This paper studies the nonlinear vibrating behaviour of a nonlinear cantilever beam system (primary system) using a nonlinear absorber (the secondary system). The nonlinear vibrating behavior for the present dynamical system is considered with the effect of the external force. The one controller type, nonlinear saturation controller (NSC), is introduced to decrease the vibration of this system. Perturbation method treatment is produced to get the mathematical solution of the equations for the dynamical modeling with NSC. The perturbation technique is used to obtain the approximate solution of the dynamical system. This research focuses on resonance case with primary and 1:2 internal resonance. Time histories of the primary system and the controller are shown to demonstrate the reaction with and without control. The time-history response, as well as the impacts of the parameters on the system and controller, are simulated numerically using the MATLAB program. Routh-Hurwitz criterion is used to examine the stability of the system under primary resonance. A numerical simulation, using the MATLAB program, is obtained to show the time-history response, the effect of the parameters on the system and the controller. The effects of system parameters on the performance of the primary system and the controller are investigated. A comparison between all the obtained solutions made to confirm the results. Validation curves are provided to show how closely the perturbation and numerical solutions are related. A comparison is made with recently released papers.
Citation: Hany Bauomy, Ashraf Taha. Nonlinear saturation controller simulation for reducing the high vibrations of a dynamical system[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3487-3508. doi: 10.3934/mbe.2022161
[1] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[2] | Qiang Li, Lili Ma . 1-parameter formal deformations and abelian extensions of Lie color triple systems. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129 |
[3] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[4] | Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058 |
[5] | Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237 |
[6] |
Bing Sun, Liangyun Chen, Yan Cao .
On the universal |
[7] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[8] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[9] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[10] | Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264 |
This paper studies the nonlinear vibrating behaviour of a nonlinear cantilever beam system (primary system) using a nonlinear absorber (the secondary system). The nonlinear vibrating behavior for the present dynamical system is considered with the effect of the external force. The one controller type, nonlinear saturation controller (NSC), is introduced to decrease the vibration of this system. Perturbation method treatment is produced to get the mathematical solution of the equations for the dynamical modeling with NSC. The perturbation technique is used to obtain the approximate solution of the dynamical system. This research focuses on resonance case with primary and 1:2 internal resonance. Time histories of the primary system and the controller are shown to demonstrate the reaction with and without control. The time-history response, as well as the impacts of the parameters on the system and controller, are simulated numerically using the MATLAB program. Routh-Hurwitz criterion is used to examine the stability of the system under primary resonance. A numerical simulation, using the MATLAB program, is obtained to show the time-history response, the effect of the parameters on the system and the controller. The effects of system parameters on the performance of the primary system and the controller are investigated. A comparison between all the obtained solutions made to confirm the results. Validation curves are provided to show how closely the perturbation and numerical solutions are related. A comparison is made with recently released papers.
The notion of a pre-Lie algebra has been introduced independently by M. Gerstenhaber in deformation theory of rings and algebras [1] and by Vinberg, under the name of left-symmetric algebra, in his theory of homogeneous convex cones [2]. Its defining identity is weaker than associativity and lead also to a Lie algebra using commutators. This algebraic structure describes some properties of cochain spaces in Hochschild cohomology of an associative algebra, rooted trees and vector fields on affine spaces. Moreover, it is playing an increasing role in algebra, geometry and physics due to their applications in nonassociative algebras, combinatorics, numerical analysis and quantum field theory, see [3,4,5,6].
Hom-type algebras appeared naturally when studying q-deformations of some algebras of vector fields, like Witt and Virasoro algebras. It turns out that the Jacobi identity is no longer satisfied, these new structures involving a bracket and a linear map satisfy a twisted version of the Jacobi identity and define a so called Hom-Lie algebras which form a wider class, see [7,8]. Hom-pre-Lie algebras were introduced in [9] as a class of Hom-Lie admissible algebras, and play important roles in the study of Hom-Lie bialgebras and Hom-Lie 2-algebras [10,11,12]. Recently Hom-pre-Lie algebras were studied from several aspects. Cohomologies of Hom-pre-Lie algebras were studied in [13]; The geometrization of Hom-pre-Lie algebras was studied in [14]; Universal α-central extensions of Hom-pre-Lie algebras were studied in [15]; Hom-pre-Lie bialgebras were studied in [16,17]. Furthermore, connections between (Hom-)pre-Lie algebras and various algebraic structures have been established and discussed; like with Rota-Baxter operators, O-operators, (Hom-)dendriform algebras, (Hom-)associative algebras and Yang-Baxter equation, see [5,18,19,20,21,22].
The cohomology of pre-Lie algebras was defined in [23] and generalized in a straightforward way to Hom-pre-Lie algebras in [13]. Note that the cohomology given there has some restrictions: the second cohomology group can only control deformations of the multiplication, and it can not be applied to study simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. The main purpose of this paper is to define a new type of cohomology of Hom-pre-Lie algebras which is richer than the previous one. The obtained cohomology is called the full cohomology and allows to control simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. This type of cohomology was established for Hom-associative algebras and Hom-Lie algebras in [24,25], and called respectively α-type Hochschild cohomology and α-type Chevalley-Eilenberg cohomology. See [26,27,28] for more studies on deformations and extensions of Hom-Lie algebras.
The paper is organized as follows. In Section 2, first we recall some basics of Hom-Lie algebras, Hom-pre-Lie algebras and representations, and then provide our main result defining the full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. In Section 3, we study one parameter formal deformations of a Hom-pre-Lie algebra, where both the defining multiplication and homomorphism are deformed, using formal power series. We show that the full cohomology of Hom-pre-Lie algebras controls these simultaneous deformations. Moreover, a relationship between deformations of a Hom-pre-Lie algebra and deformations of its sub-adjacent Lie algebra is established. Section 4 deals with abelian extensions of Hom-pre-Lie algebras. We show that the full cohomology fits perfectly and its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a given representation. The proof of the key Lemma to show that the four operators define a cochain complex is lengthy and it is given in the Appendix.
In this section, first we recall some basic facts about Hom-Lie algebras and Hom-pre-Lie algebras. Then we introduce the full cohomology of Hom-pre-Lie algebras, which will be used to classify infinitesimal deformations and abelian extensions of Hom-pre-Lie algebras.
Definition 2.1. (see [7]) A Hom-Lie algebra is a triple (g,[⋅,⋅]g,ϕg) consisting of a vector space g, a skew-symmetric bilinear map [⋅,⋅]g:∧2g⟶g and a homomorphism ϕg:g⟶g, satisfying ϕg[x,y]=[ϕg(x),ϕg(y)] and
[ϕg(x),[y,z]g]g+[ϕg(y),[z,x]g]g+[ϕg(z),[x,y]g]g=0,∀x,y,z∈g. | (2.1) |
A Hom-Lie algebra (g,[⋅,⋅]g,ϕg) is said to be regular if ϕg is invertible.
Definition 2.2. (see [29]) A representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) on a vector space V with respect to β∈gl(V) is a linear map ρ:g⟶gl(V), such that for all x,y∈g, the following equalities are satisfied:
ρ(ϕg(x))∘β=β∘ρ(x), | (2.2) |
ρ([x,y]g)∘β=ρ(ϕg(x))∘ρ(y)−ρ(ϕg(y))∘ρ(x). | (2.3) |
We denote a representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) by a triple (V,β,ρ).
Definition 2.3. (see [9]) A Hom-pre-Lie algebra (A,⋅,α) is a vector space A equipped with a bilinear product ⋅:A⊗A⟶A, and α∈gl(A), such that for all x,y,z∈A, α(x⋅y)=α(x)⋅α(y) and the following equality is satisfied:
(x⋅y)⋅α(z)−α(x)⋅(y⋅z)=(y⋅x)⋅α(z)−α(y)⋅(x⋅z). | (2.4) |
A Hom-pre-Lie algebra (A,⋅,α) is said to be regular if α is invertible.
Let (A,⋅,α) be a Hom-pre-Lie algebra. The commutator [x,y]C=x⋅y−y⋅x defines a Hom-Lie algebra (A,[⋅,⋅]C,α), which is denoted by AC and called the sub-adjacent Hom-Lie algebra of (A,⋅,α).
Definition 2.4. (see [13]) A morphism from a Hom-pre-Lie algebra (A,⋅,α) to a Hom-pre-Lie algebra (A′,⋅′,α′) is a linear map f:A⟶A′ such that for all x,y∈A, the following equalities are satisfied:
f(x⋅y)=f(x)⋅′f(y),∀x,y∈A, | (2.5) |
f∘α=α′∘f. | (2.6) |
Definition 2.5. (see [17]) A representation of a Hom-pre-Lie algebra (A,⋅,α) on a vector space V with respect to β∈gl(V) consists of a pair (ρ,μ), where ρ:A⟶gl(V) is a representation of the sub-adjacent Hom-Lie algebra AC on V with respect to β∈gl(V), and μ:A⟶gl(V) is a linear map, satisfying, for all x,y∈A:
β∘μ(x)=μ(α(x))∘β, | (2.7) |
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (2.8) |
We denote a representation of a Hom-pre-Lie algebra (A,⋅,α) by a quadruple (V,β,ρ,μ). Furthermore, Let L,R:A⟶gl(A) be linear maps, where Lxy=x⋅y,Rxy=y⋅x. Then (A,α,L,R) is also a representation, which we call the regular representation.
