
Research on the degenerate versions of special polynomials provides a new area, introducing the λ-analogue of special polynomials and numbers, such as λ-Sheffer polynomials. In this paper, we propose a new variant of type 2 Bernoulli polynomials and numbers by modifying a generating function. Then we derive explicit expressions and their representations that provide connections among existing λ-Sheffer polynomials. Also, we provide the explicit representations of the proposed polynomials in terms of the degenerate Lah-Bell polynomials and the higher-order degenerate derangement polynomials to confirm the presented identities.
Citation: Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim. Representations of modified type 2 degenerate poly-Bernoulli polynomials[J]. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
[1] | Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541 |
[2] | Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731 |
[3] | Hye Kyung Kim, Dmitry V. Dolgy . Degenerate Catalan-Daehee numbers and polynomials of order $ r $ arising from degenerate umbral calculus. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213 |
[4] | Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221 |
[5] | Sang Jo Yun, Jin-Woo Park . On a generation of degenerate Daehee polynomials. AIMS Mathematics, 2025, 10(5): 12286-12298. doi: 10.3934/math.2025556 |
[6] | Taekyun Kim, Hye Kyung Kim, Dae San Kim . Some identities on degenerate hyperbolic functions arising from $ p $-adic integrals on $ \mathbb{Z}_p $. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298 |
[7] | Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476 |
[8] | Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang . A note on degenerate derangement polynomials and numbers. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380 |
[9] | Jung Yoog Kang, Cheon Seoung Ryoo . The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436 |
[10] | Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim . Probabilistic type 2 Bernoulli and Euler polynomials. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696 |
Research on the degenerate versions of special polynomials provides a new area, introducing the λ-analogue of special polynomials and numbers, such as λ-Sheffer polynomials. In this paper, we propose a new variant of type 2 Bernoulli polynomials and numbers by modifying a generating function. Then we derive explicit expressions and their representations that provide connections among existing λ-Sheffer polynomials. Also, we provide the explicit representations of the proposed polynomials in terms of the degenerate Lah-Bell polynomials and the higher-order degenerate derangement polynomials to confirm the presented identities.
The degenerate Stirling, Bernoulli and Euler polynomials and numbers were first introduced by Carlitz [5,6] with intriguing results of arithmetic and combinatorial identities. In recent years, much attention has been paid both to providing degenerate versions of special polynomials and numbers, and finding their relations and connections to known degenerate polynomials, as well as transcendental functions such as degenerate gamma functions and degenerate Laplace transforms [18]. In general, degenerate versions of special functions are provided by modifying generating functions in terms of the degenerate exponential functions and the degenerate logarithm function, (see [1,7,11,12,14,16,20,21,25] and the references therein). To investigate their arithmetic and combinatorial properties and relations, the research is usually performed by combinatorial methods, umbral calculus techniques, p-adic analysis, and differential equations. In particular, the relation between two λ-Sheffer sequences can be expressed by the representation formula (3.6) that is recently established [17] replacing linear functionals and differential operators by λ-functionals and λ-differential operators, respectively, in Rota's theory [26] of Sheffer sequences.
The aim of the paper is to introduce a new degenerate version of the type 2 poly-Bernoulli polynomials [21] called modified type 2 degenerate poly-Bernoulli polynomials (2.1) by modifying the generating function and present their properties as well as relations to other degenerate versions of polynomials. Also, we provide the computational examples to obtain explicit representations of the proposed polynomials for various k and λ based on two well known special polynomials: the degenerate Lah-Bell polynomials, and the higher-order degenerate derangement polynomials.
The rest of the paper is organized as follows: Section 2 introduces a new class of degenerate type 2 poly-Bernoulli polynomials and related numbers. Then, we present their properties and expressions in terms of the degenerate Stirling numbers of the second kind and the degenerate type 2 Bernoulli polynomials. Section 3 reviews the λ-linear functionals, related λ-differential operators, and λ-Sheffer polynomials, and presents the connection between the proposed polynomials and the known degenerate polynomials, such as the type 2 degenerate Bernoulli polynomials, the degenerate Hermite polynomials, the degenerate derangement polynomials, the higher-order degenerate Euler polynomials, and the degenerate Lah-Bell polynomials. Section 4 presents several specific examples to confirm the computed results between the proposed polynomials and the existing degenerate type polynomials, the degenerate Lah-Bell polynomials and the degenerate derangement polynomials. Section 5 concludes the paper. Before closing this section, we recall several definitions to introduce our new type of poly-Bernoulli polynomials.
