Loading [MathJax]/jax/output/SVG/jax.js
Perspective

Epileptic seizures and link to memory processes

  • Received: 06 January 2022 Revised: 17 February 2022 Accepted: 01 March 2022 Published: 07 March 2022
  • Epileptogenesis is a complex and not well understood phenomenon. Here, we explore the hypothesis that epileptogenesis could be “hijacking” normal memory processes, and how this hypothesis may provide new directions for epilepsy treatment. First, we review similarities between the hypersynchronous circuits observed in epilepsy and memory consolidation processes involved in strengthening neuronal connections. Next, we describe the kindling model of seizures and its relation to long-term potentiation model of synaptic plasticity. We also examine how the strengthening of epileptic circuits is facilitated during the physiological slow wave sleep, similarly as episodic memories. Furthermore, we present studies showing that specific memories can directly trigger reflex seizures. The neuronal hypersynchrony in early stages of Alzheimer's disease, and the use of anti-epileptic drugs to improve the cognitive symptoms in this disease also suggests a connection between memory systems and epilepsy. Given the commonalities between memory processes and epilepsy, we propose that therapies for memory disorders might provide new avenues for treatment of epileptic patients.

    Citation: Ritwik Das, Artur Luczak. Epileptic seizures and link to memory processes[J]. AIMS Neuroscience, 2022, 9(1): 114-127. doi: 10.3934/Neuroscience.2022007

    Related Papers:

    [1] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [2] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [3] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [4] Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043
    [5] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [6] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [7] Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488
    [8] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
    [9] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [10] Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689
  • Epileptogenesis is a complex and not well understood phenomenon. Here, we explore the hypothesis that epileptogenesis could be “hijacking” normal memory processes, and how this hypothesis may provide new directions for epilepsy treatment. First, we review similarities between the hypersynchronous circuits observed in epilepsy and memory consolidation processes involved in strengthening neuronal connections. Next, we describe the kindling model of seizures and its relation to long-term potentiation model of synaptic plasticity. We also examine how the strengthening of epileptic circuits is facilitated during the physiological slow wave sleep, similarly as episodic memories. Furthermore, we present studies showing that specific memories can directly trigger reflex seizures. The neuronal hypersynchrony in early stages of Alzheimer's disease, and the use of anti-epileptic drugs to improve the cognitive symptoms in this disease also suggests a connection between memory systems and epilepsy. Given the commonalities between memory processes and epilepsy, we propose that therapies for memory disorders might provide new avenues for treatment of epileptic patients.



    The theory of inequalities of convex functions is part of the general subject of convexity since a convex function is one whose epigraph is a convex set. Nonetheless it is a theory important per se, which touches almost all branches of mathematics. Probably, the first topic who make necessary the encounter with this theory is the graphical analysis. With this occasion we learn on the second derivative test of convexity, a powerful tool in recognizing convexity. Then comes the problem of finding the extremal values of functions of several variables and the use of Hessian as a higher dimensional generalization of the second derivative. Passing to optimization problems in infinite dimensional spaces is the next step, but despite the technical sophistication in handling such problems, the basic ideas are pretty similar with those underlying the one variable case.

    The objective of this paper is to present the fractional Hadamard and Fejér-Hadamard inequalities in generalized forms. We start from the integral operators containing generalized Mittag-Leffler function defined by Prabhaker in [25].

    Definition 1.1. Let σ,τ,ρ be positive real numbers and ωR. Then the generalized fractional integral operators containing Mittag-Leffler function ϵρσ,τ,ω,a+f and ϵρσ,τ,ω,bf for a real valued continuous function f are defined by:

    (ϵρσ,τ,ω,a+f)(x)=xa(xt)τ1Eρσ,τ(ω(xt)σ)f(t)dt, (1.1)
    (ϵρσ,τ,ω,bf)(x)=bx(tx)τ1Eρσ,τ(ω(tx)σ)f(t)dt, (1.2)

    where the function Eρσ,τ(t) is the generalized Mittag-Leffler function; Eρσ,τ(t)=n=0(ρ)ntnΓ(σn+τ)n! and (ρ)n=Γ(ρ+n)Γ(ρ).

    Fractional integral operators associated with generalized Mittag-Leffler function play a vital role in fractional calculus. Different fractional integral operators have different types of properties and these integral operators may be singular or non-singular depending upon their kernels. For example, the global Riemann Liouville integral is a singular integral operator but the singularity is integrable. Some new models [2,7] have been designed due to the non-singularity of their defining integrals. Fractional integral operators are useful in the generalization of classical mathematical concepts. Fractional integral operators are very fruitful in obtaining fascinating and glorious results, for example fractional order systems and fractional differential equations are used in physical and mathematical phenomena. Many inequalities like Hadamard are studied in the context of fractional calculus operators, see [1,6,8,20,28].

    After the existence of Prabhaker fractional integral operators, the researchers began to think in this direction and consequently they further generalized and extended these operators in different ways for instance see [14,18,23,29], and references therein. By using the Mittag-Leffler function these fractional integral operators are generalized by many authors. In [27] Salim and Faraj defined the following fractional integral operators involving an extended Mittag-Leffler function in the kernel.

    Definition 1.2. Let σ,τ,k,δ,ρ be positive real numbers and ωR. Then the generalized fractional integral operators containing Mittag-Leffler function ϵρ,r,kσ,τ,δ,ω,a+f and ϵρ,r,kσ,τ,δ,ω,bf for a real valued continuous function f are defined by:

    (ϵρ,r,kσ,τ,δ,ω,a+f)(x)=xa(xt)τ1Eρ,r,kσ,τ,δ(ω(xt)σ)f(t)dt, (1.3)
    (ϵρ,r,kσ,τ,δ,ω,bf)(x)=bx(tx)τ1Eρ,r,kσ,τ,δ(ω(tx)σ)f(t)dt, (1.4)

    where the function Eρ,r,kσ,τ,δ(t) is the generalized Mittag-Leffler function; Eρ,r,kσ,τ,δ(t)=n=0(ρ)kntnΓ(σn+τ)(r)δn and (ρ)kn=Γ(ρ+kn)Γ(ρ).

    Further fractional integral operators containing an extended generalized Mittag-Leffler function in their kernels are defined as follows:

    Definition 1.3. [18] Let ω,τ,δ,ρ,cC, p,σ,r0 and 0<kr+σ. Let fL1[a,b] and x[a,b]. Then the generalized fractional integral operators ϵρ,r,k,cσ,τ,δ,ω,a+f and ϵρ,r,k,cσ,τ,δ,ω,bf are defined by:

    (ϵρ,r,k,cσ,τ,δ,ω,a+f)(x;p)=xa(xt)τ1Eρ,r,k,cσ,τ,δ(ω(xt)σ;p)f(t)dt, (1.5)
    (ϵρ,r,k,cσ,τ,δ,ω,bf)(x;p)=bx(tx)τ1Eρ,r,k,cσ,τ,δ(ω(tx)σ;p)f(t)dt, (1.6)

    where

    Eρ,r,k,cσ,τ,δ(t;p)=n=0βp(ρ+nk,cρ)(c)nktnβ(ρ,cρ)Γ(σn+τ)(δ)nr, (1.7)

    is the extended generalized Mittag-Leffler function.

    Recently, Farid et al. defined a unified integral operator in [14] (see also [22]) as follows:

    Definition 1.4. Let f,g:[a,b]R, 0<a<b be the functions such that f be positive and fL1[a,b] and g be a differentiable and strictly increasing. Also let ϕx be an increasing function on [a,) and ω,τ,δ,ρ,cC, (τ),(δ)>0, (c)>(ρ)>0 with p0, σ,r>0 and 0<kr+σ. Then for x[a,b] the integral operators (gFϕ,ρ,r,k,cσ,τ,δ,ω,a+f) and (gFϕ,ρ,r,k,cσ,τ,δ,ω,bf) are defined by:

    (gFϕ,ρ,r,k,cσ,τ,δ,ω,a+f)(x;p)=xaϕ(g(x)g(t))g(x)g(t)Eρ,r,k,cσ,τ,δ(ω(g(x)g(t))σ;p)f(t)d(g(t)), (1.8)
    (gFϕ,ρ,r,k,cσ,τ,δ,ω,bf)(x;p)=bxϕ(g(t)g(x))g(t)g(x)Eρ,r,k,cσ,τ,δ(ω(g(t)g(x))σ;p)f(t)d(g(t)). (1.9)

    The following definition of generalized fractional integral operator containing extended Mittag-Leffler function in the kernel can be extracted by setting ϕ(x)=xτ in Definition 1.4.