Let (A,⋅,α) be a Hom-pre-Lie algebra. In the sequel, we will also denote the Hom-pre-Lie algebra multiplication ⋅ by ω.
Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,ω,α). We define Cnω(A;V) and Cnα(A;V) respectively by
Cnω(A;V)=Hom(∧n−1A⊗A,V),Cnα(A;V)=Hom(∧n−2A⊗A,V),∀n≥2. |
Define the set of cochains ˜Cn(A;V) by
{˜Cn(A;V)=Cnω(A;V)⊕Cnα(A;V),∀n≥2,˜C1(A;V)=Hom(A,V). | (2.9) |
For all (φ,ψ)∈˜Cn(A;V),x1,…,xn+1∈A, we define ∂ωω:Cnω(A;V)⟶Cn+1ω(A;V) by
(∂ωωφ)(x1,…,xn+1)=n∑i=1(−1)i+1ρ(αn−1(xi))φ(x1,…,^xi,…,xn+1)+n∑i=1(−1)i+1μ(αn−1(xn+1))φ(x1,…,^xi,…,xn,xi)−n∑i=1(−1)i+1φ(α(x1),…,^α(xi)…,α(xn),xi⋅xn+1)+∑1≤i<j≤n(−1)i+jφ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+1)), |
where the hat corresponds to deleting the element, define ∂αα:Cnα(A;V)⟶Cn+1α(A;V) by
(∂ααψ)(x1,…,xn)=n−1∑i=1(−1)iρ(αn−1(xi))ψ(x1,…,^xi,…,xn)+n−1∑i=1(−1)iμ(αn−1(xn))ψ(x1,…,^xi,…,xn−1,xi)−n−1∑i=1(−1)iψ(α(x1),…,^α(xi),…,α(xn−1),xi⋅xn)+∑1≤i<j≤n−1(−1)i+j−1ψ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn)), |
define ∂ωα:Cnω(A;V)⟶Cn+1α(A;V) by
(∂ωαφ)(x1,…,xn)=βφ(x1,…,xn)−φ(α(x1),…,α(xn)), |
and define ∂αω:Cnα(A;V)⟶Cn+1ω(A;V) by
(∂αωψ)(x1,…,xn+1)=∑1≤i<j≤n(−1)i+jρ([αn−2(xi),αn−2(xj)]C)ψ(x1,…,^xi,…,^xj,…,xn+1)+∑1≤i<j≤n(−1)i+jμ(αn−2(xi)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xj)−∑1≤i<j≤n(−1)i+jμ(αn−2(xj)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xi). |
Define the operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) by
˜∂(φ,ψ)=(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ),∀φ∈Cnω(A;V),ψ∈Cnα(A;V),n≥2, | (2.10) |
˜∂(φ)=(∂ωωφ,∂ωαφ),∀φ∈Hom(A,V). | (2.11) |
The following diagram will explain the above operators:
![]() |
Lemma 2.6. With the above notations, we have
∂ωω∘∂ωω+∂αω∘∂ωα=0, | (2.12) |
∂ωω∘∂αω+∂αω∘∂αα=0, | (2.13) |
∂ωα∘∂ωω+∂αα∘∂ωα=0, | (2.14) |
∂ωα∘∂αω+∂αα∘∂αα=0. | (2.15) |
Proof. The proof is given in the Appendix.
Theorem 2.7. The operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) defined as above satisfies ˜∂∘˜∂=0.
Proof. When n≥2, for all (φ,ψ)∈˜Cn(A;V), by (2.10) and Lemma 2.6, we have
˜∂∘˜∂(φ,ψ)=˜∂(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ)=(∂ωω∂ωωφ+∂ωω∂αωψ+∂αω∂ωαφ+∂αω∂ααψ,∂ωα∂ωωφ+∂ωα∂αωψ+∂αα∂ωαφ+∂αα∂ααψ)=0. |
When n=1, for all φ∈Hom(A,V), by (2.11) and Lemma 2.6, we have
˜∂∘˜∂(φ)=˜∂(∂ωωφ,∂ωαφ)=(∂ωω∂ωωφ+∂αω∂ωαφ,∂ωα∂ωωφ+∂αα∂ωαφ)=0. |
This finishes the proof.
We denote the set of closed n-cochains by ˜Zn(A;V) and the set of exact n-cochains by ˜Bn(A;V). We denote by ˜Hn(A;V)=˜Zn(A;V)/˜Bn(A;V) the corresponding cohomology groups.
Definition 2.8. Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,⋅,α). The cohomology of the cochain complex (⊕∞n=1˜Cn(A;V),∂) is called the full cohomology of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
We use ˜∂reg to denote the coboundary operator of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the regular representation. The corresponding cohomology group will be denoted by ˜Hn(A;A).
Remark 2.9. Compared with the cohomology theory of Hom-pre-Lie algebras studied in [13], the above full cohomology contains more informations. In the next section, we will see that the second cohomology group can control simultaneous deformations of the multiplication and the homomorphism in a Hom-pre-Lie algebra.
In this section, we study formal deformations of Hom-pre-Lie algebras using the cohomology theory established in the last section. We show that the infinitesimal of a formal deformation is a 2-cocycle and depends only on its cohomology class. Moreover, if the cohomology group ˜H2(A;A) is trivial, then the Hom-pre-Lie algebra is rigid.
Definition 3.1. Let (A,ω,α) be a Hom-pre-Lie algebra, ωt=ω+∑+∞i=1ωiti:A[[t]]⊗A[[t]]⟶A[[t]] be a K[[t]]-bilinear map and αt=α+∑+∞i=1αiti:A[[t]]⟶A[[t]] be a K[[t]]-linear map, where ωi:A⊗A⟶A and αi:A⟶A are linear maps. If (A[[t]],ωt,αt) is still a Hom-pre-Lie algebra, we say that {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α).
If {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), for all x,y,z∈A and n=1,2,…, we then have
∑i+j+k=ni,j,k≥0ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=0. | (3.1) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=(∂ωωωn+∂αωαn)(x,y,z). | (3.2) |
For all x,y∈A and n=1,2,…, we have
∑i+j+k=ni,j,k≥0ωi(αj(x),αk(y))−∑i+j=ni,j≥0αi(ωj(x,y))=0. | (3.3) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(αj(x),αk(y))−∑i+j=ni,j>0αi(ωj(x,y))=(∂ωαωn+∂αααn)(x,y). | (3.4) |
Proposition 3.2. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). Then (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α) with coefficients in the regular representation.
Proof. When n=1, by (3.1), we have
0=(x⋅y)⋅α1(z)+ω1(x,y)⋅α(z)+ω1(x⋅y,α(z))−α(x)⋅ω1(y,z)−α1(x)⋅(y⋅z)−ω1(α(x),y⋅z)−(y⋅x)⋅α1(z)−ω1(y,x)⋅α(z)−ω1(y⋅x,α(z))+α(y)⋅ω1(x,z)+α1(y)⋅(x⋅z)+ω1(α(y),x⋅z)=−(∂ωωω1+∂αωα1)(x,y,z), |
and by (3.3), we have
0=ω1(α(x),α(y))+α1(x)⋅α(y)+α(x)⋅α1(y)−α(ω1(x,y))−α1(x⋅y)=−(∂ωαω1+∂ααα1)(x,y), |
which implies that ˜∂reg(ω1,α1)=0. Thus, (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.3. The 2-cocycle (ω1,α1) is called the infinitesimal of the 1-parameter formal deformation (A[[t]],ωt,αt) of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.4. Let (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be two 1-parameter formal deformations of a Hom-pre-Lie algebra (A,ω,α). A formal isomorphism from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt) is a power series Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ω′t=ωt∘(Φt×Φt), | (3.5) |
αt∘Φt=Φt∘α′t. | (3.6) |
Two 1-parameter formal deformations (A[[t]],ω′t,α′t) and (A[[t]],ωt,αt) are said to be equivalent if there exists a formal isomorphism Φt=∑+∞i=0φiti from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt).
Theorem 3.5. Let (A,ω,α) be a Hom-pre-Lie algebra.If two 1-parameter formal deformations (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) are equivalent, then there infinitesimals (ω′1,α′1) and (ω1,α1) are in the same cohomology class of ˜H2(A;A).
Proof. Let (ω′t,α′t) and (ωt,αt) be two 1-parameter formal deformations. By Proposition 3.2, we have (ω′1,α′1) and (ω1,α1)∈˜Z2(A;A). Let Φt=∑+∞i=0φiti be the formal isomorphism. Then for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φ1t+…)ωt(x+φ1(x)t+…,y+φ1(y)t+…)=(Id−φ1t+…)(x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y))t+…)=x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y)−φ1(x⋅y))t+…. |
Thus, we have
ω′1(x,y)−ω1(x,y)=x⋅φ1(y)+φ1(x)⋅y−φ1(x⋅y)=∂ωωφ1(x,y), |
which implies that ω′1−ω1=∂ωωφ1.