Throughout this paper, we denote N the set of all natural numbers and Z be the set of all integers. The Bernoulli polynomials Bn(x) and the Bernoulli numbers Bn for N∪{0} are respectively given by the generating functions (see [2,16,21] for details):
tet−1etx=∞∑n=0Bn(x)tnn!andtet−1=∞∑n=0Bntnn!,(|t|≪1). | (1.1) |
The degenerate Bernoulli polynomials Bn,λ(x) and the degenerate Bernoulli numbers Bn,λ are respectively defined by (see [5,6] for detail)
teλ(t)−1exλ(t)=∞∑n=0Bn,λ(x)tnn!andteλ(t)−1=∞∑n=0Bn,λtnn!. | (1.2) |
Here, the degenerate exponential functions exλ(t) for λ∈R∖{0} are given by
exλ(t)=(1+λt)xλ=∞∑n=0(x)n,λtnn!,eλ(t)=e1λ(t)=∞∑n=0(1)n,λtnn!, | (1.3) |
where (x)n,λ is the λ-falling factorial sequence defined by (see [21])
(x)n,λ=x(x−λ)(x−2λ)⋯(x−(n−1)λ)forn≥1and(x)0,λ=1. | (1.4) |
The degenerate Bernoulli polynomials B(r)n,λ(x) of order r≥1 are defined by (see [16])
(teλ(t)−1)rexλ(t)=∞∑n=0B(r)n,λ(x)tnn!and(teλ(t)−1)r=∞∑n=0B(r)n,λtnn!. | (1.5) |
The degenerate type 2-Bernoulli polynomials βn,λ(x) in [16] are considered as
teλ(t)−e−1λ(t)exλ(t)=∞∑n=0βn,λ(x)tnn!,(|t|≪1), | (1.6) |
and the related extension, the type 2 degenerate Bernoulli polynomials β(r)n,λ(x) of order r is introduced (see [19])
(teλ(t)−e−1λ(t))rexλ(t)=∞∑n=0β(r)n,λ(x)tnn!,(|t|≪1). | (1.7) |
The type 2 degenerate Euler polynomials En,λ(x) are introduced in [12] based on the following generating function:
2eλ(t)+e−1λ(t)exλ(t)=∞∑n=0En,λ(x)tnn!,(|t|≪1). | (1.8) |
Next, we briefly recall some basic functions used throughout the paper. The polylogarithm functions Lik(t) for k∈Z are defined by (see [13,19])
Lik(t)=∞∑n=1tnnk(|t|<1). |
Note that Lik(t) for k=1 satisfy
Li1(t)=∞∑n=1tnn=−log(1−t). |
The degenerate polylogarithm functions Lik,λ(t) for k∈Z are given by (see [20])
Lik,λ(t)=∞∑n=1(−λ)n−1(1)n,1/λ(n−1)!nktn(|t|<1). | (1.9) |
The degenerate Stirling numbers S2,λ(n,m) of the second kind are defined by (see [23,24])
1m!(eλ(t)−1)mexλ(t)=∞∑n=mS2,λ(n,m)tnn!,(n≥0). | (1.10) |
Note that (see [23])
(t)n,λ=n∑m=0S2,λ(n,m)(t)m,(n≥0), |
where (t)n is the falling factorial sequence defined by (see [16])
(t)n=t(t−1)(t−2)⋯(t−(n−1))forn≥1and(t)0=1. |
In this section, we introduce a new type of degenerate poly-Bernoulli polynomials and numbers and discuss their properties and representations in relation to the degenerate type 2-Bernoulli polynomials.
Definition 2.1. The modified type 2 degenerate poly-Bernoulli polynomials B(k)n,λ(x) for k∈Z are defined by the generating function
Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)exλ(t)=∞∑n=0B(k)n,λ(x)tnn!. |
In the case of x=0, we call B(k)n,λ:=B(k)n,λ(0) the modified type 2 degenerate poly-Bernoulli numbers.
Remark 2.2. By noting that Li1,λ(1−eλ(−t))=t for k=1, B(1)n,λ(x) yield the degenerate type 2-Bernoulli polynomials βn,λ(x) listed in (1.6), we can show that limλ→0B(1)n,λ(x)=βn(x) for k=1, where βn(x) are type 2-Bernoulli polynomials [13] that satisfy
limλ→0teλ(t)−eλ(−t)exλ(t)=tet−e−text=∞∑n=0βn(x)tnn!. |
We next state the expression for B(k)n,λ(x) as the sum of the products of the modified type 2 degenerate poly-Bernoulli numbers and λ-falling factorial sequence.
Theorem 2.3. Let k be any integer. Then the following identity holds true for all n≥0,
B(k)n,λ(x)=n∑m=0(nm)(B(k)m,λ)(x)n−m,λ, | (2.1) |
where (x)n,λ is the λ-falling factorial sequence in (1.4).
Proof. From Definition 2.1, we can consider the generating series of the polynomials B(k)n,λ as the indicated product:
∞∑n=0B(k)n,λ(x)tnn!=Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)exλ(t)=(∞∑n=0B(k)n,λ(0)tnn!)(∞∑m=0(x)m,λtmm!)=n∑m=0(nm)(B(k)m,λ)(x)n−m,λtnn!. |
By the comparison of coefficients, we have the desired identity.
Remark 2.4. Since ddteλ(−t)=−11−λteλ(−t) and 1−λt=eλλ(−t), we have
ddtLik,λ(1−eλ(−t))=∞∑n=1(−λ)n−1(1)n,1/λ(n−1)!nkddt(1−eλ(−t))n=eλ(−t)(1−λt)(1−eλ(−t))Lik−1,λ(1−eλ(−t))=e1−λλ(−t)1−eλ(−t)Lik−1,λ(1−eλ(−t)) |
for k≥2. By the multiple integrals of Li1,λ(1−eλ(−t)), the function Lik,λ(1−eλ(−t)) is computed, and B(k)n,λ(x) can be expressed as
∞∑n=0B(k)n,λ(x)tnn!=exλ(t)eλ(t)−e−1λ(t)∫t0e1−λλ(−t1)1−eλ(−t1)∫t10e1−λλ(−t2)1−eλ(−t2)⋯∫tk−20e1−λλ(−tk−1)1−eλ(−tk−1)tk−1dtk−1⋯dt2dt1, |
in which k−1 times of integrals are performed by the product with e1−λλ(−tk−1)1−eλ(−tk−1) each time. For example, when k=2, we have
∞∑n=0B(2)n,λ(x)tnn!=exλ(t)eλ(t)−e−1λ(t)∫t0e1−λλ(−t1)1−eλ(−t1)t1dt1=exλ(t)eλ(t)−e−1λ(t)∫t0∞∑n=0βn,λ(1−λ)(−1)ntn1n!dt1=texλ(t)eλ(t)−e−1λ(t)∞∑m=0βm,λ(1−λ)m+1(−1)mtmm!=(∞∑n=0βn,λ(x)tnn!)(∞∑m=0βm,λ(1−λ)(−1)mm+1tmm!)=∞∑n=0(n∑m=0(nm)βn−m,λ(x)βm,λ(1−λ)(−1)mm+1)tnn!. | (2.2) |
Thus, by comparing coefficients in both sides of (2.2), we have that the identity holds
B(2)n,λ(x)=n∑m=0(nm)βn−m,λ(x)βm,λ(1−λ)(−1)mm+1. |
Next, we can express the modified type 2 degenerate poly-Bernoulli polynomials in terms of the degenerate Stirling numbers of the second kind and the degenerate type 2-Bernoulli polynomials (1.6).