    Definition 1.5. Let f,g:[a,b]R, 0<a<b be the functions such that f be positive and fL1[a,b] and g be a differentiable and strictly increasing. Also let ω,τ,δ,ρ,cC, (τ),(δ)>0, (c)>(ρ)>0 with p0, σ,r>0 and 0<kr+σ. Then for x[a,b] the integral operators are defined by:

    (gΥρ,r,k,cσ,τ,δ,ω,a+f)(x;p)=xa(g(x)g(t))τ1Eρ,r,k,cσ,τ,δ(ω(g(x)g(t))σ;p)f(t)d(g(t)), (1.10)
    (gΥρ,r,k,cσ,τ,δ,ω,bf)(x;p)=bx(g(t)g(x))τ1Eρ,r,k,cσ,τ,δ(ω(g(t)g(x))σ;p)f(t)d(g(t)). (1.11)

    The following remark provides some connection of Definition 1.5 with already known operators:

    Remark 1. (ⅰ) If we take p=0 and g(x)=x in equation (1.10), then it reduces to the fractional integral operators defined by Salim and Faraj in [27].

    (ⅱ) If we take δ=r=1 and g(x)=x in (1.10), then it reduces to the fractional integral operators gΥρ,1,k,cσ,τ,1,ω,a+ and gΥρ,1,k,cσ,τ,1,ω,b containing generalized Mittag-Leffler function Eρ,1,k,cσ,τ,1(t;p) defined by Rahman et al. in [26].

    (ⅲ) If we set p=0,δ=r=1 and g(x)=x in (1.10), then it reduces to integral operators containing extended generalized Mittag-Leffler function introduced by Srivastava and Tomovski in [29].

    (ⅳ) If we take p=0,δ=r=k=1 and g(x)=x, (1.10) reduces to integral operators defined by Prabhaker in [25] containing generalized Mittag-Leffler function.

    (ⅴ) For p=ω=0 and g(x)=x in (1.10), then generalized fractional integral operators gΥρ,r,k,cσ,τ,δ,ω,a+ and gΥρ,r,k,cσ,τ,δ,ω,b reduce to Riemann-Liouville fractional integral operators.

    Our aim in this paper is to establish Hadamard and Fejér-Hadamard inequalities for generalized fractional integral operators containing extended generalized Mittag-Leffler function for a monotone increasing function via m-convex functions.

    More than a hundred years ago, the mathematicians introduced the convexity and they established a lot of inequalities for the class of convex functions. The convex functions are playing a significant and a tremendous role in fractional calculus. Convexity has been widely employed in many branches of mathematics, for instance, in mathematical analysis, optimization theory, function theory, functional analysis and so on. Recently, many authors and researchers have given their attention to the generalizations, extensions, refinements of convex functions in multi-directions.

    Definition 1.6. A function f:[a,b]R is said to be convex if

    f(tx+(1t)y)tf(x)+(1t)f(y)

    holds for all x,y[a,b] and t[0,1].

    The m-convex function is a close generalization of convex function and its concept was introduced by Toader [30].

    Definition 1.7. A function f:[0,b]R, b>0 is said to be m-convex if for all x,y[0,b] and t[0,1]

    f(tx+m(1t)y)tf(x)+m(1t)f(y)

    holds for m[0,1].

    If we take m=1, we get the definition for convex function. An m-convex function need not be a convex function.

    Example 1. [24] A function f:[0,)R defined by f(x)=x45x3+9x25x is 1617-convex but it is not m-convex for m(1617,1].

    A lot of results and inequalities pertaining to convex, m-convex and related functions have been produced (see, [11,12,13,14,15,16,17,18,19,20] and references therein). Many fractional integral inequalities like Hadamard and Fejér-Hadamard are very important and researchers have produced their generalizations and refinements (see, [5] and references therein). Fractional inequalities have many applications, for instance, the most fruitful ones are used in establishing uniqueness of solutions of fractional boundary value problems and fractional partial differential equations. For instance the following Hadamard inequality is given in [21]:

    Theorem 1.8. Let f:[0,)R, be positive real function. Let a,b[0,) with a<mb and fL1[a,mb]. If f is m-convex on [a,mb], then the following inequalities for the extended generalized fractional integrals hold:

    f(a+mb2)(ϵω,ρ,r,k,ca+,σ,τ,δ1)(mb;p)(ϵω,ρ,r,k,ca+,σ,τ,δf)(mb;p)+mτ+1(ϵmσω,ρ,r,k,cb,σ,τ,δf)(am;p)2mτ+12[f(a)m2f(am2)mba(ϵmσω,ρ,r,k,cb,σ,τ+1,δ1)(am;p)+(f(b)+mf(am2))(ϵmσω,ρ,r,k,cb,σ,τ,δ1)(am;p)],ω=ω(mba)σ.

    In the upcoming section we will derive the Hadamard inequality for m-convex functions by means of fractional integrals (1.10) and (1.11). This version of the Hadamard inequality gives at once the Hadamard inequalities quoted in Section 2. Further we will establish the Fejér-Hadamard inequality for these operators of m-convex functions which will provide the corresponding inequalities proved in [31]. Moreover in Section 3 by establishing two identities error estimations of the Hadamard and the Fejér-Hadamard inequalities are obtained.

    Theorem 2.1. Let f,g:[a,b]R, 0<a<b, Range (g) [a,b], be the functions such that f be positive and fL1[a,b], g be differentiable and strictly increasing. If f be m-convex m(0,1] and g(a)<mg(b), then the following inequalities for fractional operators (1.10) and (1.11) hold:

    f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω,a+1)(g1(mg(b));p)(gΥρ,r,k,cσ,τ,δ,ω,a+(fg))(g1(mg(b));p)+mτ+1(gΥρ,r,k,cσ,τ,δ,mσω,b(fg))(g1(g(a)m);p)2mτ+12[f(g(a))m2f(g(a)m2)mg(b)g(a)(gΥρ,r,k,cσ,τ+1,δ,mσω,b1)(g1(g(a)m);p)+(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,mσω,b1)(g1(g(a)m);p)],ω=ω(mg(b)g(a))σ.

    Proof. By definition of m-convex function f, we have

    2f(g(a)+mg(b)2)f(tg(a)+m(1t)g(b))+mf(tg(b)+(1t)g(a)m). (2.1)

    Further from (2.1), one can obtain the following integral inequality:

    2f(g(a)+mg(b)2)10tτ1Eρ,r,k,cσ,τ,δ(ωtσ;p)dt10tτ1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(a)+m(1t)g(b))dt+m10tτ1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(b)+(1t)g(a)m)dt. (2.2)

    Setting g(x)=tg(a)+m(1t)g(b) and g(y)=tg(b)+(1t)g(a)m in (2.2), we get the following inequality:

    2f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω,a+1)(g1(mg(b));p)(gΥρ,r,k,cσ,τ,δ,ω,a+(fg))(g1(mg(b));p)+mτ+1(gΥρ,r,k,cσ,τ,δ,mσω,b(fg))(g1(g(a)m);p). (2.3)

    Also by using the m-convexity of f, one can has

    f(tg(a)+m(1t)g(b))+mf(tg(b)+(1t)g(a)m)m(f(g(b))+mf(g(a)m2))+(f(g(a))m2f(g(a)m2))t. (2.4)

    This leads to the following integral inequality:

    10tτ1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(a)+m(1t)g(b))dt+m10tτ1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(b)+(1t)g(a)m)dtm(f(g(b))+mf(g(a)m2))10tτ1Eρ,r,k,cσ,τ,δ(ωtσ;p)dt+(f(g(a))m2f(g(a)m2))10tτEρ,r,k,cσ,τ,δ(ωtσ;p)dt. (2.5)

    Again by setting g(x)=tg(a)+m(1t)g(b), g(y)=tg(b)+(1t)g(a)m in (2.5) and after calculation, we get

    (gΥρ,r,k,cσ,τ,δ,ω,a+(fg))(g1(mg(b));p)+mτ+1(gΥρ,r,k,cσ,τ,δ,mσω,b(fg))(g1(g(a)m);p)mτ+1(f(g(a))m2f(g(a)m2)mg(b)g(a)(gΥρ,r,k,cσ,τ+1,δ,mσω,b1)(g1(g(a)m);p)+(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,mσω,b1)(g1(g(a)m);p)). (2.6)

    Combining (2.3) and (2.6) we get the desired result.