For all x∈A, we have
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φ1t+…)αt(x+φ1(x)t+…)=(Id−φ1t+…)(α(x)+(α(φ1(x))+α1(x))t+…)=α(x)+(α(φ1(x))+α1(x)−φ1(α(x)))t+…. |
Thus, we have
α′1(x)−α1(x)=α(φ1(x))−φ1(α(x))=∂ωαφ1(x), |
which implies that α′1−α1=∂ωαφ1.
Thus, we have (ω′1−ω1,α′1−α1)∈˜B2(A;A). This finishes the proof.
Definition 3.6. A 1-parameter formal deformation (A[[t]],ωt,αt) of a Hom-pre-Lie algebra (A,ω,α) is said to be trivial if it is equivalent to (A,ω,α), i.e. there exists Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ωt=ω∘(Φt×Φt), | (3.7) |
α∘Φt=Φt∘αt. | (3.8) |
Definition 3.7. Let (A,ω,α) be a Hom-pre-Lie algebra. If all 1-parameter formal deformations are trivial, we say that (A,ω,α) is rigid.
Theorem 3.8. Let (A,ω,α) be a Hom-pre-Lie algebra. If ˜H2(A;A)=0, then (A,ω,α) is rigid.
Proof. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation and assume that n≥1 is the minimal number such that at least one of ωn and αn is not zero. By (3.2), (3.4) and ˜H2(A;A)=0, we have (ωn,αn)∈˜B2(A;A). Thus, there exists φn∈˜C1(A;A) such that ωn=∂ωω(−φn) and αn=∂ωα(−φn). Let Φt=Id+φntn and define a new formal deformation (ω′t,α′t) by ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y)) and α′t(x)=Φ−1t∘αt(Φt(x)). Then (ω′t,α′t) and (ωt,αt) are equivalent. By a straightforward computation, for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φntn+…)ωt(x+φn(x)tn,y+φn(y)tn)=(Id−φntn+…)(x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y))tn+…)=x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y)−φn(x⋅y))tn+…. |
Thus, we have ω′1=ω′2=⋯=ω′n−1=0. Moreover, we obtain
ω′n(x,y)=φn(x)⋅y+x⋅φn(y)+ωn(x,y)−φn(x⋅y)=∂ωωφn(x,y)+ωn(x,y)=0. |
For all x∈A, we get
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φntn+…)αt(x+φn(x)tn)=(Id−φ1tn+…)(α(x)+(α(φn(x))+αn(x))tn+…)=α(x)+(α(φn(x))+αn(x)−φn(α(x)))tn+…. |
Thus, α′1=α′2=⋯=α′n−1=0, and
α′n(x,y)=α(φn(x))+αn(x)−φn(α(x))=∂ωαφn(x)+αn(x)=0. |
By repeating this process, we obtain that (A[[t]],ωt,αt) is equivalent to (A,ω,α). The proof is finished.
At the end of this section, we recall 1-parameter formal deformations of Hom-Lie algebras, and establish the relation between 1-parameter formal deformations of Hom-pre-Lie algebras and 1-parameter formal deformations of Hom-Lie algebras.
Definition 3.9. (see [25]) Let (g,[⋅,⋅]g,ϕg) be a Hom-Lie algebra, [⋅,⋅]t=[⋅,⋅]g+∑+∞i=1ˉωiti:g[[t]]∧g[[t]]⟶g[[t]] be a K[[t]]-bilinear map and ϕt=ϕg+∑+∞i=1ϕiti:g[[t]]⟶g[[t]] be a K[[t]]-linear map, where ˉωi:g⊗g⟶g and ϕi:g⟶g are linear maps. If (g[[t]],[⋅,⋅]t,ϕt) is still a Hom-Lie algebra, we say that {ˉωi,ϕi}i≥1 generates a 1-parameter formal deformation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg).
Proposition 3.10. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), then
{ωi−ωi∘σ,αi}i≥1 |
generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC, where σ:A⊗A⟶A⊗A is the flip operator defined by σ(x⊗y)=y⊗x for all x,y∈A.
Proof. Let (A[[t]],ωt,αt) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). For all x,y∈A, we have
ωt(x,y)−ωt(y,x)=ω(x,y)−ω(y,x)++∞∑i=1ωi(x,y)ti−+∞∑i=1ωi(y,x)ti=[x,y]C++∞∑i=1(ωi−ωi∘σ)(x,y)ti, |
and
αt∘(ωt(x,y)−ωt(y,x))=ωt(αt(x),αt(y))−ωt(αt(y),αt(x)). |
Therefore, {ωi−ωi∘σ,αi}i≥1 generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC.
In this section, we study abelian extensions of Hom-pre-Lie algebras using the cohomological approach. We show that abelian extensions are classified by the cohomology group ˜H2(A;V).
Definition 4.1. Let (A,⋅,α) and (V,⋅V,β) be two Hom-pre-Lie algebras. An extension of (A,⋅,α) by (V,⋅V,β) is a short exact sequence of Hom-pre-Lie algebra morphisms:
![]() |
where (ˆA,⋅ˆA,αˆA) is a Hom-pre-Lie algebra.
It is called an abelian extension if (V,⋅V,β) is an abelian Hom-pre-Lie algebra, i.e. for all u,v∈V,u⋅Vv=0.
Definition 4.2. A section of an extension (ˆA,⋅ˆA,αˆA) of a Hom-pre-Lie algebra (A,⋅,α) by (V,⋅V,β) is a linear map s:A⟶ˆA such that p∘s=IdA.
Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) and s:A⟶ˆA a section. For all x,y∈A, define linear maps θ:A⊗A⟶V and ξ:A⟶V respectively by
θ(x,y)=s(x)⋅ˆAs(y)−s(x⋅y), | (4.1) |
ξ(x)=αˆA(s(x))−s(α(x)). | (4.2) |
And for all x,y∈A,u∈V, define ρ,μ:A⟶gl(V) respectively by
ρ(x)(u)=s(x)⋅ˆAu, | (4.3) |
μ(x)(u)=u⋅ˆAs(x). | (4.4) |
Obviously, ˆA is isomorphic to A⊕V as vector spaces. Transfer the Hom-pre-Lie algebra structure on ˆA to that on A⊕V, we obtain a Hom-pre-Lie algebra (A⊕V,⋄,ϕ), where ⋄ and ϕ are given by
(x+u)⋄(y+v)=x⋅y+θ(x,y)+ρ(x)(v)+μ(y)(u),∀x,y∈A,u,v∈V, | (4.5) |
ϕ(x+u)=α(x)+ξ(x)+β(u),∀x∈A,u∈V. | (4.6) |
Theorem 4.3. With the above notations, we have
(i) (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α),
(ii) (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
Proof. For all x∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄v)−ϕ(x)⋄ϕ(v)=β(ρ(x)(v))−ρ(α(x))β(v)=0, |
which implies that
β∘ρ(x)=ρ(α(x))∘β. | (4.7) |
Similarly, we have
β∘μ(x)=μ(α(x))∘β. | (4.8) |
For all x,y∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(v)−ϕ(x)⋄(y⋄v)−(y⋄x)⋄ϕ(v)+ϕ(y)⋄(x⋄v)=(x⋅y+θ(x,y))⋄β(v)−(α(x)+ξ(x))⋄ρ(y)(v)−(y⋅x+θ(y,x))⋄β(v)+(α(y)+ξ(y))⋄ρ(x)(v)=ρ(x⋅y)β(v)−ρ(α(x))ρ(y)(v)−ρ(y⋅x)β(v)+ρ(α(y))ρ(x)(v)=ρ([x,y]C)β(v)−ρ(α(x))ρ(y)(v)+ρ(α(y))ρ(x)(v)=0, |
which implies that
ρ([x,y]C)∘β=ρ(α(x))∘ρ(y)−ρ(α(y))∘ρ(x). | (4.9) |
Similarly, we have
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (4.10) |
By (4.7), (4.8), (4.9), (4.10), we obtain that (V,β,ρ,μ) is a representation.
For all x,y∈A, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄y)−ϕ(x)⋄ϕ(y)=ϕ(x⋅y+θ(x,y))−α(x)⋅α(y)−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=ξ(x⋅y)+β(θ(x,y))−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=∂ωαθ(x,y)+∂ααξ(x,y)=0, |
which implies that
∂ωαθ+∂ααξ=0. | (4.11) |
For all x,y,z∈A, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(z)−ϕ(x)⋄(y⋄z)−(y⋄x)⋄ϕ(z)+ϕ(y)⋄(x⋄z)=(x⋅y+θ(x,y))⋄(α(z)+ξ(z))−(α(x)+ξ(x))⋄(y⋅z+θ(y,z))−(y⋅x+θ(y,x))⋄(α(z)+ξ(z))+(α(y)+ξ(y))⋄(x⋅z+θ(x,z))=θ(x⋅y,α(z))+μ(α(z))θ(x,y)−θ(α(x),y⋅z)−ρ(α(x))θ(y,z)−θ(y⋅x,α(z))−μ(α(z))θ(y,x)+θ(α(y),x⋅z)+ρ(α(y))θ(x,z)+ρ(x⋅y)ξ(z)−μ(y⋅z)ξ(x)−ρ(y⋅x)ξ(z)+μ(x⋅z)ξ(y)=−∂ωωθ(x,y,z)−∂αωξ(x,y,z)=0, |
which implies that
∂ωωθ+∂αωξ=0. | (4.12) |
By Eqs (4.11) and (4.12), we obtain that ˜∂(θ,ξ)=0, which implies that (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α). The proof is finished.