Theorem 2.5. For n≥0 and λ∈R∖{0}, the following identity holds:
B(k)n,λ(x)=n∑m=0(nm)βn−m,λ(x)m+1∑ℓ=1λℓ−1(1)ℓ,1/λ(−1)m(m+1)ℓk−1S2,λ(m+1,ℓ), |
where S2,λ(n,m) are the degenerate Stirling numbers of the second kind defined in (1.10).
Proof. We first note that the degenerate polylogarithm function (1.9) for 0<λ<1 satisfies
Lik,λ(1−eλ(−t))t=1t∞∑m=1(−λ)m−1(1)m,1/λ(m−1)!mk(1−eλ(−t))m=1t∞∑m=1(−λ)m−1(1)m,1/λmk−11m!(1−eλ(−t))m=∞∑m=1(−λ)m−1(1)m,1/λmk−1∞∑n=mS2,λ(n,m)(−1)n+mtn−1n!=∞∑n=0(n+1∑m=1λm−1(1)m,1/λ(−1)n(n+1)mk−1S2,λ(n+1,m))tnn!. | (2.3) |
From (2.3) and Definition 2.1, we can see that
∞∑n=0B(k)n,λ(x)tnn!=exλ(t)eλ(t)−e−1λ(t)Lik,λ(1−eλ(−t))=(∞∑n=0βn,λ(x)tnn!)(∞∑n=0(n+1∑m=1λm−1(1)m,1/λ(−1)n(n+1)mk−1S2,λ(n+1,m))tnn!)=∞∑n=0(n∑m=0(nm)βn−m,λ(x)m+1∑ℓ=1λℓ−1(1)ℓ,1/λ(−1)m(m+1)ℓk−1S2,λ(m+1,ℓ))tnn!. | (2.4) |
Comparison of the coefficients on both sides concludes the desired result for λ≠0.
Using Theorem 2.3 and Eq (2.3), we have the following result.
Theorem 2.6. For n≥0 and k∈Z, the following relationholds:
B(k)n,λ(1)−B(k)n,λ(−1)=n∑m=1λm−1(1)m,1/λ(−1)n−1m−k+1S2,λ(n,m). | (2.5) |
Proof. First, notice that, from (2.3), we have
Lik,λ(1−eλ(−t))=∞∑n=1(n∑m=1λm−1(1)m,1/λ(−1)n−1mk−1S2,λ(n,m))tnn!. | (2.6) |
On the other hand, by the virtue of the result of Theorem 2.3, it follows that
Lik,λ(1−eλ(−t))=(eλ(t)−e−1λ(t))∞∑n=0B(k)n,λtnn!=∞∑m=0((1)m,λ−(−1)m,λ)tmm!∞∑n=0B(k)n,λtnn!=∞∑n=0(n∑m=0(nm)(B(k)m,λ(1)n−m,λ−B(k)m,λ(−1)n−m,λ))tnn!=∞∑n=1(B(k)n,λ(1)−B(k)n,λ(−1))tnn!, | (2.7) |
which shows the desired result by comparison of the coefficients of (2.6) and (2.7).
In this section, we recall a family of λ-linear functionals on the space of polynomials, λ-differential operators related to the family of λ-linear functionals, and λ-Sheffer sequences. The details on these concepts and definitions can be found in [2,3,4,8,10,17] and the references therein.
Let F be the algebra of exponential formal power series in t over the field C of complex numbers
F={f(t)=∞∑n=0antnn!|an∈C}, |
and let P be the algebra of polynomials in x over C, i.e.,
P=C[x]={∞∑k=0akxk|ak∈Cwithak=0forallbutfinitenumberofi}. |
Recall that ((x)n,λ)n∈N form a basis for the C-vector space P. Then, the λ-linear functional ⟨f(t)|⋅⟩λ on P for f(t)=∑∞n=0antnn!∈F is defined by
⟨f(t)|(x)n,λ⟩λ=an, | (3.1) |
and satisfies
⟨tk|(x)n,λ⟩λ=n!δn,k, | (3.2) |
where δn,k is the Kronecker delta.
The order o(f(t)) of the formal power series for a nontrivial f(t) is the smallest integer k for which ak does not vanish. In particular, f(t) is called a delta series if o(f(t))=1, while f(t) is called an invertible series if o(f(t))=0, (see [17] for details).
In [17], the λ- differential operator (tk)λ of order k on P is defined by
(tk)λ(x)n,λ={(n)k(x)n−k,λif0≤k≤n,0,ifk>n, | (3.3) |
where (n)k=n(n−1)(n−2)⋯(n−k+1) for n≥1 and (n)0=1. In general, for f(t)=∑∞k=0aktkk!∈F, the λ-differential operator (f(t))λ is defined by
(f(t))λ(x)n,λ=n∑k=0(nk)ak(x)n−k,λ. | (3.4) |
Or equivalently, (f(t))λ can be expressed by
(f(t))λ=∞∑k=0akk!(tk)λ. |
In particular, when f(t)=exλ(t) where exλ(t)=∑∞n=0(x)n,λtnn!, (f(t))λ satisfies
(exλ(t))λ(y)n,λ=n∑k=0(nk)(y)k,λ(x)n−k,λ=(x+y)n,λ. |
For f(t) a delta series and g(t) an invertible series, i.e., o(f(t))=1 and o(g(t))=0, there exists a unique sequence sn,λ(x) of polynomials deg(sn,λ(x))=n satisfying the orthogonality condition
⟨g(t)(f(t))k|sn,λ(x)⟩λ=n!δn,k,(n,k≥0). |
Here, sn,λ(x) is called the λ-Sheffer sequence for (g(t),f(t)) and is denoted by sn,λ(x)∼(g(t),f(t))λ.
We recall that sn,λ(x)∼(g(t),f(t))λ if and only if
1g(ˉf(t))exλ(ˉf(t))=∞∑n=0sn,λ(x)n!tn, | (3.5) |
where ˉf(t) is the compositional inverse of f(t) and satisfies ˉf(f(t))=f(ˉf(t))=t.