    Remark 2. ● In Theorem 2.1, if we put m=1, we get [31,Theorem 3.1]

    ● In Theorem 2.1, if we put g=I, we get [21,Theorem 3.1].

    The following theorem gives the Fejér-Hadamard inequality for m-convex functions.

    Theorem 2.2. Let f,g,h:[a,b]R, 0<a<b, Range (g), be the functions such that f be positive and fL1[a,b], g be a differentiable and strictly increasing and h be integrable and non-negative. If f is m-convex, m(0,1], g(a)<mg(b) and g(a)+mg(b)mg(x)=g(x), then the following inequalities for fractional operator (1.11) hold:

    2f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(g1(g(a)m);p)(1+m)(gΥρ,r,k,cσ,τ,δ,ω,b(fg)(hg))(g1(g(a)m);p)f(g(a))m2f(g(a)m2)(g(b)g(a)m)(gΥρ,r,k,cσ,τ,δ,ω,bhg)(g1(g(a)m);p)+m(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,ω,bhg)(g1(g(a)m);p),ω=ω(g(b)g(a)m)σ.

    Proof. Multiplying both sides of (2.1) by 2tτ1h(tg(b)+(1t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p) and integrating on [0,1], we get

    2f(g(a)+mg(b)2)10tτ1h(tg(b)+(1t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p)dt10tτ1h(tg(b)+(1t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(a)+m(1t)g(b))dt+m10tτ1h(tg(b)+(1t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(b)+(1t)g(a)m)dt. (2.7)

    Setting g(x)=tg(b)+(1t)g(a)m and also using g(a)+mg(b)mg(x)=g(x) the following inequality is obtained:

    2f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω,bhg)(g1(g(a)m);p)(1+m)(gΥρ,r,k,cσ,τ,δ,ω,b(fg)(hg))(g1(g(a)m);p). (2.8)

    Multiplying both sides of inequality (2.4) with tτ1h(tg(b)+(1t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p) and integrating on [0,1], then setting g(x)=tg(b)+(1t)g(a)m and also using g(a)+mg(b)mg(x)=g(x) we have

    (1+m)(gΥρ,r,k,cσ,τ,δ,ω,b(fg)(hg))(g1(g(a)m);p)(f(g(a))m2f(g(a)m2))g((b)g(a)m)(gΥρ,r,k,cσ,τ,δ,ω,bhg)(g1(g(a)m);p)+m(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,ω,bhg)(g1(g(a)m);p). (2.9)

    Combining (2.8) and (2.9) we get the desired result.

    Remark 3. ● In Theorem 2.2, if we put m=1, then we get [31,Theorem 3.2].

    ● In Theorem 2.2, if we put g=I and p=0, then we get results of [3].

    ● In Theorem 2.2, if we put g=I, then we get results of [4].

    To find error estimates first we prove the following two lemmas.

    Lemma 3.1. Let f,g:[a,mb]R, 0<a<mb, Range (g) [a,mb] be the functions such that f be positive and fgL1[a,mb] and g be a differentiable and strictly increasing. Also if f(g(x))=f(g(a)+g(mb)g(x)), then the following equality for fractional operators (1.10) and (1.11) holds:

    (gΥρ,r,k,cσ,τ,δ,ω,a+fg)(mb;p)=(gΥρ,r,k,cσ,τ,δ,ω,mbfg)(a;p)=(gΥρ,r,k,cσ,τ,δ,ω,a+fg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbfg)(a;p)2. (3.1)

    Proof. By Definition 1.5 of the generalized fractional integral operator containing extended generalized Mittag-Leffler function, we have

    (gΥρ,r,k,cσ,τ,δ,ω,a+fg)(mb;p)=mba(g(mb)g(x))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(x))σ;p)f(g(x))d(g(x)). (3.2)

    Replacing g(x) by g(a)+g(mb)g(x) in (3.2) and using f(g(x))=f(g(a)+g(mb)g(x)), we have

    (gΥρ,r,k,cσ,τ,δ,ω,a+fg)(mb;p)=mba(g(x)g(a))τ1Eρ,r,k,cσ,τ,δ(ω(g(x)g(a))σ;p)f(g(x))d(g(x)).

    This implies

    (gΥρ,r,k,cσ,τ,δ,ω,a+fg)(mb;p)=(gΥρ,r,k,cσ,τ,δ,ω,mbfg)(a;p). (3.3)

    By adding (3.2) and (3.3), we get (3.1).

    Lemma 3.2. Let f,g,h:[a,mb]R, 0<a<mb, Range (g), Range (h) [a,mb] be the functions such that f be positive and fg,hgL1[a,mb], g be a differentiable and strictly increasing and h be non-negative and continuous. If fgL1[a,mb] and h(g(t))=h(g(a)+g(mb)g(t)), then the following equality for the generalized fractional integral operators (1.10) and (1.11) holds:

    f(g(a))+f(g(mb))2[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)] (3.4)
    [(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p)]=mba[ta(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))mbt(g(s)g(a))τ1Eρ,r,k,cσ,τ,δ(ω(g(s)g(a))σ;p)h(g(s))d(g(s))]f(g(t))d(g(t)).

    Proof. To prove the lemma, we have

    mba[ta(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))]f(g(t))d(g(t))=f(g(mb))mba(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))mba((g(mb)g(t))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(t))σ;p))f(g(t))h(g(t))d(g(t))=f(g(mb))(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p).

    By using Lemma 3.1, we have

    mba[ta(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))]f(g(t))d(g(t))=f(g(mb))2[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)](gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p).

    In the same way we have

    mba[mbt(g(s)g(a))τ1Eρ,r,k,cσ,τ,δ(ω(g(s)g(a))σ;p)h(g(s))d(g(s))]f(g(t))d(g(t))=f(g(a))2[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)](gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p).

    By adding (3.5) and (3.5), we get (3.4).

    By using Lemma 3.2, we prove the following theorem.

    Theorem 3.3. Let f,g,h:[a,mb]R, 0<a<mb, Range (g), Range (h) [a,mb] be the functions such that f be positive and (fg)L1[a,mb], where g be a differentiable and strictly increasing and h be non-negative and continuous. Also let h(g(t))=h(g(a)+g(mb)g(t)) and |(fg)| is m-convex on [a,b]. Then for k<r+(σ), the following inequality for fractional integral operators (1.10) and (1.11) holds:

    |f(g(a))+f(g(mb))2[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)][(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p)]|hM(g(mb)g(a))τ+1τ(τ+1)(1Ω)[|f(g(a))+mf(g(b))|], (3.5)

    where h=supt[a,mb]|h(t)| and

    Ω=1τ+2[{(g(a+mb2)g(a)g(mb)g(a))τ+2}+{(g(mb)g(a+mb2)g(mb)g(a))τ+2}]

    τ+1τ+2[{(g(a+mb2)g(a)g(mb)g(a))τ+2}+{(g(mb)g(a+mb2)g(mb)g(a))τ+2}]

    (g(a+mb2)g(a)g(mb)g(a))τ+1(g(mb)g(a+mb2)g(mb)g(a))+(g(a+mb2)g(a)g(mb)g(a))(g(mb)g(a+mb2)g(mb)g(a))τ+1.

    Proof. Using Lemma 3.2, we have

    |(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)][(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p)]|mba|[ta(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))mbt(g(s)g(a))τ1Eρ,r,k,cσ,τ,δ(ω(g(s)g(a))σ;p)h(g(s))d(g(s))]||f(g(t))|d(g(t)). (3.6)

    Using the m-convexity of |(fg)| on [a,b], we have

    |f(g(t))|g(mb)g(t)g(mb)g(a)|f(g(a))|+mg(t)g(a)g(mb)g(a)|f(g(b))|,t[a,b]. (3.7)

    If we replace g(s) by g(a)+g(mb)g(s) and using h(g(s))=h(g(a)+g(mb)g(s)), t=g1(g(a)+g(mb)g(t)), in second integral in the followings, we get

    |ta(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))mbt(g(s)g(a))τ1Eρ,r,k,cσ,τ,δ(ω(g(s)g(a))σ;p)h(g(s))d(g(s))|=|at(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))ta(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))|=|tt(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))|
    {tt|(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))|d(g(s)),t[a,a+mb2] tt|(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))|d(g(s)),t[a+mb2,mb]. (3.8)