Definition 4.4. Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) be two abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). They are said to be isomorphic if there exists a Hom-pre-Lie algebra isomorphism ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) such that the following diagram is commutative:
![]() |
Proposition 4.5. With the above notations, we have
(i) Two different sections of an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) give rise to the same representation of (A,⋅,α),
(ii) Isomorphic abelian extensions give rise to the same representation of (A,⋅,α).
Proof. (i) Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing two different sections s1,s2:A⟶ˆA, by equations (4.3), (4.4) and Theorem 4.3, we obtain two representations (V,β,ρ1,μ1) and (V,β,ρ2,μ2). Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x∈A, we have
ρ1(x)(u)−ρ2(x)(u)=s1(x)⋅ˆAu−s2(x)⋅ˆAu=(φ(x)+s2(x))⋅ˆAu−s2(x)⋅ˆAu=φ(x)⋅ˆAu=0, |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
(ii) Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Let s1:A1⟶^A1 and s2:A2⟶^A2 be two sections of (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) respectively. By equations (4.3), (4.4) and Theorem 4.3, we obtain that (V,β,ρ1,μ1) and (V,β,ρ2,μ2) are their representations respectively. Define s′1:A1⟶^A1 by s′1=ζ−1∘s2. Since ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4, by p2∘ζ=p1, we have
p1∘s′1=p2∘ζ∘ζ−1∘s2=IdA. | (4.13) |
Thus, we obtain that s′1 is a section of (^A1,⋅^A1,α^A1). For all x∈A,u∈V, we have
ρ1(x)(u)=s′1(x)⋅^A1u=(ζ−1∘s2)(x)⋅^A1u=ζ−1(s2(x)⋅^A2u)=ρ2(x)(u), |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
So in the sequel, we fix a representation (V,β,ρ,μ) of a Hom-pre-Lie algebra (A,⋅,α) and consider abelian extensions that induce the given representation.
Theorem 4.6. Abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) are classified by ˜H2(A;V).
Proof. Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing a section s:A⟶ˆA, by Theorem 4.3, we obtain that (θ,ξ)∈˜Z2(A;V). Now we show that the cohomological class of (θ,ξ) does not depend on the choice of sections. In fact, let s1 and s2 be two different sections. Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x,y∈A, we have
θ1(x,y)=s1(x)⋅ˆAs1(y)−s1(x⋅y)=(s2(x)+φ(x))⋅ˆA(s2(y)+φ(y))−s2(x⋅y)−φ(x⋅y)=s2(x)⋅ˆAs2(y)+ρ(x)φ(y)+μ(y)φ(x)−s2(x⋅y)−φ(x⋅y)=θ2(x,y)+∂ωωφ(x,y), |
which implies that θ1−θ2=∂ωωφ.
For all x∈A, we have
ξ1(x)=αˆA(s1(x))−s1(α(x))=αˆA(φ(x)+s2(x))−φ(α(x))−s2(α(x))=αˆA(φ(x))+αˆA(s2(x))−φ(α(x))−s2(α(x))=ξ2(x)+β(φ(x))−φ(α(x)), |
which implies that ξ1−ξ2=∂ωαφ.
Therefore, we obtain that (θ1−θ2,ξ1−ξ2)∈˜B2(A;V), (θ1,ξ1) and (θ2,ξ2) are in the same cohomological class.
Now we prove that isomorphic abelian extensions give rise to the same element in ˜H2(A;V). Assume that (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β), and ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4. Assume that s1:A⟶^A1 is a section of ^A1. By p2∘ζ=p1, we have
p2∘(ζ∘s1)=p1∘s1=IdA. | (4.14) |
Thus, we obtain that ζ∘s1 is a section of ^A2. Define s2=ζ∘s1. Since ζ is an isomorphism of Hom-pre-Lie algebras and ζ∣V=IdV, for all x,y∈A, we have
θ2(x,y)=s2(x)⋅^A2s2(y)−s2(x⋅y)=(ζ∘s1)(x)⋅^A2(ζ∘s1)(y)−(ζ∘s1)(x⋅y)=ζ(s1(x)⋅^A1s1(y)−s1(x⋅y))=θ1(x,y), |
and
ξ2(x)=α^A2(s2(x))−s2(α(x))=α^A2(ζ(s1(x)))−ζ(s1(α(x)))=ζ(α^A1(s1(x))−s1(α(x)))=ξ1(x). |
Thus, isomorphic abelian extensions gives rise to the same element in ˜H2(A;V).
Conversely, given two 2-cocycles (θ1,ξ1) and (θ2,ξ2), by Eqs (4.5) and (4.6), we can construct two abelian extensions (A⊕V,⋄1,ϕ1) and (A⊕V,⋄2,ϕ2). If (θ1,ξ1),(θ2,ξ2)∈˜H2(A;V), then there exists φ:A⟶V, such that θ1=θ2+∂ωωφ and ξ1=ξ2+∂ωαφ. We define ζ:A⊕V⟶A⊕V by
ζ(x+u)=x+u+φ(x),∀x∈A,u∈V. | (4.15) |
For all x,y∈A,u,v∈V, by θ1=θ2+∂ωωφ, we have
ζ((x+u)⋄1(y+v))−ζ(x+u)⋄2ζ(y+v)=ζ(x⋅y+θ1(x,y)+ρ(x)(v)+μ(y)(u))−(x+u+φ(x))⋄2(y+v+φ(y))=θ1(x,y)+φ(x⋅y)−θ2(x,y)−ρ(x)φ(y)−μ(y)φ(x)=θ1(x,y)−θ2(x,y)−∂ωωφ(x,y)=0, | (4.16) |
and for all x∈A,u∈V, by ξ1=ξ2+∂ωαφ, we have
ζ∘ϕ1(x+u)−ϕ1∘ζ(x+u)=ζ(α(x)+ξ1(x)+β(u))−ϕ2(x+u+φ(x))=ξ1(x)+φ(α(x))−ξ2(x)−β(φ(x))=ξ1(x)−ξ2(x)−∂ωαφ(x)=0, | (4.17) |
which implies that ζ is a Hom-pre-Lie algebra isomorphism from (A⊕V,⋄1,ϕ1) to (A⊕V,⋄2,ϕ2). Moreover, it is obvious that the diagram in Definition 4.4 is commutative. This finishes the proof.