For given λ-Sheffer sequences sn,λ(x)∼(g(t),f(t))λ and rn,λ(x)∼(h(t),ℓ(t))λ, the following relation holds
sn,λ(x)=n∑k=0cn,krk,λ(x), | (3.6) |
where cn,k is obtained by
cn,k=1k!⟨h(ˉf(t))g(ˉf(t))(ℓ(ˉf(t)))k|(x)n,λ⟩λ. | (3.7) |
Therefore, since (x)n,λ∼(1,t)λ, any λ-Sheffer sequence sn,λ(x)∼(g(t),f(t))λ satisfies
sn,λ(x)=n∑k=01k!⟨1g(ˉf(t))(ˉf(t))k|(x)n,λ⟩λ(x)k,λ. | (3.8) |
Remark 3.1. From (3.1), we have
⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)tℓ|(x)n,λ⟩λ=∞∑m=0B(k)m,λ1m!⟨tm+ℓ|(x)n,λ⟩λ=ℓ!(nℓ)B(k)n−ℓ,λ, |
so that (3.8) yields
B(k)n,λ(x)=n∑ℓ=0(nℓ)(B(k)n−ℓ,λ)(x)ℓ,λ. | (3.9) |
Further, using (x)ℓ,λ=∑ℓm=0∑mj=0S2,λ(ℓ,m)S1,λ(m,j)(x)j,λ in (3.9), the identity holds
B(k)n,λ(x)=n∑m=0m∑j=0m−j∑ℓ=0(ℓ+jj)S2,λ(n,m)S1,λ(m,ℓ+j)(B(k)j,λ)(x)ℓ,λ, |
where S1,λ(n,m) are the degenerate Stirling numbers of the first kind [24] given by
1m!(logλ(1+t))m=∞∑n=mS1,λ(n,m)tnn!(m≥0). |
Now, we explore the representations of the modified type 2 degenerate poly-Bernoulli polynomials in terms of various known degenerate polynomials by using (3.6). We first note that from (3.5), the corresponding λ-Sheffer sequence for B(k)n,λ(x) is given by
B(k)n,λ(x)∼(eλ(t)−e−1λ(t)Lik,λ(1−eλ(−t)),t)λ. | (3.10) |
Theorem 3.2. Let βn,λ(x) be the degenerate type 2-Bernoulli polynomials (1.6). Then for any n≥0 and integer k∈Z, we have
B(k)n,λ(x)=n∑j=0n−j+1∑ℓ=1(nj)λℓ−1(1)ℓ,1/λ(−1)n−jℓk−1S2,λ(n−j+1,ℓ)(n−j+1)βj,λ(x). |
Proof. From (1.6), (2.3), (3.1), (3.2), and Definition 2.1, the following computations are established.
B(k)n,λ(y)=⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)eyλ(t)|(x)n,λ⟩λ=⟨1tLik,λ(1−eλ(−t))|(teλ(t)−e−1λ(t)eyλ(t))λ(x)n,λ⟩λ=n∑j=0(nj)βj,λ(y)⟨1tLik,λ(1−eλ(−t))|(x)n−j,λ⟩λ=n∑j=0(nj)βj,λ(y)∞∑m=0(m+1∑ℓ=1λℓ−1(1)ℓ,1/λ(−1)mℓk−1S2,λ(m+1,ℓ)(m+1)!)⟨tm|(x)n−j,λ⟩λ=n∑j=0(nj)βj,λ(y)(n−j+1∑ℓ=1λℓ−1(1)ℓ,1/λ(−1)n−jℓk−1S2,λ(n−j+1,ℓ)(n−j+1)!)(n−j)!=n∑j=0n−j+1∑ℓ=1(nj)βj,λ(y)λℓ−1(1)ℓ,1/λ(−1)n−jℓk−1S2,λ(n−j+1,ℓ)(n−j+1), |
which yields the result.
Next, we consider the type 2 degenerate Bernoulli polynomials of order r defined in (1.7), which satisfy the following λ-Sheffer sequence
β(r)n,λ(x)∼((eλ(t)−e−1λ(t))rtr,t)λ. |
Theorem 3.3. For any n≥0 and integer k∈Z, we have
B(k)n,λ(x)=n∑m=0(nm)n−m∑ℓ=0S2,λ(ℓ+r,r)(ℓ+rr)(n−mℓ)B(k)n−m−ℓ,λβ(r)m,λ(x). |
Proof. Let B(k)n,λ(x)=n∑m=0cn,mβ(r)m,λ(x), {cn,m∈C.} Then, by (3.8) with (3.7), we can obtain
cn,m=1m!⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)(eλ(t)−e−1λ(t))rtrtm|(x)n,λ⟩λ=(nm)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)(eλ(t)−e−1λ(t))rtr|(x)n−m,λ⟩λ=(nm)n−m∑ℓ=0S2,λ(ℓ+r,r)(ℓ+rr)ℓ!⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)tℓ|(x)n−m,λ⟩λ=(nm)n−m∑ℓ=0S2,λ(ℓ+r,r)(ℓ+rr)(n−mℓ)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(x)n−m−ℓ,λ⟩λ, |
which yields the conclusion from ⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(x)n−m−ℓ,λ⟩λ=B(k)n−m−ℓ,λ.
We also consider the degenerate Hermite polynomials [9], which are defined by
e−1λ(t2)exλ(2t)=∞∑n=0Hn,λ(x)tnn!, |
where Hn,λ(x) can be considered to be the λ-Sheffer sequence for (eλ(14t2),t2), or equivalently,
Hn,λ∼(eλ(14t2),t2)λ. |
Let Pn={p(x)∈C[x]|degp(x)≤n} be an (n+1) dimensional vector space over C. Since the degenerate Hermite polynomials form a basis of the vector space Pn, for every polynomial p(x) of degree n we have
p(x)=n∑k=0cn,kHk,λ(x), | (3.11) |
where cn,k satisfies
⟨eλ(14t2)(t2)m|p(x)⟩λ=n∑k=0cn,k⟨eλ(14t2)(t2)m|Hk,λ(x)⟩λ=n∑k=0cn,km!δm,k=cn,mm!. | (3.12) |
Thus, we have an explicit form of cn,k.