    By (3.6)–(3.8) and using absolute convergence of extended Mittag-Leffler function, we have

    |f(g(a))+f(g(mb))2((gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p))[(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p)]|a+mb2a(a+mbta|(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))|d(g(s)))×(g(mb)g(t)g(mb)g(a)|f(g(a))|+mg(t)g(a)g(mb)g(a)|f(g(b))|)d(g(t))+mba+mb2(ta+mbt|(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))|d(g(s)))×(g(mb)g(t)g(mb)g(a)|f(g(a))|+mg(t)g(a)g(mb)g(a)|f(g(b))|)d(g(t))hMτ(g(mb)g(a))[a+mb2a((g(mb)g(t))τ(g(t)g(a))τ)(g(mb)g(t))|f(g(a))|d(g(t))+ma+mb2a((g(mb)g(t))τ(g(t)g(a))τ)m(g(t)g(a))|f(g(b))|d(g(t))+mba+mb2((g(t)g(a))τ(g(mb)g(t))τ)(g(mb)g(t))|f(g(a))|d(g(t))+mmba+mb2((g(t)g(a))τ(g(mb)g(t))τ)m(g(t)g(a))|f(g(b))|d(g(t))]. (3.9)

    After some calculations, we get

    a+mb2a((g(mb)g(t))τ(g(t)g(a))τ)(g(mb)g(t))d(g(t))=mba+mb2((g(t)g(a))τ(g(mb)g(t))τ)(g(t)g(a))d(g(t))=(g(mb)g(a))τ+2τ+2(g(mb)g(a+mb2))τ+2τ+2(g(a+mb2)g(a))τ+1τ+1(g(mb)g(a+mb2))(g(a+mb2)g(a))τ+2(τ+1)(τ+2),

    and

    a+mb2a((g(mb)g(t))τ(g(t)g(a))τ)(g(t)g(a))d(g(t))=mba+mb2((g(t)g(a))τ(g(mb)g(t))τ)(g(mb)g(t))d(g(t))=(g(a+mb2)g(a))τ+1τ+1(g(mb)g(a+mb2))+(g(mb)g(a))τ+2(τ+1)(τ+2)(g(a+mb2)g(a))τ+2(τ+1)(τ+2)(g(mb)g(a+mb2))τ+2τ+2.

    Using the above evaluations of integrals in (3.9), we get the required inequality (3.5).

    Remark 4. ● In Theorem 3.3, if we put m=1, then we get [31,Theorem]

    ● In Theorem 3.3, if we put g=I and p=0, then we get [3,Theorem 2.3].

    ● In Theorem 3.3, if we put g=I, p=0 and m=1, then we get [19,Theorem 2.3].

    ● In Theorem 3.3, if we put g=I, then we get [4,Theorem].

    ● In Theorem 3.3, if we put g=I, m=1, then we get [16,Theorem 2.3].

    ● In Theorem 3.3, for ω=p=0, g=I and h=1 along with τ=m=1, then we get [9,Theorem 2.2].

    ● In Theorem 3.3, if we put ω=p=0, g=I and h=1 with m=1, then we get [28,Theorem 3].

    Theorem 3.4. Let f,g,h:[a,mb]R, 0<a<mb, Range (g), Range (h) [a,mb] be the functions such that f be positive, (fg)L1[a,mb], g be a differentiable and strictly increasing and h be continuous. Also let h(g(t))=h(g(a)+g(mb)g(t)) and |(fg)|q1, q11 is m-convex. Then for k<r+(σ), the following inequality for fractional integral operators (1.10) and (1.11) holds:

    |(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)][(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p)]|hM(g(mb)g(a))τ+1τ(τ+1)((1Ψ)1p1(1Ω)1q1)(|f(g(a))|q1+m|f(g(b))|q12)1q1, (3.10)

    where h=supt[a,mb]|h(t)|, 1p1+1q1=1,

    Ψ=(g(mb)g(a+mb2)g(mb)g(a))τ+1+(g(a+mb2)g(a)g(mb)g(a))τ+1 and

    Ω=1τ+2[{(g(a+mb2)g(a)g(mb)g(a))τ+2}+{(g(mb)g(a+mb2)g(mb)g(a))τ+2}]

    τ+1τ+2[{(g(a+mb2)g(a)g(mb)g(a))τ+2}+{(g(mb)g(a+mb2)g(mb)g(a))τ+2}]

    (g(a+mb2)g(a)g(mb)g(a))τ+1(g(mb)g(a+mb2)g(mb)g(a))+(g(a+mb2)g(a)g(mb)g(a))(g(mb)g(a+mb2)g(mb)g(a))τ+1.

    Proof. Using Lemma 3.2, power mean inequality, (3.8) and m-convexity of |(fg)|q1 respectively, we have

    |(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)][(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p)]|[mba|a+mbtt(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))|d(g(t))]11q1[mba|a+mbtt(g(mb)g(s))τ1Eρ,r,k,cσ,τ,δ(ω(g(mb)g(s))σ;p)h(g(s))d(g(s))||f(g(t))|q1]1q1. (3.11)

    Since |(fg)|q1 is m-convex on [a,b], we have

    |f(g(t))|q1g(mb)g(t)g(mb)g(a)|f(g(a))|q1+mg(t)g(a)g(mb)g(a)|f(g(b))|q1. (3.12)

    Using h=supt[a,mb]|h(t)|, and absolute convergence of extended Mittag-Leffler function, inequality (3.11) becomes

    |(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+hg)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mbhg)(a;p)][(gΥρ,r,k,cσ,τ,δ,ω,a+(fg)(hg))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb(fg)(hg))(a;p)]|h11q1M11q1[a+mb2a(a+mbtt(g(mb)g(s))τ1d(g(s)))d(g(t))+ba+mb2(ta+mbt(g(mb)g(s))τ1d(g(s)))d(g(t))]11q1×h1q1M1q1[a+mb2a(a+mbtt(g(mb)g(s))τ1d(g(s)))×(g(mb)g(t)g(mb)g(a)|f(g(a))|q1+mg(t)g(a)g(mb)g(a)|f(g(b))|q1)d(g(t))+ba+mb2(ta+mbt(g(mb)g(s))τ1d(g(s)))×(g(mb)g(t)g(mb)g(a)|f(g(a)))|q1+mg(t)g(a)g(mb)g(a)|f(g(b))|q1)d(g(t))]1q1.

    After integrating and simplifying above inequality, we get (3.10).

    Remark 5. ● In Theorem 3.4, if we put m=1, then we get [31,Theorem].

    ● In Theorem 3.4, if we put g=I and p=0, then we get [3,Theorem 2.6].

    ● In Theorem 3.4, if we put g=I, p=0 and m=1, then we get [19,Theorem 2.6].

    ● In Theorem 3.4, if we put g=I, then we get [4,Theorem].

    ● In Theorem 3.4, if we put g=I, m=1, then we get [16,Theorem 2.5].

    This work provides the Hadamard and the Fejér-Hadamard inequalities for generalized extended fractional integral operators involving monotonically increasing function. These inequalities are obtained by using m-convex function which give results for convex function in particular. The presented results are generalizations of several fractional integral inequalities which are directly connected, consequently the well-known published results are quoted in remarks.

    1. The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).

    2. This work was sponsored in part by National key research and development projects of China (2017YFB1300502).

    All authors declare no conflicts of interest in this paper.


    Acknowledgments



    The authors thank Ian Q. Whishaw, Ingrid De Miranda Esteves, Rui Pais and Deeksha Pahwa for comments on the manuscript. We thank HaoRan Chang and Adam Neumann for useful discussions. We also thank Ian Q. Whishaw, Bruce L. McNaughton and G. Campbell (Cam) Teskey for inspiring discussion on the relation between seizures and memory.

    Funding



    This work was supported by a CIHR Project grant to AL and Alberta Innovates Graduate Student Scholarship awarded to RD.

    Conflict of interest



    The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

    Author contributions



    Ritwik Das and Artur Luczak conceptualized this work and wrote this manuscript.