By straightforward computations, for all x1,…,xn+2∈A, we have
∂ωω(∂ωωφ)(x1,…,xn+2)=n+1∑i=1(−1)i+1ρ(αn(xi))(∂ωωφ)(x1,…,^xi,…,xn+2)+n+1∑i=1(−1)i+1μ(αn(xn+2))(∂ωωφ)(x1,…,^xi,…,xn+1,xi)−n+1∑i=1(−1)i+1(∂ωωφ)(α(x1),…,^α(xi),…,α(xn+1),xi⋅xn+2)+∑1≤i<j≤n+1(−1)i+j(∂ωωφ)([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))=∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+2) | (4.18) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+2) | (4.19) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.20) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.21) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xn+2) | (4.22) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xn+2) | (4.23) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk),…,^α(xi),…,α(xn+2)) | (4.24) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi),…,^α(xk),…,α(xn+2)) | (4.25) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+2)) | (4.26) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+1,xi) | (4.27) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+1,xi) | (4.28) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.29) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.30) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xi) | (4.31) |
−∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xi) | (4.32) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk), | (4.33) |
…,^α(xi),…,α(xn+1),α(xi))+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi), | (4.34) |
…,^α(xk),…,α(xn+1),α(xi))+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj), | (4.35) |
…,^α(xk),…,α(xn+1),α(xi))−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xj))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xi⋅xn+2) | (4.36) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xj))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xi⋅xn+2) | (4.37) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),α(xj)) | (4.38) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+1}(-1)^j\mu(\alpha^{n-1}(x_i \cdot x_{n+2}))\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j)) \end{eqnarray} | (4.39) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < i\leq n+1}(-1)^{i+1}(-1)^{j+1}\varphi(\alpha^2(x_1), \dots, \widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_i)}, \dots, \alpha^2(x_{n+1}), \alpha(x_j)\cdot(x_i\cdot x_{n+2})) \end{eqnarray} | (4.40) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+1}(-1)^j\varphi(\alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \alpha^2(x_{n+1}), \alpha(x_j)\cdot(x_i\cdot x_{n+2})) \end{eqnarray} | (4.41) |
\begin{eqnarray} &&-\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\varphi([\alpha(x_j), \alpha(x_k)]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_k)}, \dots, \end{eqnarray} | (4.42) |
\begin{eqnarray} &&\widehat{\alpha^2(x_i)}, \dots, \alpha^2(x_{n+1}), \alpha(x_i \cdot x_{n+2}))\\ &&-\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\varphi([\alpha(x_j), \alpha(x_k)]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_i)}, \dots, \end{eqnarray} | (4.43) |
\begin{eqnarray} &&\widehat{\alpha^2(x_k)}, \dots, \alpha^2(x_{n+1}), \alpha(x_i \cdot x_{n+2}))\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\varphi([\alpha(x_j), \alpha(x_k)]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \end{eqnarray} | (4.44) |
\begin{eqnarray} &&\widehat{\alpha^2(x_k)}, \dots, \alpha^2(x_{n+1}), \alpha(x_i \cdot x_{n+2}))\\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\rho(\alpha^{n-1}[x_i, x_j]_C)\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2})) \end{eqnarray} | (4.45) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\rho(\alpha^n(x_k)))\varphi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2})) \end{eqnarray} | (4.46) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho(\alpha^n(x_k)))\varphi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2})) \end{eqnarray} | (4.47) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho(\alpha^n(x_k)))\varphi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+2})) \end{eqnarray} | (4.48) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^n(x_{n+2})))\varphi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.49) |
\begin{eqnarray} &&\widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^n(x_{n+2})))\varphi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.50) |
\begin{eqnarray} &&\widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^n(x_{n+2})))\varphi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \end{eqnarray} | (4.51) |
\begin{eqnarray} &&\widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^n(x_{n+2}))\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), [x_i, x_j]_C) \end{eqnarray} | (4.52) |
\begin{eqnarray} &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\varphi(\alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_k)}, \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \end{eqnarray} | (4.53) |
\begin{eqnarray} &&\dots, \alpha^2(x_{n+1}), \alpha(x_k) \cdot \alpha(x_{n+2}))\\ &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\varphi(\alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_k)}, \dots, \widehat{\alpha^2(x_j)}, \end{eqnarray} | (4.54) |
\begin{eqnarray} &&\dots, \alpha^2(x_{n+1}), \alpha(x_k) \cdot \alpha(x_{n+2}))\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\varphi(\alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_k)}, \end{eqnarray} | (4.55) |
\begin{eqnarray} &&\dots, \alpha^2(x_{n+1}), \alpha(x_k) \cdot \alpha(x_{n+2}))\\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\varphi(\alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \alpha^2(x_{n+1}), [x_i, x_j]_C \cdot \alpha(x_{n+2})) \end{eqnarray} | (4.56) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\varphi([\alpha(x_k), \alpha(x_l)]_C, \alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_k)}, \dots, \end{eqnarray} | (4.57) |
\begin{eqnarray} &&\widehat{\alpha^2(x_l)}, \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \alpha^2(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l+1}\varphi([\alpha(x_k), \alpha(x_l)]_C, \alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_k)}, \dots, \end{eqnarray} | (4.58) |
\begin{eqnarray} &&\widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_l)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \alpha^2(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\varphi([\alpha(x_k), \alpha(x_l)]_C, \alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \end{eqnarray} | (4.59) |
\begin{eqnarray} &&\widehat{\alpha^2(x_k)}, \dots, \widehat{\alpha^2(x_l)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \alpha^2(x_{n+2}))\\ &&+\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\varphi([\alpha(x_k), \alpha(x_l)]_C, \alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \end{eqnarray} | (4.60) |
\begin{eqnarray} &&\widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_k)}, \dots, \widehat{\alpha^2(x_l)}, \dots, \alpha^2(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l+1}\varphi([\alpha(x_k), \alpha(x_l)]_C, \alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \end{eqnarray} | (4.61) |
\begin{eqnarray} &&\widehat{\alpha^2(x_k)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_l)}, \dots, \alpha^2(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\varphi([\alpha(x_k), \alpha(x_l)]_C, \alpha[x_i, x_j]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_k)}, \dots, \end{eqnarray} | (4.62) |
\begin{eqnarray} &&\widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_l)}, \dots, \alpha^2(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\varphi([[x_i, x_j]_C, \alpha(x_k)]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_k)}, \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \alpha^2(x_{n+2})) \end{eqnarray} | (4.63) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\varphi([[x_i, x_j]_C, \alpha(x_k)]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_k)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \alpha^2(x_{n+2})) \end{eqnarray} | (4.64) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\varphi([[x_i, x_j]_C, \alpha(x_k)]_C, \alpha^2(x_1), \dots, \widehat{\alpha^2(x_i)}, \dots, \widehat{\alpha^2(x_j)}, \dots, \widehat{\alpha^2(x_k)}, \dots, \alpha^2(x_{n+2})). \end{eqnarray} | (4.65) |
The terms (4.22) and (4.37), (4.23) and (4.36), (4.24) and (4.48), (4.25) and (4.47), (4.26) and (4.46), (4.33) and (4.51), (4.34) and (4.50), (4.35) and (4.49) cancel each other. By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.63), (4.64) and (4.65) is zero. By the antisymmetry condition, the term (4.57) and (4.60), (4.58) and (4.61), (4.59) and (4.62) cancel each other. By the definition of the sub-adjacent Lie bracket, the sum of (4.31), (4.32) and (4.52) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.40), (4.41) and (4.56) is zero. Since \alpha is an algebra morphism, the term (4.42) and (4.55), (4.43) and (4.54), (4.44) and (4.53) cancel each other.
Since (V, \beta, \rho, \mu) is a representation of the Hom-pre-Lie algebra (A, \cdot, \alpha) , the sum of (4.18) and (4.19) can be written as
\begin{equation} \sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\beta\varphi(x_1, \dots, \widehat{x_i}, \dots, \widehat{x_j}, \dots, x_{n+2}), \end{equation} | (4.66) |
the sum of (4.20), (4.28) and (4.29) can be written as
\begin{equation} -\sum\limits_{1\leq j < i\leq n+1}(-1)^{i+j+1}\mu(\alpha^{n-1}(x_i) \cdot\alpha^{n-1}(x_{n+2}))\beta\varphi(x_1, \dots, \widehat{x_j}, \dots, \widehat{x_i}, \dots, x_{n+1}, x_j), \end{equation} | (4.67) |
and the sum of (4.21), (4.27) and (4.30) can be written as
\begin{equation} \sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j+1}\mu(\alpha^{n-1}(x_i) \cdot\alpha^{n-1}(x_{n+2}))\beta\varphi(x_1, \dots, \widehat{x_i}, \dots, \widehat{x_j}, \dots, x_{n+1}, x_j). \end{equation} | (4.68) |
Thus, we have
\begin{eqnarray*} \nonumber&&\partial_{\omega\omega}(\partial_{\omega\omega}\varphi)(x_1, \dots, x_{n+2})\\ & = &\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\beta\varphi(x_1, \dots, \widehat{x_i}, \dots, \widehat{x_j}, \dots, x_{n+2}), \\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j+1}\mu(\alpha^{n-1}(x_i) \cdot\alpha^{n-1}(x_{n+2}))\beta\varphi(x_1, \dots, \widehat{x_i}, \dots, \widehat{x_j}, \dots, x_{n+1}, x_j)\\ &&-\sum\limits_{1\leq j < i\leq n+1}(-1)^{i+j+1}\mu(\alpha^{n-1}(x_i) \cdot\alpha^{n-1}(x_{n+2}))\beta\varphi(x_1, \dots, \widehat{x_j}, \dots, \widehat{x_i}, \dots, x_{n+1}, x_j)\\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j+1}\rho(\alpha^{n-1}[x_i, x_j]_C)\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j+1}\mu(\alpha^{n-1}(x_i \cdot x_{n+2}))\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq j < i\leq n+1}(-1)^{i+j+1}\mu(\alpha^{n-1}(x_i \cdot x_{n+2}))\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{n+1}), \alpha(x_j)). \end{eqnarray*} |
For all x_1, \dots, x_{n+2}\in A , we have
\begin{eqnarray*} &&\partial_{\alpha\omega}(\partial_{\omega\alpha}\varphi)(x_1, \dots, x_{n+2})\\ & = &\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C) (\partial_{\omega\alpha}\varphi)(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, x_{n+2})\\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))(\partial_{\omega\alpha}\varphi)(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, x_{n+1}, x_j)\\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))(\partial_{\omega\alpha}\varphi)(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, x_{n+1}, x_i)\\ & = &\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\beta\varphi(x_1, \dots, \widehat{x_i}, \dots, \widehat{x_j}, \dots, x_{n+2}), \\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_i) \cdot\alpha^{n-1}(x_{n+2}))\beta\varphi(x_1, \dots, \widehat{x_i}, \dots, \widehat{x_j}, \dots, x_{n+1}, x_j)\\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_i) \cdot\alpha^{n-1}(x_{n+2}))\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_j) \cdot\alpha^{n-1}(x_{n+2}))\beta\varphi(x_1, \dots, \widehat{x_i}, \dots, \widehat{x_j}, \dots, x_{n+1}, x_i)\\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_j) \cdot\alpha^{n-1}(x_{n+2}))\varphi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_i)).\\ \end{eqnarray*} |
Since \alpha is an algebra morphism, we obtain that \partial_{\omega\omega}\circ \partial_{\omega\omega}+\partial_{\alpha\omega}\circ \partial_{\omega\alpha} = 0.
