |
[27] |
J. S. Goldstein, I. S. Reed, L. L. Scharf, A multistage representation of the wiener filter based on orthogonal projections, IEEE Trans. Inf. Theory, 44 (1998), 2943-2959. https://doi.org/10.1109/18.737524 doi: 10.1109/18.737524
![]() |
[28] |
Y. Yu, J. Li, Denoising research based on wiener filter, J. Luoyang Norm. Univ., 36 (2017), 29-32. https://doi.org/10.16594/j.cnki.41-1302/g4.2017.02.008 doi: 10.16594/j.cnki.41-1302/g4.2017.02.008
![]() |
[29] |
S. Palanisamy, B. Thangaraju, O. I. Khalaf, Y. Alotaibi, S. Alghamdi, Design and synthesis of multi-mode bandpass filter for wireless applications, Electronics, 10 (2021), 2853. https://doi.org/10.3390/electronics10222853 doi: 10.3390/electronics10222853
![]() |
[30] |
H. Song, M. Brandt-Pearce, A 2-D discrete-time model of physical impairments in wavelength-division multiplexing systems, J. Lightwave Technol., 30 (2012), 713-726. https://doi.org/10.1109/JLT.2011.2180360 doi: 10.1109/JLT.2011.2180360
![]() |
[31] | L. Wang, Y. Chen, L. Liu, Research on text image layout segmentation algorithm based on projection contour analysis, Digital Technol. Appl., 3 (2017), 164-165. Available from: http://www.cqvip.com/QK/95792B/20173/671781608.html. |
[32] |
J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, 61 (2015), 85-117. https://doi.org/10.1016/j.neunet.2014.09.003 doi: 10.1016/j.neunet.2014.09.003
![]() |
[33] | Y. Feng, S. Zeng, Y. Yang, Y. Zhou, B. Pan, Study on the optimization of CNN based on image identification, in 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), (2018), 123-126. https://doi.org/10.1109/DCABES.2018.00041 |
[34] |
A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84-90. https://doi.org/10.1145/3065386 doi: 10.1145/3065386
![]() |