    [1] Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265: 676-679. https://doi.org/10.1126/science.8036517
    [2] Beenhakker MP, Huguenard JR (2009) Neurons that Fire Together Also Conspire Together: Is Normal Sleep Circuitry Hijacked to Generate Epilepsy?. Neuron 62: 612-632. https://doi.org/10.1016/j.neuron.2009.05.015
    [3] Neumann AR, Raedt R, Steenland HW, et al. (2017) Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy. Brain 140: 2355-2369. https://doi.org/10.1093/brain/awx179
    [4] Matos G, Tufik S, Scorza FA, et al. (2011) Sleep, epilepsy and translational research: What can we learn from the laboratory bench?. Prog Neurobiol 95: 396-405. https://doi.org/10.1016/j.pneurobio.2011.09.006
    [5] Karoly PJ, Rao VR, Gregg NM, et al. (2021) Cycles in epilepsy. Nat Rev Neurol 17: 267-284. https://doi.org/10.1038/s41582-021-00464-1
    [6] Amengual-Gual M, Sánchez Fernández I, Loddenkemper T (2019) Patterns of epileptic seizure occurrence. Brain Res 1703: 3-12. https://doi.org/10.1016/j.brainres.2018.02.032
    [7] Gupta AK, Jeavons PM, Hughes RC, et al. (1983) Aura in temporal lobe epilepsy: clinical and electroencephalographic correlation. J Neurol Neurosur Ps 46: 1079-1083. https://doi.org/10.1136/jnnp.46.12.1079
    [8] Boada C, Grossman S, Dugan P, et al. (2020) Aura Semiology as a Predictor of Outcomes Following Epilepsy Surgery (634). Neurology 94.
    [9] Engel J (2001) A Proposed Diagnostic Scheme for People with Epileptic Seizures and with Epilepsy: Report of the ILAE Task Force on Classification and Terminology. Epilepsia 42: 796-803. https://doi.org/10.1046/j.1528-1157.2001.10401.x
    [10] Engel J (2006) ILAE classification of epilepsy syndromes. Epilepsy Res 70: 5-10. https://doi.org/10.1016/j.eplepsyres.2005.11.014
    [11] Fisher RS, Cross JH, D'Souza C, et al. (2017) Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 58: 531-542. https://doi.org/10.1111/epi.13671
    [12] Koutroumanidis M, Panayiotopoulos C (2004) Reflex seizures and reflex epilepsies. Epilepsy in Children, 2E . CRC Press 243-249. https://doi.org/10.1201/b13560-36
    [13] Xue LY, Ritaccio AL (2006) Reflex Seizures and Reflex Epilepsy. Am J Electroneurodiagnostic Technol 46: 39-48. https://doi.org/10.1080/1086508X.2006.11079556
    [14] Navarro V, Adam C, Petitmengin C, et al. (2006) Toothbrush-Thinking Seizures. Epilepsia 47: 1971-1973. https://doi.org/10.1111/j.1528-1167.2006.00822.x
    [15] Irmen F, Wehner T, Lemieux L (2015) Do reflex seizures and spontaneous seizures form a continuum?—Triggering factors and possible common mechanisms. Seizure 25: 72-79. https://doi.org/10.1016/j.seizure.2014.12.006
    [16] Nguyen PV, Abel T, Kandel ER (1994) Requirement of a Critical Period of Transcription for Induction of a Late Phase of LTP. Science 265: 1104-1107. https://doi.org/10.1126/science.8066450
    [17] Palop JJ, Chin J, Roberson ED, et al. (2007) Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease. Neuron 55: 697-711. https://doi.org/10.1016/j.neuron.2007.07.025
    [18] Bower MR, Stead M, Bower RS, et al. (2015) Evidence for Consolidation of Neuronal Assemblies after Seizures in Humans. J Neurosci 35: 999-1010. https://doi.org/10.1523/JNEUROSCI.3019-14.2015
    [19] de Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63: 541-567. https://doi.org/10.1016/S0301-0082(00)00026-5
    [20] Bower MR, Kucewicz MT, st. Louis EK, et al. (2017) Reactivation of seizure-related changes to interictal spike shape and synchrony during postseizure sleep in patients. Epilepsia 58: 94-104. https://doi.org/10.1111/epi.13614
    [21] Del Felice A, Storti SF, Manganotti P (2015) Sleep affects cortical source modularity in temporal lobe epilepsy: A high-density EEG study. Clin Neurophysiol 126: 1677-1683. https://doi.org/10.1016/j.clinph.2014.12.003
    [22] Lambert I, Roehri N, Giusiano B, et al. (2018) Brain regions and epileptogenicity influence epileptic interictal spike production and propagation during NREM sleep in comparison with wakefulness. Epilepsia 59: 235-243. https://doi.org/10.1111/epi.13958
    [23] Sparks FT, Liao Z, Li W, et al. (2020) Hippocampal adult-born granule cells drive network activity in a mouse model of chronic temporal lobe epilepsy. Nat Commun 11: 6138. https://doi.org/10.1038/s41467-020-19969-2
    [24] Georgopoulou V, Spruyt K, Garganis K, et al. (2021) Altered Sleep-Related Consolidation and Neurocognitive Comorbidity in CECTS. Front Hum Neurosci 15: 244. https://doi.org/10.3389/fnhum.2021.563807
    [25] Halász P, Bódizs R, Ujma PP, et al. (2019) Strong relationship between NREM sleep, epilepsy and plastic functions—A conceptual review on the neurophysiology background. Epilepsy Res 150: 95-105. https://doi.org/10.1016/j.eplepsyres.2018.11.008
    [26] Hahn MA, Heib D, Schabus M, et al. (2020) Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife 9: 1-21. https://doi.org/10.7554/eLife.53730
    [27] Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437: 1272-1278. https://doi.org/10.1038/nature04286
    [28] Buzsáki G (1996) The Hippocampo-Neocortical Dialogue. Cereb Cortex 6: 81-92. https://doi.org/10.1093/cercor/6.2.81
    [29] McClelland JL, McNaughton B, O'Reilly R (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102 3: 419-457. https://doi.org/10.1037/0033-295X.102.3.419
    [30] Squire LR (2004) Memory systems of the brain: A brief history and current perspective. Neurobiol Learn Mem 82: 171-177. https://doi.org/10.1016/j.nlm.2004.06.005
    [31] Gelinas JN, Khodagholy D, Thesen T, et al. (2016) Interictal epileptiform discharges induce hippocampal–cortical coupling in temporal lobe epilepsy. Nat Med 22: 641-648. https://doi.org/10.1038/nm.4084
    [32] Kleen JK, Scott RC, Holmes GL, et al. (2010) Hippocampal interictal spikes disrupt cognition in rats. Ann Neurol 67: 250-257. https://doi.org/10.1002/ana.21896
    [33] Kleen JK, Scott RC, Holmes GL, et al. (2013) Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81: 18-24. https://doi.org/10.1212/WNL.0b013e318297ee50
    [34] Lambert I, Tramoni-Negre E, Lagarde S, et al. (2020) Hippocampal Interictal Spikes during Sleep Impact Long-Term Memory Consolidation. Ann Neurol 87: 976-987. https://doi.org/10.1002/ana.25744
    [35] Lambert I, Tramoni-Negre E, Lagarde S, et al. (2021) Accelerated long-term forgetting in focal epilepsy: Do interictal spikes during sleep matter?. Epilepsia 62: 563-569. https://doi.org/10.1111/epi.16823
    [36] Maharathi B, Wlodarski R, Bagla S, et al. (2019) Interictal spike connectivity in human epileptic neocortex. Clin Neurophysiol 130: 270-279. https://doi.org/10.1016/j.clinph.2018.11.025
    [37] Arbune AA, Meritam Larsen P, Wüstenhagen S, et al. (2021) Modulation in time of the interictal spiking pattern related to epileptic seizures. Clin Neurophysiol 132: 1083-1088. https://doi.org/10.1016/j.clinph.2021.01.026
    [38] Buzsáki G (2015) Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25: 1073-1188. https://doi.org/10.1002/hipo.22488
    [39] Jacobs J, Zijlmans M, Zelmann R, et al. (2010) High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 67: 209-220. https://doi.org/10.1002/ana.21847
    [40] Jacobs J, LeVan P, Chander R, et al. (2008) Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 49: 1893-1907. https://doi.org/10.1111/j.1528-1167.2008.01656.x
    [41] Jacobs J, Banks S, Zelmann R, et al. (2016) Spontaneous ripples in the hippocampus correlate with epileptogenicity and not memory function in patients with refractory epilepsy. Epilepsy Behav 62: 258-266. https://doi.org/10.1016/j.yebeh.2016.05.025
    [42] Liu S, Parvizi J (2019) Cognitive refractory state caused by spontaneous epileptic high-frequency oscillations in the human brain. Sci Transl Med 11. https://doi.org/10.1126/scitranslmed.aax7830
    [43] Ewell LA, Fischer KB, Leibold C, et al. (2019) The impact of pathological high-frequency oscillations on hippocampal network activity in rats with chronic epilepsy. eLife 8. https://doi.org/10.7554/eLife.42148
    [44] Karlócai MR, Kohus Z, Káli S, et al. (2014) Physiological sharp wave-ripples and interictal events in vitro: what's the difference?. Brain 137: 463-485. https://doi.org/10.1093/brain/awt348