For all x_1, \dots, x_{n+2}\in A , we have
\begin{eqnarray} &&\partial_{\omega\omega}(\partial_{\alpha\omega}\psi)(x_1, \dots, x_{n+2})\\ & = &\sum\limits_{i = 1}^{n+1}(-1)^{i+1}\rho(\alpha^n(x_i))(\partial_{\alpha\omega}\psi)(x_1, \dots, \widehat{x_i}, \dots, x_{n+2})\\ &&+\sum\limits_{i = 1}^{n+1}(-1)^{i+1}\mu(\alpha^n(x_{n+2}))(\partial_{\alpha\omega}\psi)(x_1, \dots, \widehat{x_i}, \dots, x_{n+1}, x_i)\\ &&-\sum\limits_{i = 1}^{n+1}(-1)^{i+1}(\partial_{\alpha\omega}\psi)(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{n+1}), x_i\cdot x_{n+2})\\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j} (\partial_{\alpha\omega}\psi)([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ & = &\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho(\alpha^n(x_i))\rho([\alpha^{n-2}(x_j), \alpha^{n-2}(x_k)]_C)\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_k} \dots, \hat{x_i}, \dots, x_{n+2}) \end{eqnarray} | (4.69) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\rho(\alpha^n(x_i))\rho([\alpha^{n-2}(x_j), \alpha^{n-2}(x_k)]_C)\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_i} \dots, \hat{x_k}, \dots, x_{n+2}) \end{eqnarray} | (4.70) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho(\alpha^n(x_i))\rho([\alpha^{n-2}(x_j), \alpha^{n-2}(x_k)]_C)\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j} \dots, \hat{x_k}, \dots, x_{n+2}) \end{eqnarray} | (4.71) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho(\alpha^n(x_i))\mu(\alpha^{n-2}(x_j)\cdot\alpha^{n-2}(x_{n+2}))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_k} \dots, \hat{x_i}, \dots, x_{n+1}, x_k) \end{eqnarray} | (4.72) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\rho(\alpha^n(x_i))\mu(\alpha^{n-2}(x_j)\cdot\alpha^{n-2}(x_{n+2}))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_i} \dots, \hat{x_k}, \dots, x_{n+1}, x_k) \end{eqnarray} | (4.73) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho(\alpha^n(x_i))\mu(\alpha^{n-2}(x_j)\cdot\alpha^{n-2}(x_{n+2}))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j} \dots, \hat{x_k}, \dots, x_{n+1}, x_k) \end{eqnarray} | (4.74) |
\begin{eqnarray} &&-\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho(\alpha^n(x_i))\mu(\alpha^{n-2}(x_k)\cdot\alpha^{n-2}(x_{n+2}))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_k} \dots, \hat{x_i}, \dots, x_{n+1}, x_j) \end{eqnarray} | (4.75) |
\begin{eqnarray} &&-\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\rho(\alpha^n(x_i))\mu(\alpha^{n-2}(x_k)\cdot\alpha^{n-2}(x_{n+2}))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_i} \dots, \hat{x_k}, \dots, x_{n+1}, x_j) \end{eqnarray} | (4.76) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho(\alpha^n(x_i))\mu(\alpha^{n-2}(x_k)\cdot\alpha^{n-2}(x_{n+2}))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j} \dots, \hat{x_k}, \dots, x_{n+1}, x_j) \end{eqnarray} | (4.77) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^n(x_{n+2}))\rho([\alpha^{n-2}(x_j), \alpha^{n-2}(x_k)]_C)\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_k} \dots, \hat{x_i}, \dots, x_{n+1}, x_i) \end{eqnarray} | (4.78) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\mu(\alpha^n(x_{n+2}))\rho([\alpha^{n-2}(x_j), \alpha^{n-2}(x_k)]_C)\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_i} \dots, \hat{x_k}, \dots, x_{n+1}, x_i) \end{eqnarray} | (4.79) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^n(x_{n+2}))\rho([\alpha^{n-2}(x_j), \alpha^{n-2}(x_k)]_C)\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j} \dots, \hat{x_k}, \dots, x_{n+1}, x_i) \end{eqnarray} | (4.80) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^n(x_{n+2}))\mu(\alpha^{n-2}(x_j)\cdot\alpha^{n-2}(x_i))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_k} \dots, \hat{x_i}, \dots, x_{n+1}, x_k) \end{eqnarray} | (4.81) |
\begin{eqnarray} &&+\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\mu(\alpha^n(x_{n+2}))\mu(\alpha^{n-2}(x_j)\cdot\alpha^{n-2}(x_i))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_i} \dots, \hat{x_k}, \dots, x_{n+1}, x_k) \end{eqnarray} | (4.82) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^n(x_{n+2}))\mu(\alpha^{n-2}(x_j)\cdot\alpha^{n-2}(x_i))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j} \dots, \hat{x_k}, \dots, x_{n+1}, x_k) \end{eqnarray} | (4.83) |
\begin{eqnarray} &&-\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^n(x_{n+2}))\mu(\alpha^{n-2}(x_k)\cdot\alpha^{n-2}(x_i))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_k} \dots, \hat{x_i}, \dots, x_{n+1}, x_j) \end{eqnarray} | (4.84) |
\begin{eqnarray} &&-\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\mu(\alpha^n(x_{n+2}))\mu(\alpha^{n-2}(x_k)\cdot\alpha^{n-2}(x_i))\psi(x_1, \dots, \hat{x_j}, \dots, \hat{x_i} \dots, \hat{x_k}, \dots, x_{n+1}, x_j) \end{eqnarray} | (4.85) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^n(x_{n+2}))\mu(\alpha^{n-2}(x_k)\cdot\alpha^{n-2}(x_i))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j} \dots, \hat{x_k}, \dots, x_{n+1}, x_j) \end{eqnarray} | (4.86) |
\begin{eqnarray} &&-\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho([\alpha^{n-1}(x_j), \alpha^{n-1}(x_k)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.87) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{n+1}), x_i\cdot x_{n+2})\\ &&-\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\rho([\alpha^{n-1}(x_j), \alpha^{n-1}(x_k)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.88) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_i\cdot x_{n+2})\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\rho([\alpha^{n-1}(x_j), \alpha^{n-1}(x_k)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.89) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_i\cdot x_{n+2})\\ &&-\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-2}(x_i\cdot x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.90) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-2}(x_i\cdot x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.91) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-2}(x_i\cdot x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.92) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&+\sum\limits_{1\leq j < k < i\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-2}(x_i\cdot x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.93) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq j < i < k\leq n+1}(-1)^{i+1}(-1)^{j+k-1}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-2}(x_i\cdot x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.94) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+1}(-1)^{j+k}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-2}(x_i\cdot x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.95) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_k), \alpha^{n-1}(x_l)]_C)\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.96) |
\begin{eqnarray} &&\widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_k), \alpha^{n-1}(x_l)]_C)\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.97) |
\begin{eqnarray} &&\widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_k), \alpha^{n-1}(x_l)]_C)\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.98) |
\begin{eqnarray} &&\widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_k), \alpha^{n-1}(x_l)]_C)\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.99) |
\begin{eqnarray} &&\widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_k), \alpha^{n-1}(x_l)]_C)\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.100) |
\begin{eqnarray} &&\widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_k), \alpha^{n-1}(x_l)]_C)\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.101) |
\begin{eqnarray} &&\widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-2}[x_i, x_j]_C, \alpha^{n-1}(x_k)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.102) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho([\alpha^{n-2}[x_i, x_j]_C, \alpha^{n-1}(x_k)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.103) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-2}[x_i, x_j]_C, \alpha^{n-1}(x_k)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.104) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.105) |
\begin{eqnarray} &&\widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_l))\\ &&+\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.106) |
\begin{eqnarray} &&\widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_l))\\ &&+\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.107) |
\begin{eqnarray} &&\widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_l))\\ &&+\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.108) |
\begin{eqnarray} &&\widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_l))\\ &&+\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.109) |
\begin{eqnarray} &&\widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_l))\\ &&+\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.110) |
\begin{eqnarray} &&\widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_l))\\ &&-\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_l)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.111) |
\begin{eqnarray} &&\widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_l)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.112) |
\begin{eqnarray} &&\widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_l)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \end{eqnarray} | (4.113) |
\begin{eqnarray} &&\widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_l)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.114) |
\begin{eqnarray} &&\widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_l)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.115) |
\begin{eqnarray} &&\widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_l)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_i, x_j]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \end{eqnarray} | (4.116) |