Theorem 3.4. For any n≥0 and integer k∈Z, we have
B(k)n,λ(x)=n!n∑ℓ=0(∑0≤m≤n−ℓm:even(1)m2,λ2m+ℓ(m/2)!(n−ℓ−m)!ℓ!B(k)n−ℓ−m,λ)Hℓ,λ(x). |
Proof. Taking p(x)=B(k)m,λ(x) in (3.11), we have
B(k)m,λ(x)=n∑ℓ=0cn,ℓHℓ,λ(x). |
From (1.3), (3.7) and (3.12), we get
cn,ℓ=1ℓ!⟨eλ(14t2)(eλ(t)−e−1λ(t)Lik,λ(1−eλ(−t)))−1(t2)ℓ|(x)n,λ⟩λ=12ℓℓ!⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)eλ(14t2)|(tℓ)λ(x)n,λ⟩λ=12ℓ(nℓ)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(eλ(14t2))λ(x)n−ℓ,λ⟩λ=12ℓ(nℓ)[n−ℓ2]∑m=0(1)m,λ4mm!(n−ℓ)2m⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(x)n−ℓ−2m,λ⟩λ=12ℓ(nℓ)[n−ℓ2]∑m=0(1)m,λ22mm!(n−ℓ)2mB(k)n−ℓ−2m,λ=n!∑0≤m≤n−ℓm:even(1)m2,λ2m+ℓ(m/2)!(n−ℓ−m)!ℓ!B(k)n−ℓ−m,λ, |
and yield the conclusive result.
Next, let d(r)n,λ(x) be the degenerate derangement polynomials [22] of order r∈N given by
1(1−t)re−1λ(t)exλ(t)=∞∑n=0d(r)n,λ(x)tnn!. |
These polynomials form a λ-Sheffer sequence such that
d(r)n,λ(x)∼((1−t)reλ(t),t)λ. |
Then, we have the following representation of B(k)n,λ(x).
Theorem 3.5. For any n≥0 and integer k∈Z, we have
B(k)n,λ(x)=n∑ℓ=0((nℓ)r∑j=0(rj)(n−ℓj)(−1)jj!B(k)n−ℓ−j,λ(1))d(r)ℓ,λ(x). |
Proof. Let p(x)=B(k)n,λ(x)∈Pn. Then we can express that
B(k)n,λ(x)=n∑ℓ=0cn,ℓd(r)ℓ,λ(x), |
where cn,ℓ satisfy
cn,ℓ=1ℓ!⟨(1−t)reλ(t)tℓ|B(k)n,λ(x)⟩λ=(nℓ)⟨(1−t)r|B(k)n−ℓ,λ(x+1)⟩λ=(nℓ)r∑j=0(rj)(n−ℓj)(−1)jj!⟨1|B(k)n−ℓ−j,λ(x+1)⟩λ=(nℓ)r∑j=0(rj)(n−ℓj)(−1)jj!B(k)n−ℓ−j,λ(1), |
which provides the conclusion.
Remark 3.6. In the case of r=1 in the previous result, the modified type 2 degenerate poly-Bernoulli polynomials have the relation with the degenerate derangement polynomials of order 1 as
B(k)n,λ(x)=n∑ℓ=0((nℓ)B(k)n−ℓ,λ(1)−n(n−1ℓ)B(k)n−ℓ−1,λ(1))d(1)ℓ,λ(x). |
Recalling that the degenerate Bernoulli polynomials [6] of order r are given by
(teλ(t)−1)rexλ(t)=∞∑n=0B(r)n,λ(x)tnn!, |
we obtain the following relation.
Theorem 3.7. For any n≥0 and integer k∈Z, we have
B(k)n,λ(x)=n∑ℓ=0(r!(nℓ)n−ℓ∑m=0(n−ℓm)(m+r)rS2,λ(m+r,r)B(k)n−ℓ−r,λ)B(r)ℓ,λ(x). |
Proof. Let p(x)=B(k)n,λ(x)∈Pn. Then we can express p(x) in terms of B(r)n,λ(x)
B(k)n,λ(x)=n∑ℓ=0cn,ℓB(r)ℓ,λ(x), |
where B(r)n,λ(x) satisfy
B(r)n,λ(x)∼((eλ(t)−1t)r,t)λ. |
and cn,ℓ is computed by
cn,ℓ=1ℓ!⟨(eλ(t)−1t)r(eλ(t)−e−1λ(t)Lik,λ(1−eλ(−t)))−1tℓ|(x)n,λ⟩λ=1ℓ!⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)(eλ(t)−1t)r|(tℓ)λ(x)n,λ⟩λ=(nℓ)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|((eλ(t)−1t)r)λ(x)n−ℓ,λ⟩λ=r!(nℓ)n−ℓ∑m=0(n−ℓm)(m+r)rS2,λ(m+r,r)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(x)n−ℓ−r,λ⟩λ. | (3.13) |
In the above computation, the following relation is applied
(eλ(t)−1t)r=r!tr(eλ(t)−1)rr!=r!∞∑m=rS2,λ(m,r)tm−rm!=r!∞∑m=0(m+r)rS2,λ(m+r,r)tmm!. |
Applying the property of (3.1) in the last equation of (3.13) completes the proof.
Taking into account the degenerate Euler polynomials [6] of order r
(2eλ(t)+1)rexλ(t)=∞∑n=0E(r)n,λ(x)tnn!, |
we have the following result.
Theorem 3.8. For any n≥0 and integer k∈Z, we have
B(k)n,λ(x)=n∑ℓ=0(r∑m=0n−ℓ∑j=012r(nℓ)(rm)(n−ℓj)(m)n−ℓ−j,λB(k)j,λ)E(r)ℓ,λ(x). |
Proof. We note that the corresponding λ-Sheffer sequence for E(r)n,λ(x) is given by
E(r)n,λ(x)∼((eλ(t)+12)r,t)λ. |
Then, we have
B(k)n,λ(x)=n∑ℓ=0cn,ℓE(r)ℓ,λ(x), |
where cn,ℓ satisfies
cn,ℓ=1ℓ!⟨(eλ(t)+12)r(eλ(t)−e−1λ(t)Lik,λ(1−eλ(−t)))−1tℓ|(x)n,λ⟩λ=1ℓ!⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)(eλ(t)+12)r|(tℓ)λ(x)n,λ⟩λ=(nℓ)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|((eλ(t)+12)r)λ(x)n−ℓ,λ⟩λ=12r(nℓ)r∑m=0(rm)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(emλ(t))λ(x)n−ℓ,λ⟩λ=12r(nℓ)r∑m=0(rm)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(x+m)n−ℓ,λ⟩λ=12r(nℓ)r∑m=0(rm)n−ℓ∑j=0(n−ℓj)(m)n−ℓ−j,λ⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(x)j,λ⟩λ. |
Thus, the desired identity can be obtained by the property of (3.1).