    [45] Augusto R, Mendes V, Zacharias LR, et al. Hijacking of hippocampal-cortical oscillatory coupling during sleep in temporal lobe epilepsy (2019)121: 106608. https://doi.org/10.1016/j.yebeh.2019.106608
    [46] Teskey GC (2020) Kindling. Oxford Research Encyclopedia of Psychology . https://doi.org/10.1093/acrefore/9780190236557.013.790
    [47] Goddard G v (1967) Development of Epileptic Seizures through Brain Stimulation at Low Intensity. Nature 214: 1020-1021. https://doi.org/10.1038/2141020a0
    [48] Marescaux C, Vergnes M, Kiesmann M, et al. (1987) Kindling of audiogenic seizures in Wistar rats: An EEG study. Exp Neurol 97: 160-168. https://doi.org/10.1016/0014-4886(87)90290-1
    [49] Cela E, McFarlan AR, Chung AJ, et al. (2019) An Optogenetic Kindling Model of Neocortical Epilepsy. Sci Rep 9: 1-12. https://doi.org/10.1038/s41598-019-41533-2
    [50] Shimada T, Yamagata K (2018) Pentylenetetrazole-induced kindling mouse model. J Vis Exp 2018. https://doi.org/10.3791/56573
    [51] McIntyre DC, Poulter MO, Gilby K (2002) Kindling: some old and some new. Epilepsy Res 50: 79-92. https://doi.org/10.1016/S0920-1211(02)00071-2
    [52] Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalography Clin Neurophysiol 32: 281-294. https://doi.org/10.1016/0013-4694(72)90177-0
    [53] Goddard G v, Douglas RM (1975) Does the engram of kindling model the engram of normal long term memory?. Can J Neurol Sci 2: 385-394. https://doi.org/10.1017/S0317167100020539
    [54] Goddard G v, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295-330. https://doi.org/10.1016/0014-4886(69)90128-9
    [55] Kundap UP, Paudel YN, Kumari Y, et al. (2019) Embelin prevents seizure and associated cognitive impairments in a pentylenetetrazole-induced kindling zebrafish model. Front Pharmacol 10: 315. https://doi.org/10.3389/fphar.2019.00315
    [56] Metcalf CS, Huff J, Thomson KE, et al. (2019) Evaluation of antiseizure drug efficacy and tolerability in the rat lamotrigine-resistant amygdala kindling model. Epilepsia Open 4: 452-463. https://doi.org/10.1002/epi4.12354
    [57] Wada JA (1977) Pharmacological Prophylaxis in the Kindling Model of Epilepsy. Arch Neurol 34: 389-395. https://doi.org/10.1001/archneur.1977.00500190023003
    [58] McNamara JO (1989) Development of New Pharmacological Agents for Epilepsy: Lessons from the Kindling Model. Epilepsia 30: S13-S18. https://doi.org/10.1111/j.1528-1157.1989.tb05809.x
    [59] Mody I, Heinemann U (1987) NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Nature 326: 701-704. https://doi.org/10.1038/326701a0
    [60] Lynch M, Sayin Ü, Golarai G, et al. (2000) NMDA Receptor-Dependent Plasticity of Granule Cell Spiking in the Dentate Gyrus of Normal and Epileptic Rats. J Neurophysiol 84: 2868-2879. https://doi.org/10.1152/jn.2000.84.6.2868
    [61] Dalby NO, Mody I (2003) Activation of NMDA Receptors in Rat Dentate Gyrus Granule Cells by Spontaneous and Evoked Transmitter Release. J Neurophysiol 90: 786-797. https://doi.org/10.1152/jn.00118.2003
    [62] Bliss TVP, Collingridge GL, Morris RGM, et al. (2018) Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum 24: A103-A120. https://doi.org/10.1515/nf-2017-A059
    [63] Citri A, Malenka RC (2008) Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 33: 18-41. https://doi.org/10.1038/sj.npp.1301559
    [64] Malenka RC, Nicoll RA (1999) Long-Term Potentiation--A Decade of Progress?. Science 285: 1870-1874. https://doi.org/10.1126/science.285.5435.1870
    [65] Abraham WC, Jones OD, Glanzman DL (2019) Is plasticity of synapses the mechanism of long-term memory storage?. npj Sci Learn 4: 9. https://doi.org/10.1038/s41539-019-0048-y
    [66] Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39. https://doi.org/10.1038/361031a0
    [67] Lømo T (2003) The discovery of long-term potentiation. Philos T Roy Soc B 358: 617-620. https://doi.org/10.1098/rstb.2002.1226
    [68] Nicoll RA (2017) A Brief History of Long-Term Potentiation. Neuron 93: 281-290. https://doi.org/10.1016/j.neuron.2016.12.015
    [69] Kauer JA, Malenka RC, Nicoll RA (1988) A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1: 911-917. https://doi.org/10.1016/0896-6273(88)90148-1
    [70] Ruan Y, Xu C, Lan J, et al. (2020) Low-frequency Stimulation at the Subiculum is Anti-convulsant and Anti-drug-resistant in a Mouse Model of Lamotrigine-resistant Temporal Lobe Epilepsy. Neurosci Bull 36: 654. https://doi.org/10.1007/s12264-020-00482-x
    [71] Mihály I, Orbán-Kis K, Gáll Z, et al. (2020) Amygdala low-frequency stimulation reduces pathological phase-amplitude coupling in the pilocarpine model of epilepsy. Brain Sci 10: 1-18. https://doi.org/10.3390/brainsci10110856
    [72] Paschen E, Elgueta C, Heining K, et al. (2020) Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. eLife 9: 1-57. https://doi.org/10.7554/eLife.54518
    [73] Albensi BC, Ata G, Schmidt E, et al. (2004) Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices. Brain Res 998: 56-64. https://doi.org/10.1016/j.brainres.2003.11.010
    [74] Velı́šek L, Velı́šková J, Stanton PK (2002) Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 326: 61-63. https://doi.org/10.1016/S0304-3940(02)00294-X
    [75] Wagner JJ, Alger BE (1996) Homosynaptic LTD and depotentiation: Do they differ in name only?. Hippocampus 6: 24-29. https://doi.org/10.1002/(SICI)1098-1063(1996)6:1<24::AID-HIPO5>3.0.CO;2-7
    [76] Chapman KB, Yousef TA, Foster A, et al. (2021) Mechanisms for the Clinical Utility of Low-Frequency Stimulation in Neuromodulation of the Dorsal Root Ganglion. Neuromodulation: Technology at the Neural Interface 24: 738-745. https://doi.org/10.1111/ner.13323
    [77] Nicholls RE, Alarcon JM, Malleret G, et al. (2008) Transgenic Mice Lacking NMDAR-Dependent LTD Exhibit Deficits in Behavioral Flexibility. Neuron 58: 104-117. https://doi.org/10.1016/j.neuron.2008.01.039
    [78] Malleret G, Alarcon JM, Martel G, et al. (2010) Bidirectional Regulation of Hippocampal Long-Term Synaptic Plasticity and Its Influence on Opposing Forms of Memory. J Neurosci 30: 3813-3825. https://doi.org/10.1523/JNEUROSCI.1330-09.2010
    [79] Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17: 777-792. https://doi.org/10.1038/nrn.2016.141
    [80] Sasaguri H, Nilsson P, Hashimoto S, et al. (2017) APP mouse models for Alzheimer's disease preclinical studies. EMBO J 36: 2473-2487. https://doi.org/10.15252/embj.201797397
    [81] Bezzina C, Verret L, Juan C, et al. (2015) Early onset of hypersynchronous network activity and expression of a marker of chronic seizures in the Tg2576 mouse model of Alzheimer's disease. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0119910
    [82] Busche MA, Konnerth A (2016) Impairments of neural circuit function in Alzheimer's disease. Philos T Roy Soc B 371. https://doi.org/10.1098/rstb.2015.0429
    [83] Ramírez-Toraño F, García-Alba J, Bruña R, et al. (2021) Hypersynchronized Magnetoencephalography Brain Networks in Patients with Mild Cognitive Impairment and Alzheimer's Disease in down Syndrome. Brain Connect 11: 725-733. https://doi.org/10.1089/brain.2020.0897
    [84] Noebels J (2011) A perfect storm: Converging paths of epilepsy and Alzheimer's dementia intersect in the hippocampal formation. Epilepsia 52: 39-46. https://doi.org/10.1111/j.1528-1167.2010.02909.x
    [85] Yassa MA, Stark SM, Bakker A, et al. (2010) High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. NeuroImage 51: 1242-1252. https://doi.org/10.1016/j.neuroimage.2010.03.040
    [86] Lam AD, Deck G, Goldman A, et al. (2017) Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer's disease. Nat Med 23: 678-680. https://doi.org/10.1038/nm.4330
    [87] Wilson IA, Gallagher M, Eichenbaum H, et al. (2006) Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci 29: 662-670. https://doi.org/10.1016/j.tins.2006.10.002
    [88] Leppik IE, Birnbaum AK (2010) Epilepsy in the Elderly. Ann NY Acad Sci 1184: 208. https://doi.org/10.1111/j.1749-6632.2009.05113.x