\begin{eqnarray} &&\widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-2}[x_i, x_j]_C\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.117) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-2}[x_i, x_j]_C\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.118) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-2}[x_i, x_j]_C\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.119) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), \alpha(x_k))\\ &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.120) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), [x_i, x_j]_C)\\ &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.121) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), [x_i, x_j]_C)\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_k)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \\ \nonumber&&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), [x_i, x_j]_C), \end{eqnarray} | (4.122) |
and
\begin{eqnarray} &&\partial_{\alpha\omega}(\partial_{\alpha\alpha} \psi)(x_1, \dots, x_{n+2})\\ & = &\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)(\partial_{\alpha\alpha} \psi)(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, x_{n+2})\\ &&+\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))(\partial_{\alpha\alpha} \psi)(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, x_{n+1}, x_j)\\ &&-\sum\limits_{1\leq i < j\leq n+1}(-1)^{i+j}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))(\partial_{\alpha\alpha} \psi)(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, x_{n+1}, x_i)\\ & = &\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+2}) \end{eqnarray} | (4.123) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+2}) \end{eqnarray} | (4.124) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}, \dots, x_{n+2}) \end{eqnarray} | (4.125) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\mu(\alpha^{n-1}(x_{n+2}))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.126) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\mu(\alpha^{n-1}(x_{n+2}))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.127) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\mu(\alpha^{n-1}(x_{n+2}))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.128) |
\begin{eqnarray} &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.129) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_{n+2})\\ &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.130) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_{n+2})\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.131) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_k\cdot x_{n+2})\\ &&+\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.132) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.133) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.134) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.135) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.136) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\rho([\alpha^{n-1}(x_i), \alpha^{n-1}(x_j)]_C)\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.137) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+2}))\\ &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_j) \end{eqnarray} | (4.138) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_j) \end{eqnarray} | (4.139) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_j) \end{eqnarray} | (4.140) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_j))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.141) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_j))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.142) |
\begin{eqnarray} &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_j))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.143) |
\begin{eqnarray} &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.144) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_j)\\ &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.145) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_j)\\ &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.146) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_k\cdot x_j)\\ &&+\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.147) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.148) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.149) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.150) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.151) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&+\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_i)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.152) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_j))\\ &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_i) \end{eqnarray} | (4.153) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_i) \end{eqnarray} | (4.154) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\rho(\alpha^{n-1}(x_k))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_i) \end{eqnarray} | (4.155) |
\begin{eqnarray} &&-\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_i))\psi(x_1, \dots, \hat{x_k}, \dots, \hat{x_i}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.156) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_i))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_k}, \dots, \hat{x_j}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.157) |
\begin{eqnarray} &&-\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\mu(\alpha^{n-1}(x_i))\psi(x_1, \dots, \hat{x_i}, \dots, \hat{x_j}, \dots, \hat{x_k}\dots, x_{n+1}, x_k) \end{eqnarray} | (4.158) |
\begin{eqnarray} &&+\sum\limits_{1\leq k < i < j\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.159) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_i)\\ &&+\sum\limits_{1\leq i < k < j\leq n+1}(-1)^{i+j}(-1)^{k+1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.160) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), x_k\cdot x_i)\\ &&+\sum\limits_{1\leq i < j < k\leq n+1}(-1)^{i+j}(-1)^k\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \end{eqnarray} | (4.161) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \alpha(x_{n+1}), x_k\cdot x_i)\\ &&-\sum\limits_{1\leq k < l < i < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.162) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq k < i < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.163) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq k < i < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_k)}, \end{eqnarray} | (4.164) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_i)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq i < k < l < j\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.165) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \widehat{\alpha(x_j)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq i < k < j < l\leq n+1}(-1)^{i+j}(-1)^{k+l}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \end{eqnarray} | (4.166) |
\begin{eqnarray} &&\dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_i))\\ &&-\sum\limits_{1\leq i < j < k < l\leq n+1}(-1)^{i+j}(-1)^{k+l-1}\mu(\alpha^{n-1}(x_j)\cdot\alpha^{n-1}(x_{n+2}))\psi([x_k, x_l]_C, \alpha(x_1), \dots, \widehat{\alpha(x_i)}, \\ \nonumber&&\dots, \widehat{\alpha(x_j)}, \dots, \widehat{\alpha(x_k)}, \dots, \widehat{\alpha(x_l)}, \dots, \alpha(x_{n+1}), \alpha(x_i)). \end{eqnarray} | (4.167) |
By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.102), (4.103) and (4.104) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.90), (4.95) and (4.118) is zero, the sum of (4.91), (4.92) and (4.119) is zero, the sum of (4.93), (4.94) and (4.117) is zero. Obviously, the sum of (4.96) and (4.137) is zero, the sum of (4.97) and (4.136) is zero, the sum of (4.98) and (4.135) is zero, the sum of (4.99) and (4.134) is zero, the sum of (4.100) and (4.133) is zero, the sum of (4.101) and (4.132) is zero, the sum of (4.87) and (4.131) is zero, the sum of (4.88) and (4.130) is zero, the sum of (4.89) and (4.129) is zero, the sum of (4.105) and (4.152) is zero, the sum of (4.106) and (4.151) is zero, the sum of (4.107) and (4.150) is zero, the sum of (4.108) and (4.149) is zero, the sum of (4.109) and (4.148) is zero, the sum of (4.110) and (4.147) is zero, the sum of (4.111) and (4.167) is zero, the sum of (4.112) and (4.166) is zero, the sum of (4.113) and (4.165) is zero, the sum of (4.114) and (4.164) is zero, the sum of (4.115) and (4.163) is zero, the sum of (4.116) and (4.162) is zero. By the definition of the sub-adjacent Lie bracket, the sum of (4.120), (4.145) and (4.146) is zero, the sum of (4.121), (4.144) and (4.161) is zero, the sum of (4.122), (4.159) and (4.160) is zero. Since (V, \beta, \rho) is a representation of the sub-adjacent Hom-Lie algebra A^C , the sum of (4.69), (4.70), (4.71), (4.123), (4.124) and (4.125) is zero. Since (V, \beta, \rho, \mu) is a representation of the Hom-pre-Lie algebra (A, \cdot, \alpha) , the sum of (4.73), (4.74), (4.78), (4.82), (4.83), (4.128), (4.138), (4.139), (4.143) and (4.158) is zero, the sum of (4.72), (4.77), (4.79), (4.81), (4.86), (4.127), (4.140), (4.142), (4.153) and (4.157) is zero, the sum of (4.75), (4.76), (4.80), (4.84), (4.85), (4.126), (4.141), (4.154), (4.155) and (4.156) is zero. Thus, we have \partial_{\omega\omega}\circ \partial_{\alpha\omega}+\partial_{\alpha\omega}\circ \partial_{\alpha\alpha} = 0 .
Similarly, we have \partial_{\omega\alpha}\circ \partial_{\omega\omega}+\partial_{\alpha\alpha}\circ \partial_{\omega\alpha} = 0 and \partial_{\omega\alpha}\circ \partial_{\alpha\omega}+\partial_{\alpha\alpha}\circ \partial_{\alpha\alpha} = 0 . This finishes the proof.
We give warmest thanks to Yunhe Sheng for helpful comments that improve the paper. This work is supported by National Natural Science Foundation of China (Grant No. 12001226).
The authors declare there is no conflicts of interest.
[1] |
S. S. Oueini, A. H. Nayfeh, J. R. Pratt, A nonlinear vibration absorber for flexible structures, Nonlinear Dyn., 15 (1998), 259–282. https://doi.org/10.1023/A:1008250524547 doi: 10.1023/A:1008250524547
![]() |
[2] |
P. F. Pai, B. Wen, A. S. Naser, M. J. Schulz, Structural vibration control using PZT patches and non-linear phenomena, J. Sound Vib., 215 (1998), 273–296. https://doi.org/10.1006/jsvi.1998.1612 doi: 10.1006/jsvi.1998.1612
![]() |
[3] |
S. S. Oueini, A. H. Nayfeh, Single-mode control of a cantilever beam under principal parametric excitation, J. Sound Vib., 224 (1999), 33–47. https://doi.org/10.1006/jsvi.1998.2028 doi: 10.1006/jsvi.1998.2028
![]() |
[4] |
P. F. Pai, M. J. Schulz, A refined nonlinear vibration absorber, Int. J. Mech. Sci., 42 (2000), 537–560. https://doi.org/10.1016/S0020-7403(98)00135-0 doi: 10.1016/S0020-7403(98)00135-0
![]() |
[5] |
P. F. Pai, B. Rommel, M. J. Schulz, Non-linear vibration absorbers using higher order internal resonances, J. Sound Vib., 234 (2000), 799–817. https://doi.org/10.1006/jsvi.1999.2896 doi: 10.1006/jsvi.1999.2896
![]() |
[6] |
O. N. Ashour, A. H. Nayfeh, Adaptive control of flexible structures using a nonlinear vibration absorber, Nonlinear Dyn., 28 (2002), 309–322. https://doi.org/10.1023/A:1015622630382 doi: 10.1023/A:1015622630382
![]() |
[7] |
L. Jun, H. X. Hua, R. Y. Shen, Saturation-based active absorber for a non-linear plant to a principal external excitation, Mech. Syst. Signal Process., 21 (2007), 1489–1498. https://doi.org/10.1016/j.ymssp.2006.03.001 doi: 10.1016/j.ymssp.2006.03.001
![]() |
[8] |
L. Jun, X. B. Li, H. X. Hua, Active nonlinear saturation-based control for suppressing the free vibration of a self-excited plant, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1071–1079. https://doi.org/10.1016/j.cnsns.2009.05.028 doi: 10.1016/j.cnsns.2009.05.028
![]() |
[9] |
J. Xu, K. W. Chung, Y. Y. Zhao, Delayed saturation controller for vibration suppression in a stainless-steel beam, Nonlinear Dyn., 62 (2010), 177–193. https://doi.org/10.1007/s11071-010-9708-4 doi: 10.1007/s11071-010-9708-4
![]() |
[10] |
A. T. EL-Sayed, Resonance behavior in coupled Van der Pol harmonic oscillators with controllers and delayed feedback, J. Vib. Control, 27 (2020), 1155–1170. https://doi.org/10.1177/1077546320938182 doi: 10.1177/1077546320938182
![]() |
[11] |
J. Warminski, M. Bochenski, W. Jarzyna, P. Filipek, M. Augustyniak, Active suppression of nonlinear composite beam vibrations by selected control algorithms, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2237–2248. https://doi.org/10.1016/j.cnsns.2010.04.055 doi: 10.1016/j.cnsns.2010.04.055
![]() |
[12] |
N. A. Saeed, W. A. El-Ganini, M. Eissa, Nonlinear time delay saturation-based controller for suppression of nonlinear beam vibrations, Appl. Math. Modell., 37 (2013), 8846–8864. https://doi.org/10.1016/j.apm.2013.04.010 doi: 10.1016/j.apm.2013.04.010
![]() |
[13] | Y. S. Hamed, S. K. Elagan, On the vibration behavior study of a nonlinear flexible composite beam under excitation forces via nonlinear active vibration controller, Int. J. Basic Appl. Sci., 13 (2013), 9–18. |
[14] |
Y. S. Hamed, Y. A. Amer, Nonlinear saturation controller for vibration supersession of a nonlinear composite beam, J. Mech. Sci. Technol., 28 (2014), 2987–3002. https://doi.org/10.1007/s12206-014-0706-1 doi: 10.1007/s12206-014-0706-1
![]() |
[15] |
M. Kamel, A. Kandil, W. A. El-Ganaini, M. Eissa, Active vibration control of a nonlinear magnetic levitation system via Nonlinear Saturation Controller (NSC), Nonlinear Dyn., 77 (2014), 605–619. https://doi.org/10.1007/s11071-014-1323-3 doi: 10.1007/s11071-014-1323-3
![]() |
[16] |
E. Omidi, S. N. Mahmoodi, Sensitivity analysis of the nonlinear integral positive position feedback and integral resonant controllers on vibration suppression of nonlinear oscillatory systems, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 149–166. https://doi.org/10.1016/j.cnsns.2014.10.011 doi: 10.1016/j.cnsns.2014.10.011
![]() |
[17] |
J. C. Ji, N. Zhang, Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber, J. Sound Vib., 329 (2010), 2044–2056. https://doi.org/10.1016/j.jsv.2009.12.020 doi: 10.1016/j.jsv.2009.12.020
![]() |
[18] |
J. C. Ji, N. Zhang, Suppression of super-harmonic resonance response using a linear vibration absorber, Mech. Res. Commun., 38 (2011), 411–416. https://doi.org/10.1016/j.mechrescom.2011.05.014 doi: 10.1016/j.mechrescom.2011.05.014
![]() |
[19] |
J. C. Ji, Application of a weakly nonlinear absorber to suppress the resonant vibrations of a forced nonlinear oscillator, J. Vib. Acoust., 134 (2012), 044502. https://doi.org/10.1115/1.4005839 doi: 10.1115/1.4005839
![]() |
[20] |
J. C. Ji, Design of a nonlinear vibration absorber using three-to-one internal resonances, Mech. Syst. Signal Process., 42 (2014), 236–246. https://doi.org/10.1016/j.ymssp.2013.06.019 doi: 10.1016/j.ymssp.2013.06.019
![]() |
[21] |
H. S. Bauomy, A. T. El-Sayed, A new six-degrees of freedom model designed for a composite plate through PPF controllers, Appl. Math. Modell., 88 (2020), 604–630. https://doi.org/10.1016/j.apm.2020.06.067 doi: 10.1016/j.apm.2020.06.067
![]() |
[22] |
H. S. Bauomy, A. T. El-Sayed, Act of nonlinear proportional derivative controller for MFC laminated shell, Phys. Scr., 95 (2020), 095210. https://doi.org/10.1088/1402-4896/abaa7c doi: 10.1088/1402-4896/abaa7c
![]() |
[23] |
H. S. Bauomy, A. T. El-Sayed, Mixed controller (IRC+NSC) involved in the harmonic vibration response cantilever beam model, Meas. Control, 53 (2020), 1954–1967. https://doi.org/10.1177/0020294020964243 doi: 10.1177/0020294020964243
![]() |
[24] |
A. T. El-Sayed, H. S. Bauomy, Outcome of special vibration controller techniques linked to a cracked beam, Appl. Math. Modell., 63 (2018), 266–287. https://doi.org/10.1016/j.apm.2018.06.045 doi: 10.1016/j.apm.2018.06.045
![]() |
[25] |
H. S. Bauomy, New controller (NPDCVF) outcome of FG cylindrical shell structure, Alexandria Eng. J., 61 (2021), 1779–1801. https://doi.org/10.1016/j.aej.2021.06.061 doi: 10.1016/j.aej.2021.06.061
![]() |
[26] |
J. C. Ji, X. Y. Li, L. Z. Zhang, Two–to–one resonant Hopf bifurcation in a quadratically nonlinear oscillator involving time delay, Int. J. Bifurcation Chaos, 22 (2012), 1250060. https://doi.org/10.1142/S0218127412500605 doi: 10.1142/S0218127412500605
![]() |
[27] |
J. C. Ji, Secondary resonances of a quadratic nonlinear oscillator following two-to-one resonant Hopf bifurcations, Nonlinear Dyn., 78 (2014), 2161–2184. https://doi.org/10.1007/s11071-014-1588-6 doi: 10.1007/s11071-014-1588-6
![]() |
[28] |
W. Zhang, J. Li, Global analysis for a nonlinear vibration absorber with fast and slow modes, Int. J. Bifurcation Chaos, 11 (2001), 2179–2194. https://doi.org/10.1142/S0218127401003334 doi: 10.1142/S0218127401003334
![]() |
[29] |
W. Zhang, Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam, Chaos, Solitons Fractals, 26 (2005), 731–745. https://doi.org/10.1016/j.chaos.2005.01.042 doi: 10.1016/j.chaos.2005.01.042
![]() |
[30] |
W. Zhang, Z. Yao, M. Yao, Periodic and chaotic dynamics of laminated composite piezoelectric rectangular plate with one-to-two internal resonance, Sci. China, Ser. E: Technol. Sci., 52 (2009), 731–742. https://doi.org/10.1007/s11431-009-0051-2 doi: 10.1007/s11431-009-0051-2
![]() |
[31] |
Y. X. Hao, W. Zhang, J. Yang, Nonlinear oscillations of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method, Composites, Part B, 42 (2011), 402–413. https://doi.org/10.1016/j.compositesb.2010.12.010 doi: 10.1016/j.compositesb.2010.12.010
![]() |
[32] |
W. Zhang, M. H. Zhao, X. Y. Guo, Nonlinear responses of a symmetric cross-ply composite laminated cantilever rectangular plate under in-plane and moment excitations, Compos. Struct., 100 (2013), 554–565. https://doi.org/10.1016/j.compstruct.2013.01.013 doi: 10.1016/j.compstruct.2013.01.013
![]() |
[33] |
X. Y. Guo, W. Zhang, Nonlinear vibrations of a reinforced composite plate with carbon nanotubes, Compos. Struct., 135 (2016), 96–108. https://doi.org/10.1016/j.compstruct.2015.08.063 doi: 10.1016/j.compstruct.2015.08.063
![]() |
[34] |
S. F. Lu, Y. Jiang, W. Zhang, X. J. Song, Vibration suppression of cantilevered piezoelectric laminated composite rectangular plate subjected to aerodynamic force in hygrothermal environment, Eur. J. Mech. - A/Solids, 83 (2020), 104002. https://doi.org/10.1016/j.euromechsol.2020.104002 doi: 10.1016/j.euromechsol.2020.104002
![]() |
[35] |
W. Zhang, G. Liu, B. Siriguleng, Saturation phenomena and nonlinear resonances of rotating pretwisted laminated composite blade under subsonic air flow excitation, J. Sound Vib., 478 (2020), 115353. https://doi.org/10.1016/j.jsv.2020.115353 doi: 10.1016/j.jsv.2020.115353
![]() |
[36] | A. H. Nayfeh, Perturbation Methods, Wiley, New York, 2000. https://doi.org/10.1002/9783527617609 |
[37] | A. H. Nayfeh, D. Mook, Nonlinear Oscillations, Wiley, New York, 1995. https://doi.org/10.1002/9783527617586 |
1. | Shuangjian Guo, Ripan Saha, On α-type (equivariant) cohomology of Hom-pre-Lie algebras, 2023, 0092-7872, 1, 10.1080/00927872.2023.2243514 |