We finally consider the degenerate Lah-Bell polynomials [15] that are defined by
exλ(t1−t)=∞∑n=0BLn,λ(x)tnn!,(|t|<1) |
and the unsigned Lah numbers L(n,k) defined by
L(n,k)=(n−1k−1)n!k! |
having the generating function
1ℓ!(t1−t)ℓ=∞∑m=ℓL(m,ℓ)tmm!. |
Theorem 3.9. For any n≥0 and integer k∈Z, B(k)n,λ(x) satisfy
B(k)n,λ(x)=n∑ℓ=0(n∑m=ℓ(nm)(−1)m−ℓL(m,ℓ)B(k)n−m,λ)BLℓ,λ(x). |
Proof. If we let p(x)=B(k)n,λ(x)∈Pn, then we have
B(k)n,λ(x)=n∑ℓ=0cn,ℓBLℓ,λ(x). |
By noting that the corresponding λ-Sheffer sequence is given by
BLn,λ(x)∼(1,t1+t)λ, |
the followings are established for cn,ℓ:
cn,ℓ=1ℓ!⟨(eλ(t)−e−1λ(t)Lik,λ(1−eλ(−t)))−1(t1+t)ℓ|(x)n,λ⟩λ=⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(1ℓ!(t1+t)ℓ)λ(x)n,λ⟩λ=n∑m=ℓ(nm)(−1)m−ℓL(m,ℓ)⟨Lik,λ(1−eλ(−t))eλ(t)−e−1λ(t)|(x)n−m,λ⟩λ |
in which the identity for the unsigned Lah numbers is applied:
1ℓ!(t1+t)ℓ=∞∑m=ℓ(−1)m−ℓL(m,ℓ)tmm!. |
Therefore, cn,ℓ is explicitly computed in a the similar way.
In this section, we present two examples that show the explicit representations of the modified type 2 degenerate poly-Bernoulli polynomials in terms of the degenerate Lah-Bell polynomials and the degenerate derangement polynomials of order r∈N. We compute the combinatorial results cn,ℓ presented in Theorems 3.5 and 3.9 to confirm the connections.
To do this, we first calculate B(0)n,λ(x) for k=0,−1 and n=0,1,2,3,4. For k=0, B(0)n,λ(x) can be obtained using Li0,λ(t)=t(1−t)λ−1, which are listed below:
B(0)0,λ(x)=12,B(0)1,λ(x)=12x+14,B(0)2,λ(x)=12x2+12(1−λ)x−12λ2+14λ,B(0)3,λ(x)=12x3−14(6λ−3)x2−12λ2x−14λ3−14λ2+λ−18,B(0)4,λ(x)=12x4+(1−3λ)x3+12(5λ2−3λ)x2−12(2λ3+λ2−8λ+1)x−14(6λ4−2λ3+5λ). |
For k=−1, B(−1)n,λ(x) are computed as follows:
B(−1)0,λ(x)=12,B(−1)1,λ(x)=12x−12λ+32,B(−1)2,λ(x)=12x2−32λx+32x−λ2−14λ+1,B(−1)3,λ(x)=12x3−14(12λ−9)x2−(12λ2+3λ−3)x+14λ3−154λ2+114λ+98,B(−1)4,λ(x)=12x4−(5λ−3)x3+12(11λ2−21λ+12)x2−12(11λ2−10λ−9)x−14(2λ3+26λ2+26λ+94)λ+1. |
Figure 1 illustrates the shapes of B(k)n,λ(x),k=−1 for n=0,1,2,3,4 when λ=1/10 and λ=1.
We express B(k)n,λ(x), k=0,−1,n=0,1,2,3,4 by the degenerate Lah-Bell polynomials BLn,λ(x) for various λ=1100,110,1 in the following example.
Example 4.1 (Illustration of Theorem 3.9). The degenerate Lah-Bell polynomials BLn,λ(x) for n=0,1,2,3,4 are explicitly given by
BL0,λ(x)=1,BL1,λ(x)=x,BL2,λ(x)=x2−(λ−2)x,BL3,λ(x)=x3−3(λ−2)x2+2(λ2−3λ+3)x,BL4,λ(x)=x4−6(λ−2)x3+(11λ2−36λ+36)x2−6(λ3−4λ2+6λ−4)x. |
Figure 2 shows the graphs of BLn,λ(x) for n=0,1,2,3,4 when λ=1/10,1.
To confirm the established identity in Theorem 3.9, we compute n∑ℓ=0cn,ℓBLℓ,λ(x), where
cn,ℓ=n∑m=ℓ(nm)(−1)m−ℓL(m,ℓ)B(k)n−m,λ,n=1,2,3,4. |
Then, we present that each linear combination of BLn,λ(x) with cn,ℓ is identically equal to B(k)n,λ(x), n=1,2,3,4 for λ=1/100,1/10,1 and k=0,−1:
Case (Ⅰ): For k=0 and λ=1100,
B(0)4,1100(x)=0.5x4+0.97x3−0.0147x2−0.4601x+0.0125=180BL0,1100(x)−4017619BL1,1100(x)+81768BL2,1100(x)−5BL3,1100(x)+12BL4,1100(x),B(0)3,1100(x)=0.5x3+0.735x2−0.00005x−0.115=−23200BL0,1100(x)+713473BL1,1100(x)−94BL2,1100(x)+12BL3,1100(x),B(0)2,1100(x)=0.5x2+0.495x+0.0024=1400BL0,1100(x)−12BL1,1100(x)+12BL2,1100(x),B(0)1,1100(x)=0.5x+0.25=14BL0,1100(x)+12BL1,1100(x). |
Case (Ⅱ): For k=0, λ=1,
B(0)4,1(x)=0.5x4−2x3+x2+2x−0.75=−34BL0,1(x)−32BL1,1(x)+212BL2,1(x)−5BL3,1(x)+12BL4,1(x),B(0)3,1(x)=0.5x3−0.75x2−0.5x+0.375=−38BL0,1(x)+34BL1,1(x)−94BL2,1(x)+12BL3,1(x),B(0)2,1(x)=0.5x2−0.25=−14BL0,1(x)−12BL1,1(x)+12BL2,1(x),B(0)1,1(x)=0.5x+0.25=14BL0,1(x)+12BL1,1(x). |
Case (Ⅲ): For k=−1, λ=1/10,
B(0)4,110(x)=0.5x4+2.5x3+5.005x2+4.925x+2.1034=1485706BL0,110(x)−13291000BL1,110(x)+699100BL2,110(x)−165BL3,110(x)+12BL4,110(x),B(0)3,110(x)=0.5x3+1.95x2+2.695x+1.3627=740543BL0,110(x)+339200BL1,110(x)−910BL2,110(x)+12BL3,110(x),B(0)2,110(x)=0.5x2+1.35x+0.965=193200BL0,110(x)+25BL1,110(x)−12BL2,110(x),B(0)1,110(x)=0.5x+0.7=710BL0,110(x)+12BL1,110(x). |
Case (Ⅳ): For k=−1, λ=1,
B(0)4,1(x)=0.5x4−2x3+x2+2x−0.75=−34BL0,1(x)−32BL1,1(x)+212BL2,1(x)−5BL3,1(x)+12BL4,1(x),B(0)3,1(x)=0.5x3−0.75x2−0.5x+0.375=38BL0,1(x)+34BL1,1(x)−94BL2,1(x)+12BL3,1(x),B(0)2,1(x)=0.5x2−0.25=−14BL0,1(x)−12BL1,1(x)+12BL2,1(x),B(0)1,1(x)=0.5x+0.25=−14BL0,1(x)+12BL1,1(x). |
In the next example, we express B(k)n,λ(x), k=0,−1,n=0,1,2,3,4 by the degenerate derangement polynomials d(r)n,λ(x) for λ=110,1,10, as selected cases of the results in Theorem 3.5.
Example 4.2 (Illustration of Theorem 3.5). The degenerate derangement polynomials of order r=2 for n=0,1,2,3,4 are listed as:
d(2)0,λ(x)=1,d(2)1,λ(x)=x+1,d(2)2,λ(x)=x2+(2−λ)x+λ+3,d(2)3,λ(x)=x3+(3−3λ)x2+2λ2x+9x−2λ2+3λ+11,d(2)4,λ(x)=x4−(6λ−4)x3+(11λ2−6λ+18)x2−(6λ3+6λ2+6λ−44)x+6λ3−5λ2+18λ+53. |
We plot the graphs of d(r)n,λ(x) of order 2 for n=0,1,2,3,4 when λ=1/10,1 in Figure 3.
To confirm the identity presented in Theorem 3.5, we compute n∑ℓ=0cn,ℓd(2)n,λ(x), where
cn,ℓ=(nℓ)2∑j=0(2j)(n−ℓj)(−1)jj!B(k)n−ℓ−j,λ(1),n=1,2,3,4. |
Then, the following presentations support the analysis that each linear combination of d(2)n,λ(x) with computed cn,ℓ is exactly equal to B(k)n,λ(x), n=1,2,3,4 when λ=1,10 and k=0:
Case (Ⅰ): For k=0, λ=10,
B(0)4,10(x)=0.5x4−29x3+235x2−1010.5x−15488=−14279d(2)0,10(x)−1232d(2)1,10(x)−321d(2)2,10(x)−d(2)3,10(x)+12d(2)4,10(x),B(0)3,10(x)=0.5x3−14.25x2−50x−265.125=−1238d(2)0,10(x)−3212d(2)1,10(x)−34d(2)2,10(x)+12d(2)3,10(x),B(0)2,10(x)=0.5x2−4.5x−47.5=−1072d(2)0,10(x)−12d(2)1,10(x)+12d(2)2,10(x),B(0)1,10(x)=0.5x+0.25=−14d(2)0,10(x)+12d(2)1,10(x). |
Case (Ⅱ): For k=0, λ=1,
B(0)4,1(x)=0.5x4−2x3+x2+2x−0.75=−274d(2)0,1(x)+212d(2)1,1(x)−212d(2)2,1(x)−d(2)3,1(x)+12d(2)4,1(x),B(0)3,1(x)=0.5x3−0.75x2−0.5x+0.375=−218d(2)0,1(x)−214d(2)1,1(x)−34d(2)2,1(x)+12d(2)3,1(x),B(0)2,1(x)=0.5x2−0.25=−74d(2)0,1(x)−12d(2)1,1(x)+12d(2)2,1(x),B(0)1,1(x)=0.5x+0.25=−14d(2)0,1(x)+12d(2)1,1(x). |
In this paper, we propose a new variant of type 2 poly-Bernoulli polynomials and numbers using the generating function that is a combination of the degenerate exponential functions with the degenerate polylogarithm function. Then, we derive explicit expressions of the proposed polynomials in terms of the degenerate type 2-Bernoulli polynomials and the degenerate Stirling numbers of the second kind. Furthermore, using λ-linear functionals and λ-Sheffer sequences, we present connections of the modified type 2 degenerate poly-Bernoulli polynomials among existing λ-Sheffer polynomials: the degenerate type 2-Bernoulli polynomials, the higher-order type 2 degenerate Bernoulli polynomials, the degenerate Hermite polynomials, the higher-order degenerate Bernoulli polynomials, the higher-order degenerate derangement polynomials, the degenerate Euler polynomials, and the higher-order degenerate Lah-Bell polynomials. Finally, to confirm the presented combinatorial results, we explicitly compute the connection constants and show combinations with the degenerate Lah-Bell polynomials and the higher-order degenerate derangement polynomials.
This work was supported by the Dongguk University Research Fund of 2020 and the first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2020R1F1A1A0107156412).
The authors declare no conflict of interest.
[1] |
S. Araci, Degenerate poly type 2-Bernoulli polynomials, Math. Sci. Appl. E-Notes, 9 (2021), 1–8. https://doi.org/10.36753/mathenot.839111 doi: 10.36753/mathenot.839111
![]() |
[2] | A. Bayad, D. S. Kim, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math., 20 (2010), 23–28. |
[3] |
A. Bayad, M. Hajli, On the multidimensional zeta functions associated with theta functions, and the multidimensional Appell polynomials, Math. Method. Appl. Sci., 43 (2020), 2679–2694 https://doi.org/10.1002/mma.6075 doi: 10.1002/mma.6075
![]() |
[4] |
A. Bayad, T. Kim, Results on values of Barnes polynomials, Rocky Mountain J. Math., 43 (2013), 1857–1869. https://doi.org/10.1216/RMJ-2013-43-6-1857 doi: 10.1216/RMJ-2013-43-6-1857
![]() |
[5] |
L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33. https://doi.org/10.1007/BF01900520 doi: 10.1007/BF01900520
![]() |
[6] | L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88. |
[7] |
U. Duran, M. Acikgoz, On generalized degenerate Gould-Hopper based fully degenerate Bell polynomials, JMCS, 21 (2020), 243–257. http://doi.org/10.22436/jmcs.021.03.07 doi: 10.22436/jmcs.021.03.07
![]() |
[8] |
M. Hajli, The spectral properties of a continuous family of zeta functions, Int. J. Number Theory, 16 (2020), 693–717. https://doi.org/10.1142/S1793042120500359 doi: 10.1142/S1793042120500359
![]() |
[9] |
H. Haroon, W. A. Khan, Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials, Commun. Korean Math. Soc., 33 (2018), 651–669. https://doi.org/10.4134/CKMS.c170217 doi: 10.4134/CKMS.c170217
![]() |
[10] |
M. Hajli, On a formula for the regularized determinant of zeta functions with application to some Dirichlet series, Q. J. Math., 71 (2020), 843–865. https://doi.org/10.1093/qmathj/haaa006 doi: 10.1093/qmathj/haaa006
![]() |
[11] | G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159. |
[12] |
L. C. Jang, D. S. Kim, T. Kim, H. Lee, p-adic integral on Zp associated with degenerate Bernoulli polynomials of the second kind, Adv. Differ. Equ., 2020 (2020), 278. https://doi.org/10.1186/s13662-020-02746-2 doi: 10.1186/s13662-020-02746-2
![]() |
[13] | M. Kaneko, Poly-Bernoulli numbers, J. Theor. Nombr. Bordx., 9 (1997), 221–228. |
[14] |
W. A. Khan, R. Ali, K. A. H. Alzobyd, N. Ahmed, A new family of degenerate poly-Genocchi polynomials with its certain properties, J. Funct. Spaces, 2021 (2021), 6660517. https://doi.org/10.1155/2021/6660517 doi: 10.1155/2021/6660517
![]() |
[15] | D. S. Kim, T. Kim, Lah-Bell numbers and polynomials, Proc. Jangjeon Math. Soc., 23 (2020), 577–586. |
[16] |
D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. https://doi.org/10.1134/S1061920820020090 doi: 10.1134/S1061920820020090
![]() |
[17] |
D. S. Kim, T. Kim, Degenerate Sheffer sequences and λ-Sheffer sequences, J. Math. Anal. Appl., 493 (2021), 124521. https://doi.org/10.1016/j.jmaa.2020.124521 doi: 10.1016/j.jmaa.2020.124521
![]() |
[18] |
T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24 (2017), 241–248. https://doi.org/10.1134/S1061920817020091 doi: 10.1134/S1061920817020091
![]() |
[19] |
T. Kim, D. S. Kim, A note on type 2 Changhee and Daehee polynomials, RACSAM, 113 (2019), 2763–2771. https://doi.org/10.1007/s13398-019-00656-x doi: 10.1007/s13398-019-00656-x
![]() |
[20] |
T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. https://doi.org/10.1016/j.jmaa.2020.124017 doi: 10.1016/j.jmaa.2020.124017
![]() |
[21] |
T. Kim, D. S. Kim, J. Kwon, H. Lee, Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 168. https://doi.org/10.1186/s13662-020-02636-7 doi: 10.1186/s13662-020-02636-7
![]() |
[22] |
T. Kim, D. S. Kim, H. Lee, L. Jang, A note on degenerate derangement polynomials and numbers, AIMS Mathematics, 6 (2021), 6469–6481. https://doi.org/10.3934/math.2021380 doi: 10.3934/math.2021380
![]() |
[23] | T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331. |
[24] | T. K. Kim, D. S. Kim, H. I. Kwon, A note on degenerate Stirling numbers and their applications, Proc. Jangjeon Math. Soc., 21 (2018), 195–203. |
[25] |
F. Qi, J. L. Wang, B. N. Guo, Simplifying differential eqpuations concerning degenerate Bernoulli and Euler numbers, T. A. Razmadze Math. In., 172 (2018), 90–94. https://doi.org/10.1016/j.trmi.2017.08.001 doi: 10.1016/j.trmi.2017.08.001
![]() |
[26] | S. Roman, The umbral calculus (Pure and Applied Mathematics), London: Academic Press, 1984. |
1. | Dojin Kim, Sangbeom Park, Jongkyum Kwon, Some identities of degenerate higher-order Daehee polynomials based on λ-umbral calculus, 2023, 31, 2688-1594, 3064, 10.3934/era.2023155 | |
2. | Sang Jo Yun, Jin-Woo Park, M. M. Bhatti, On Degenerate Poly-Daehee Polynomials Arising from Lambda-Umbral Calculus, 2023, 2023, 2314-4785, 1, 10.1155/2023/2263880 | |
3. | Sang Jo Yun, Jin-Woo Park, Study of degenerate derangement polynomials by λ-umbral calculus, 2023, 56, 2391-4661, 10.1515/dema-2022-0240 |