    [89] Olafsson E, Ludvigsson P, Gudmundsson G, et al. (2005) Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. Lancet Neurol 4: 627-634. https://doi.org/10.1016/S1474-4422(05)70172-1
    [90] Liu D, Lu H, Stein E, et al. (2018) Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging 70: 160-169. https://doi.org/10.1016/j.neurobiolaging.2018.06.016
    [91] Jacob L, Bohlken J, Schmitz B, et al. (2019) Incidence of epilepsy and associated factors in elderly patients in Germany. Epilepsy Behav 90: 107-111. https://doi.org/10.1016/j.yebeh.2018.10.035
    [92] Koh MT, Haberman RP, Foti S, et al. (2010) Treatment Strategies Targeting Excess Hippocampal Activity Benefit Aged Rats with Cognitive Impairment. Neuropsychopharmacology 35: 1016-1025. https://doi.org/10.1038/npp.2009.207
    [93] Sanchez PE, Zhu L, Verret L, et al. (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. P Natl Acad Sci 109: E2895 LP-E2903. https://doi.org/10.1073/pnas.1121081109
    [94] Wolf P (2017) Reflex epileptic mechanisms in humans: Lessons about natural ictogenesis. Epilepsy Behav 71: 118-123. https://doi.org/10.1016/j.yebeh.2015.01.009
    [95] Wieser HG (1998) Seizure induction in reflex seizures and reflex epilepsy. Adv Neurol 75: 69-85.
    [96] Arslan Y, Yilmaz Z, Mülayim S, et al. (2013) Eating Epilepsy After Resection of Frontal Meningioma: A Case Report. Arch Epilepsy 19: 85-89. https://doi.org/10.5505/epilepsi.2013.19483
    [97] Ferlazzo E, Zifkin BG, Andermann E, et al. (2005) Cortical triggers in generalized reflex seizures and epilepsies. Brain 128: 700-710. https://doi.org/10.1093/brain/awh446
    [98] Szűcs A, Rosdy B, Kelemen A, et al. (2019) Reflex seizure triggering: Learning about seizure producing systems. Seizure 69: 25-30. https://doi.org/10.1016/j.seizure.2019.03.019
    [99] Falip M, Rodriguez-Bel L, Castañer S, et al. (2018) Musicogenic reflex seizures in epilepsy with glutamic acid decarbocylase antibodies. Acta Neurol Scand 137: 272-276. https://doi.org/10.1111/ane.12799
    [100] Gelisse P, Thomas P, Padovani R, et al. (2003) Ictal SPECT in a case of pure musicogenic epilepsy. Epileptic Disord 5: 133-137.
    [101] Jallon P, Heraut LA, Vanelle JM (1989) Musicogenic epilepsy. Reflex Seizures and Reflex Epilepsies, Editions Médicine et Hygiène, Geneva : 269-274.
    [102] Tezer FI, Bilginer B, Oguz KK, et al. (2014) Musicogenic and spontaneous seizures: EEG analyses with hippocampal depth electrodes. Epileptic Disord 16: 500-505. https://doi.org/10.1684/epd.2014.0706
    [103] Luczak A, McNaughton BL, Harris KD (2015) Packet-based communication in the cortex. Nat Rev Neurosci 16: 745-755. https://doi.org/10.1038/nrn4026
    [104] Luczak A, Barthó P, Harris KD (2009) Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations. Neuron 62: 413-425. https://doi.org/10.1016/j.neuron.2009.03.014
    [105] Bortel A, Yao ZS, Shmuel A (2019) A rat model of somatosensory-evoked reflex seizures induced by peripheral stimulation. Epilepsy Res 157: 106209. https://doi.org/10.1016/j.eplepsyres.2019.106209
    [106] Boly M, Jones B, Findlay G, et al. (2017) Altered sleep homeostasis correlates with cognitive impairment in patients with focal epilepsy. Brain 140: 1026-1040. https://doi.org/10.1093/brain/awx017
    [107] Sitnikova E, Grubov V, Hramov AE (2020) Slow-wave activity preceding the onset of 10–15-Hz sleep spindles and 5–9-Hz oscillations in electroencephalograms in rats with and without absence seizures. J Sleep Res 29: e12927. https://doi.org/10.1111/jsr.12927
    [108] van Luijtelaar G, Hramov A, Sitnikova E, et al. (2011) Spike–wave discharges in WAG/Rij rats are preceded by delta and theta precursor activity in cortex and thalamus. Clin Neurophysiol 122: 687-695. https://doi.org/10.1016/j.clinph.2010.10.038
    [109] Silva BA, Astori S, Burns AM, et al. (2021) A thalamo-amygdalar circuit underlying the extinction of remote fear memories. Nat Neurosci 24: 964-974. https://doi.org/10.1038/s41593-021-00856-y
    [110] Genzel L, Dragoi G, Frank L, et al. (2020) A consensus statement: defining terms for reactivation analysis. Philos T Roy Soc B 375: 20200001. https://doi.org/10.1098/rstb.2020.0001
    [111] Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406: 722-726. https://doi.org/10.1038/35021052
    [112] Winters BD, Tucci MC, DaCosta-Furtado M (2009) Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learn Memory 16: 545-553. https://doi.org/10.1101/lm.1509909
    [113] Simon KCNS, Gómez RL, Nadel L (2018) Losing memories during sleep after targeted memory reactivation. Neurobiol Learn Mem 151: 10-17. https://doi.org/10.1016/j.nlm.2018.03.003
    [114] Brunet A, Saumier D, Liu A, et al. (2018) Reduction of PTSD Symptoms With Pre-Reactivation Propranolol Therapy: A Randomized Controlled Trial. Am J Psychiat 175: 427-433. https://doi.org/10.1176/appi.ajp.2017.17050481
    [115] Schwabe L, Nader K, Wolf OT, et al. (2012) Neural Signature of Reconsolidation Impairments by Propranolol in Humans. Biol Psychiatry 71: 380-386. https://doi.org/10.1016/j.biopsych.2011.10.028
    [116] Cahill L, Pham CA, Setlow B (2000) Impaired Memory Consolidation in Rats Produced with β-Adrenergic Blockade. Neurobiol Learn Mem 74: 259-266. https://doi.org/10.1006/nlme.1999.3950
    [117] Soeter M, Kindt M (2015) An Abrupt Transformation of Phobic Behavior After a Post-Retrieval Amnesic Agent. Biol Psychiatry 78: 880-886. https://doi.org/10.1016/j.biopsych.2015.04.006
    [118] LaBar KS, Cabeza R (2006) Cognitive neuroscience of emotional memory. Nat Rev Neurosci 7: 54-64. https://doi.org/10.1038/nrn1825
    [119] Liang KC, Juler RG, McGaugh JL (1986) Modulating effects of posttraining epinephrine on memory: Involvement of the amygdala noradrenergic system. Brain Res 368: 125-133. https://doi.org/10.1016/0006-8993(86)91049-8
    [120] Dunsmoor JE, Niv Y, Daw N, et al. (2015) Rethinking Extinction. Neuron 88: 47-63. https://doi.org/10.1016/j.neuron.2015.09.028
    [121] Blundell J, Kouser M, Powell CM (2008) Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol Learn Mem 90: 28-35. https://doi.org/10.1016/j.nlm.2007.12.004
    [122] Galanopoulou AS, Buckmaster PS, Staley KJ, et al. (2012) Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia 53: 571-582. https://doi.org/10.1111/j.1528-1167.2011.03391.x
    [123] González Otárula KA, von Ellenrieder N, Cuello-Oderiz C, et al. (2019) High-Frequency Oscillation Networks and Surgical Outcome in Adult Focal Epilepsy. Ann Neurol 85: 485-494. https://doi.org/10.1002/ana.25442
    [124] Roullet P, Vaiva G, Véry E, et al. (2021) Traumatic memory reactivation with or without propranolol for PTSD and comorbid MD symptoms: a randomised clinical trial. Neuropsychopharmacology 46: 1643-1649. https://doi.org/10.1038/s41386-021-00984-w
    [125] Trenite DGAK-N, DiVentura BD, Pollard JR, et al. (2019) Suppression of the photoparoxysmal response in photosensitive epilepsy with cenobamate (YKP3089). Neurology 93: e559-e567. https://doi.org/10.1212/WNL.0000000000007894
    [126] Schjetnan AG, Luczak A (2011) Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat. JoVE (Journal of Visualized Experiments) 19: e3282. https://doi.org/10.3791/3282
    [127] Luczak A, Narayanan NS (2005) Spectral representation—analyzing single-unit activity in extracellularly recorded neuronal data without spike sorting. J Neurosci Meth 144: 53-61. https://doi.org/10.1016/j.jneumeth.2004.10.009
    [128] Ryait H, Bermudez-Contreras E, Harvey M, et al. (2019) Data-driven analyses of motor impairments in animal models of neurological disorders. PLoS Biology 17: e3000516. https://doi.org/10.1371/journal.pbio.3000516
    [129] Luczak A, McNaughton BL, Kubo Y (2022) Neurons learn by predicting future activity. Nat Mach Intell 4: 62-72. https://doi.org/10.1038/s42256-021-00430-y
    [130] Chalmers E, Contreras EB, Robertson B, Luczak A, Gruber A (2017) Learning to predict consequences as a method of knowledge transfer in reinforcement learning. IEEE T Neural Network Learn Systems 29(6): 2259-2270. https://doi.org/10.1109/TNNLS.2017.2690910
  • This article has been cited by:

    1. Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Yu-Ming Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, 2021, 2021, 1687-1847, 10.1186/s13662-020-03163-1
    2. Muhammad Aamir Ali, Yu-Ming Chu, Hüseyin Budak, Abdullah Akkurt, Hüseyin Yıldırım, Manzoor Ahmed Zahid, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, 2021, 2021, 1687-1847, 10.1186/s13662-020-03195-7
    3. Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456
    4. Artion Kashuri, Sajid Iqbal, Saad Ihsan Butt, Jamshed Nasir, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Basil K. Papadopoulos, Trapezium-Type Inequalities for k -Fractional Integral via New Exponential-Type Convexity and Their Applications, 2020, 2020, 2314-4785, 1, 10.1155/2020/8672710
    5. Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z
    6. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9
    7. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418
    8. Xiaoli Qiang, Abid Mahboob, Yu-Ming Chu, Jiabin Zuo, Numerical Approximation of Fractional-Order Volterra Integrodifferential Equation, 2020, 2020, 2314-8888, 1, 10.1155/2020/8875792
    9. Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412
    10. Muhammad Shoaib Saleem, Yu-Ming Chu, Nazia Jahangir, Huma Akhtar, Chahn Yong Jung, On Generalized Strongly p-Convex Functions of Higher Order, 2020, 2020, 2314-4629, 1, 10.1155/2020/8381431
    11. Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441
    12. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7
    13. Xiaobin Wang, Muhammad Shoaib Saleem, Kiran Naseem Aslam, Xingxing Wu, Tong Zhou, Sunil Kumar, On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h -Convex Functions, 2020, 2020, 2314-4785, 1, 10.1155/2020/8829140
    14. Jian Wang, Ayesha Jamal, Xuemei Li, Kamal Shah, Numerical Solution of Fractional-Order Fredholm Integrodifferential Equation in the Sense of Atangana–Baleanu Derivative, 2021, 2021, 1563-5147, 1, 10.1155/2021/6662808
    15. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    16. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451
    17. Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453
    18. Lei Chen, Muhammad Shoaib Saleem, Muhammad Sajid Zahoor, Rahat Bano, Xiaolong Qin, Some Inequalities Related to Interval-Valued η h -Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/6617074
    19. Qi Li, Muhammad Shoaib Saleem, Peiyu Yan, Muhammad Sajid Zahoor, Muhammad Imran, Ahmet Ocak Akdemir, On Strongly Convex Functions via Caputo–Fabrizio-Type Fractional Integral and Some Applications, 2021, 2021, 2314-4785, 1, 10.1155/2021/6625597
    20. Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan, Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator, 2021, 6, 2473-6988, 6377, 10.3934/math.2021374
    21. Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li, On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes, 2021, 6, 2473-6988, 6322, 10.3934/math.2021371
    22. Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y
    23. Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182
    24. Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392
    25. Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Sana Sajid, Muhammad Sajid Zahoor, Artion Kashuri, Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function, 2021, 5, 2504-3110, 269, 10.3390/fractalfract5040269
    26. Yan Zhao, M. Shoaib Saleem, Shahid Mehmood, Zabidin Salleh, Sibel Yalçın, On Extended Convex Functions via Incomplete Gamma Functions, 2021, 2021, 2314-8888, 1, 10.1155/2021/1924242
    27. Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined $(\alpha ,h-m)$-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0
    28. WENGUI YANG, CERTAIN NEW WEIGHTED YOUNG- AND PÓLYA–SZEGÖ-TYPE INEQUALITIES FOR UNIFIED FRACTIONAL INTEGRAL OPERATORS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION WITH APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22501067
    29. Kamsing Nonlaopon, Ghulam Farid, Ammara Nosheen, Muhammad Yussouf, Ebenezer Bonyah, Mawardi Bahri, New Generalized Riemann–Liouville Fractional Integral Versions of Hadamard and Fejér–Hadamard Inequalities, 2022, 2022, 2314-4785, 1, 10.1155/2022/8173785
    30. Ghulam Farid, Muhammad Yussouf, Kamsing Nonlaopon, Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals, 2021, 5, 2504-3110, 253, 10.3390/fractalfract5040253
    31. Wenyan Jia, Muhammad Yussouf, Ghulam Farid, Khuram Ali Khan, Rafael Morales, Hadamard and Fejér–Hadamard Inequalities for α , h − m − p -Convex Functions via Riemann–Liouville Fractional Integrals, 2021, 2021, 1563-5147, 1, 10.1155/2021/9945114
    32. Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch, Refined estimates and generalization of some recent results with applications, 2021, 6, 2473-6988, 10728, 10.3934/math.2021623
    33. Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338
    34. Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201
    35. Muhammad Samraiz, Maria Malik, Kanwal Saeed, Saima Naheed, Sina Etemad, Manuel De la Sen, Shahram Rezapour, A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications, 2022, 14, 2073-8994, 2682, 10.3390/sym14122682
    36. Muzammil Mukhtar, Muhammad Yaqoob, Muhammad Samraiz, Iram Shabbir, Sina Etemad, Manuel De la Sen, Shahram Rezapour, Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples, 2023, 15, 2073-8994, 479, 10.3390/sym15020479
    37. Miguel Vivas-Cortez, Muzammil Mukhtar, Iram Shabbir, Muhammad Samraiz, Muhammad Yaqoob, On Fractional Integral Inequalities of Riemann Type for Composite Convex Functions and Applications, 2023, 7, 2504-3110, 345, 10.3390/fractalfract7050345
    38. Shahid Mubeen, Rana Safdar Ali, Yasser Elmasry, Ebenezer Bonyah, Artion Kashuri, Gauhar Rahman, Çetin Yildiz, A. Hussain, On Novel Fractional Integral and Differential Operators and Their Properties, 2023, 2023, 2314-4785, 1, 10.1155/2023/4165363
    39. Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin, Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities, 2024, 9, 2473-6988, 17696, 10.3934/math.2024860
    40. HUMAIRA KALSOOM, ZAREEN A. KHAN, NEW INEQUALITIES OF HERMITE–HADAMARD TYPE FOR n-POLYNOMIAL s-TYPE CONVEX STOCHASTIC PROCESSES, 2023, 31, 0218-348X, 10.1142/S0218348X23401953
    41. Wali Haider, Abdul Mateen, Hüseyin Budak, Asia Shehzadi, Loredana Ciurdariu, Novel Fractional Boole’s-Type Integral Inequalities via Caputo Fractional Operator and Their Implications in Numerical Analysis, 2025, 13, 2227-7390, 551, 10.3390/math13040551
    42. Moquddsa Zahra, Muhammad Ashraf, Ghulam Farid, Nawab Hussain, Fractional Hadamard-type inequalities for refined (α, h-m)-p-convex functions and their consequences, 2024, 38, 0354-5180, 5463, 10.2298/FIL2415463Z
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3733) PDF downloads(202) Cited by(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog