Research article Special Issues

Floating cage aquaculture production in Indonesia: Assessment of opportunities and challenges in Lake Maninjau

  • Received: 08 October 2021 Revised: 18 December 2021 Accepted: 22 December 2021 Published: 18 January 2022
  • Aquaculture in floating cages in Lake Maninjau has recorded significant growth, even as the largest contributor to total annual aquacultural production in West Sumatra Province. In this study, we assessed the output of floating net cages in Lake Maninjau, Indonesia. We analyzed the characteristics of fish farming, fish fry, feed supply, and production, and the challenges and opportunities for increasing aquacultural production in the future. We used purposive sampling in this study with an interview questionnaire to obtain information from 80 fish-cultivating households in Lake Maninjau. We then used descriptive statistical methods of data analysis. The results showed that in 2018, there were 17596 floating net cages. The majority (n = 33, 41.25%) of fish farmers have 20 to 40 floating net cages per household, and 67.5% (n = 54) are used for tilapia cultivation. We recorded that 77.5% (n = 62) of fingerlings were sourced from private hatcheries. Six companies supply commercial feed pellets in an amount of 2000 tons per month for aquaculture activities. Japfa Comfeed Indonesia Ltd. provides 35% of the feed. The fish species cultivated were Nile tilapia, common carp, giant gourami, Clarias catfish, and pangasius catfish, with gross yields (kg/m3/cycle) of 12, 11.5, 10.4, 7.88, and 8.89, respectively. Fish farmers face challenging conditions: poor water quality, mass mortality of tilapia, high fish feed prices and low fish sale prices, and noncash payments. We recommend ensuring the development of floating net cages in Lake Maninjau for a more sustainable future. Therefore, it is necessary to operate as many as 6000 nets to meet guidelines for carrying capacity and cultivation based on the Regional Regulation of Agam Regency Number 5 of 2014 concerning the management of Maninjau Lake, which is accessible proportionally by eight villages. Giant gourami is prioritized for cultivation because it is resistant to poor water quality and high market prices.

    Citation: Junaidi, Hafrijal Syandri, Azrita, Abdullah Munzir. Floating cage aquaculture production in Indonesia: Assessment of opportunities and challenges in Lake Maninjau[J]. AIMS Environmental Science, 2022, 9(1): 1-15. doi: 10.3934/environsci.2022001

    Related Papers:

    [1] Hao Zheng . The Pauli problem and wave function lifting: reconstruction of quantum states from physical observables. Mathematics in Engineering, 2024, 6(4): 648-675. doi: 10.3934/mine.2024025
    [2] G. Gaeta, G. Pucacco . Near-resonances and detuning in classical and quantum mechanics. Mathematics in Engineering, 2023, 5(1): 1-44. doi: 10.3934/mine.2023005
    [3] Tiziano Penati, Veronica Danesi, Simone Paleari . Low dimensional completely resonant tori in Hamiltonian Lattices and a Theorem of Poincaré. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021029
    [4] Lorenzo Pistone, Sergio Chibbaro, Miguel D. Bustamante, Yuri V. Lvov, Miguel Onorato . Universal route to thermalization in weakly-nonlinear one-dimensional chains. Mathematics in Engineering, 2019, 1(4): 672-698. doi: 10.3934/mine.2019.4.672
    [5] Federica Di Michele, Bruno Rubino, Rosella Sampalmieri, Kateryna Stiepanova . Stationary solutions to a hybrid viscous hydrodynamic model with classical boundaries. Mathematics in Engineering, 2024, 6(5): 705-725. doi: 10.3934/mine.2024027
    [6] Carlo Danieli, Bertin Many Manda, Thudiyangal Mithun, Charalampos Skokos . Computational efficiency of numerical integration methods for the tangent dynamics of many-body Hamiltonian systems in one and two spatial dimensions. Mathematics in Engineering, 2019, 1(3): 447-488. doi: 10.3934/mine.2019.3.447
    [7] Dheeraj Varma, Manikandan Mathur, Thierry Dauxois . Instabilities in internal gravity waves. Mathematics in Engineering, 2023, 5(1): 1-34. doi: 10.3934/mine.2023016
    [8] L. Galgani . Foundations of physics in Milan, Padua and Paris. Newtonian trajectories from celestial mechanics to atomic physics. Mathematics in Engineering, 2021, 3(6): 1-24. doi: 10.3934/mine.2021045
    [9] Paola F. Antonietti, Ilario Mazzieri, Laura Melas, Roberto Paolucci, Alfio Quarteroni, Chiara Smerzini, Marco Stupazzini . Three-dimensional physics-based earthquake ground motion simulations for seismic risk assessment in densely populated urban areas. Mathematics in Engineering, 2021, 3(2): 1-31. doi: 10.3934/mine.2021012
    [10] Chiara Caracciolo . Normal form for lower dimensional elliptic tori in Hamiltonian systems. Mathematics in Engineering, 2022, 4(6): 1-40. doi: 10.3934/mine.2022051
  • Aquaculture in floating cages in Lake Maninjau has recorded significant growth, even as the largest contributor to total annual aquacultural production in West Sumatra Province. In this study, we assessed the output of floating net cages in Lake Maninjau, Indonesia. We analyzed the characteristics of fish farming, fish fry, feed supply, and production, and the challenges and opportunities for increasing aquacultural production in the future. We used purposive sampling in this study with an interview questionnaire to obtain information from 80 fish-cultivating households in Lake Maninjau. We then used descriptive statistical methods of data analysis. The results showed that in 2018, there were 17596 floating net cages. The majority (n = 33, 41.25%) of fish farmers have 20 to 40 floating net cages per household, and 67.5% (n = 54) are used for tilapia cultivation. We recorded that 77.5% (n = 62) of fingerlings were sourced from private hatcheries. Six companies supply commercial feed pellets in an amount of 2000 tons per month for aquaculture activities. Japfa Comfeed Indonesia Ltd. provides 35% of the feed. The fish species cultivated were Nile tilapia, common carp, giant gourami, Clarias catfish, and pangasius catfish, with gross yields (kg/m3/cycle) of 12, 11.5, 10.4, 7.88, and 8.89, respectively. Fish farmers face challenging conditions: poor water quality, mass mortality of tilapia, high fish feed prices and low fish sale prices, and noncash payments. We recommend ensuring the development of floating net cages in Lake Maninjau for a more sustainable future. Therefore, it is necessary to operate as many as 6000 nets to meet guidelines for carrying capacity and cultivation based on the Regional Regulation of Agam Regency Number 5 of 2014 concerning the management of Maninjau Lake, which is accessible proportionally by eight villages. Giant gourami is prioritized for cultivation because it is resistant to poor water quality and high market prices.



    The special issue “Living organisms on innovative substrates and materials” provides the reader with novel findings regarding the behavior of different organisms on artificial or unusual substrates. Interactions between living organisms and diverse substrates are on the one hand important to improve cell growth in biotechnology and tissue engineering, on the other hand to provide surfaces with antibacterial, fungicidal and similar properties.

    The short communication “Graphene derivatives potentiate the activity of antibiotics against Enterococcus faecium, Klebsiella pneumoniae and E. coli” written by Butler and colleagues is an important contribution to the fight against the alarming increase in the number of key priority pathogens developing resistance against antibiotics. The antimicrobial effect of graphene, graphite and graphene oxide is well-known. In this article, the combination of these compounds with three clinically relevant antibiotics displaying different modes of activity, is described. This strategy might constitute a new approach to prevent resistant bacterial infections.

    Three research articles in this special issue report on the attachment of mammalian Chinese hamster ovary (CHO) cells and certain molds, respectively, on synthetic polymers. The investigation of mammalian cell adhesion on plastic material is an important aspect for the design of novel tissue engineering scaffolds. In addition, particular attention must be paid to the sterilization of the scaffolds since the utilization of antibiotics is unfavorable. Another possible technical application might be the use of synthetic polymers as novel microcarriers for upstream bioprocessing. In contrast, adhesion of living organisms on plastic material is sometimes undesirable. In their research article, Whitehead and colleagues report on “The effect of the surface properties of poly(methyl methacrylate) on the attachment, adhesion and retention of fungal conidia”. Here, the behavior of certain molds on different polymethyl methacrylates is in the focus of their research.

    The green microalga Chlorella vulgaris is a popular food additive due to its nutrient-content. In addition, it can be used in the cosmetics industry or to feed aquaculture. In their contribution “Improved growth and harvesting of microalgae Chlorella vulgaris on textile fabrics as 2.5 D substrates”, Brockhagen and co-workers investigated novel methods to cultivate the microalga on different natural and non-natural fabrics.

    Last but not least, Tsivileva and colleagues report on the effect of different synthetic acridones on the mushroom Lentinula edodes (shiitake). Apart from their technical use as dyes, many natural-occurring acridones were reported to display anti-inflammatory or anti-cancer effects. Thus, possible unfavorable ecological effects of these compounds must be clarified. The authors analyzed several metabolic substances in the fungus that could be attributed to the presence of the particular acridone.

    Taken together, the reader gets new insights into the behavior of small organisms in unusual environments during the visit of this special zoo.



    [1] FAO (2018) The state of world fisheries and aquaculture 2018: contributing to food security and nutrition for all, Rome.
    [2] Tran N, Rodriguez UP, Chan CY, et al. (2017) Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the Asia Fish model. Mar Policy 79: 25-32. https://doi.org/10.1016/j.marpol.2017.02.002 doi: 10.1016/j.marpol.2017.02.002
    [3] Senff P, Partelow S, Indriana LF, et al. (2018) Improving pond aquaculture production on Lombok, Indonesia. Aquaculture 497: 64-73. https://doi.org/10.1016/j.aquaculture.2018.07.027 doi: 10.1016/j.aquaculture.2018.07.027
    [4] Pouil S, Samsudin R, Slembrouck J, et al. (2019) Nutrient budgets in a small-scale freshwater fish pond system in Indonesia. Aquaculture 504: 267-274. https://doi.org/10.1016/j.aquaculture.2019.01.067 doi: 10.1016/j.aquaculture.2019.01.067
    [5] CDSI, Central Data Statistic Indonesia (2016) Ministry of Marine and Fisheries Republic of Indonesia. CSI. Center for data, statistics and information (CSI). Marine and Fisheries in Figures. Ministry of Marine and Fisheries Republic of Indonesia. 2018. https://kkp.go.id/wp-content/uploads/2018/01/KKP-Dirjen-PDSPKP-FMB-Kominfo-19-Januari-2018.pdf
    [6] Syandri H, Azrita, Junaidi, et al. (2015) Social Status of the fish-farmers of floating-net-cages in Lake Maninjau, Indonesia. J Aquac Res Dev 7: 1.
    [7] Rimmer MA, Sugama, Rakhmawati K, et al. (2013) A review and SWOT analysis of aquaculture development in Indonesia. Rev Aquac 5: 255-279. https://doi.org/10.1111/raq.12017 doi: 10.1111/raq.12017
    [8] Henriksson PJG, Tran N, Mohan CV, et al. (2017) Indonesian aquaculture futures evaluating environmental and socio-economic potentials and limitations. J Clean Prod 162: 1482-1490. https://doi.org/10.1016/j.jclepro.2017.06.133 doi: 10.1016/j.jclepro.2017.06.133
    [9] Syandri H, Azrita, Mardiah A, et al. (2018) Nitrogen and phosphorus waste production from different fish species cultured at floating net cages in Lake Maninjau, Indonesia. Asian J Sci Res 11: 287-294. https://doi.org/10.3923/ajsr.2018.287.294 doi: 10.3923/ajsr.2018.287.294
    [10] Syandri H, Azrita, Sumiarsih E, et al. (2021) Nutrient loading and farm characteristics of giant gourami fish aquaculture systems in Lake Maninjau, Indonesia: Basic knowledge of production performance. F1000Research, 10: 378. https://doi.org/10.12688/f1000research.52613.1.
    [11] Syandri H, Azrita, Niagara, et al. (2016) Trophic Status and load capacity of water pollution waste fish culture with floating net cages in Maninjau Lake, Indonesia. Eco Env Cons 22: 469-476. http://www.envirobiotechjournals.com/article_abstract.php?aid = 6717&iid = 207&jid = 3
    [12] Ahmed N, Thompson S (2019) The blue dimensions of aquaculture: A global synthesis. Sci. Total Environ 652: 851-861. https://doi.org/10.1016/j.scitotenv.2018.10.163. doi: 10.1016/j.scitotenv.2018.10.163
    [13] Aura CM, Musa S, Yongo E, et al. (2017) Integration of mapping and socio-economic status of cage culture: Toward balancing lake-use and culture fisheries in Lake Victoria Kenya. Aquac Res 49: 532-545. https://doi.org/10.1111/are.13484 doi: 10.1111/are.13484
    [14] CSA, Central Statistics Agency (2018) Agam District, West Sumatera Province, Indonesia. https://agamkab.bps.go.id/
    [15] Syandri H, Junaidi, Azrita, et al. 2014. State of aquatic resources Maninjau Lake West Sumatra Province, Indonesia. J Ecol Environ Sci 1: 109-114.
    [16] Central Bureau of Statistics (CBS) of Agam Regency. (2017). Agam Regency in Figures 2017.
    [17] Opiyo MA, Marijani E, Muendo P, et al. (2018) A review of aquaculture production and health management practices of farmed fish in Kenya. Int J Vet Sci Med 6: 141-148. https://doi.org/10.1016/j.ijvsm.2018.07.001 doi: 10.1016/j.ijvsm.2018.07.001
    [18] Mbowa S, Odokonyero T, Munyaho AT, et al. (2017) Harnessing floating cage technology to increase fish production in Uganda, Research Series No. 138.
    [19] Hasimuna OJ, Maulu S, Monde C, et al. (2019) Cage aquaculture production in Zambia: Assessment of opportunities and challenges on Lake Kariba, Siavonga district. Egypt. J Aquat Res 45: 281-285. https://doi.org/10.1016/j.ejar.2019.06.007
    [20] Thongprajukaew K, Kovitvadhi S, Kovitvadhi U, et al. (2017) Effects of feeding frequency on growth performance and digestive enzyme activity of sex-reversed Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). Agric Nat Resources 51: 292-298. https://doi.org/10.1016/j.anres.2017.04.005 doi: 10.1016/j.anres.2017.04.005
    [21] Prem R, Tewari VK (2020) Development of human-powered fish feeding machine for freshwater aquaculture farms of developing countries. Aquac Eng 88: 102028. https://doi.org/10.1016/j.aquaeng.2019.102028 doi: 10.1016/j.aquaeng.2019.102028
    [22] Syandri H, Azrita, Mardiah A, et al. (2020) Water Quality Status and Pollution Waste Load from Floating Net Cages at Maninjau Lake, West Sumatera Indonesia. IOP Conf Ser Earth Environ Sci 430: 01203. https://doi.org/10.1088/1755-1315/430/1/012031 doi: 10.1088/1755-1315/430/1/012031
    [23] Ji B, Qin H, Guo S, et al. (2018) Bacterial communities of four adjacent fresh lakes at different trophic status. Ecotoxicol Environ Saf 157: 388-394. https://doi.org/10.1016/j.ecoenv.2018.03.086 doi: 10.1016/j.ecoenv.2018.03.086
    [24] Burgos MJG, Romero JL, Pulido RP, et al. (2018) Analysis of potential risks from the bacterial communities associated with air-contact surfaces from tilapia (Oreochromis niloticus) fish farming. Environ Res 160: 385-390. https://doi.org/10.1016/j.envres.2017.10.021 doi: 10.1016/j.envres.2017.10.021
    [25] Zhao M, Xie S, Zhu X, et al. (2006) Effect of dietary cyanobacteria on growth and accumulation of microcystins in Nile tilapia (Oreochromis niloticus). Aquaculture 261: 960-966. https://doi.org/10.1016/j.aquaculture.2006.08.019 doi: 10.1016/j.aquaculture.2006.08.019
    [26] de Oliveira TF, Queiroz GA, Teixeira JP, et al. (2018) Recurrent Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus) treated with florfenicol. Aquaculture 493: 51-60. https://doi.org/10.1016/j.aquaculture.2018.04.037 doi: 10.1016/j.aquaculture.2018.04.037
    [27] Nicholson P, Mon-on N, Jaemwimol P, et al. (2019) Co-infection of tilapia lake virus and Aeromonas hydrophila synergistically increased mortality and worsened the disease severity in tilapia (Oreochromis spp.). Aquaculture 520: 734746. https://doi.org/10.1016/j.aquaculture.2019.734746
    [28] Hounmanou YMG, Mdegela RH, Dougnon TV, et al. (2018) Tilapia lake virus threatens tilapiines farming and food security: Socio-economic challenges and preventive measures in Sub- Saharan Africa. Aquaculture 493: 123-129. https://doi.org/10.1016/j.aquaculture.2018.05.001 doi: 10.1016/j.aquaculture.2018.05.001
    [29] Ferguson HW, Kabuusu R, Beltran S, et al. (2014) Syncytial hepatitis of farmed tilapia, Oreochromis niloticus (L.): a case report. J Fish Dis 37: 583-589. https://doi.org/10.1111/jfd.12142 doi: 10.1111/jfd.12142
    [30] Tsofack JEK, Zamostiano R, Watted S, et al. (2017) Detection of Tilapia Lake Virus in Clinical Samples by Culturing and Nested Reverse Transcription-PCR. J Clin Microbiol 55: 759-767. https://doi.org/10.1128/JCM.01808-16 doi: 10.1128/JCM.01808-16
    [31] Amal MNA, Koh CB, Nurliyana M, et al. (2018) A case of natural co-infection of Tilapia Lake Virus and Aeromonas veronii in a Malaysian red hybrid tilapia (Oreochromis niloticus×O. mossambicus) farm experiencing high mortality. Aquaculture 485: 12-16. https://doi.org/10.1016/j.aquaculture.2017.11.019 doi: 10.1016/j.aquaculture.2017.11.019
    [32] Mugimba KK, Chengula, AA Wamala S, et al. (2018) Detection of tilapia lake virus (TiLV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria. J Fish Dis https://doi.org/10.1111/jfd.12790
    [33] Ali H, Rahman MM, Murshed-e-Jaha K, et al. (2018) Production economics of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) farming under polyculture system in Bangladesh. Aquaculture 491: 281-390. https://doi.org/10.1016/j.aquaculture.2017.12.004 doi: 10.1016/j.aquaculture.2017.12.004
    [34] Verdegem MCJ, Bosma RH (2009) Water withdrawal for brackish and inland aquaculture and options to produce more fish in ponds with present water use. Water Policy 11: 52-68 Supplement 1. https://doi.org/10.2166/wp.2009.003 doi: 10.2166/wp.2009.003
    [35] David GS, Carvalho ED, Lemos D, et al. (2015) Ecological carrying capacity for intensive Tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil. Aquac Eng 66: 30-40. https://doi.org/10.1016/j.aquaeng.2015.02.003 doi: 10.1016/j.aquaeng.2015.02.003
    [36] Musinguzi L, Lugya J, Rwezawula P, et al. (2019) The extent of cage aquaculture, adherence to best practices and reflections for sustainable aquaculture on African inland waters. J Great Lakes Res 45: 1340-1347. https://doi.org/10.1016/j.jglr.2019.09.011 doi: 10.1016/j.jglr.2019.09.011
    [37] Jamu D, Banda M, Njaya F, et al. (2011) Challenges to sustainable management of the lakes of Malawi. J Great Lakes Res 37: 3-14. https://doi.org/10.1016/j.jglr.2010.11.017 doi: 10.1016/j.jglr.2010.11.017
    [38] Jia P, Zhang W, Liu Q, et al. (2013) Lake fisheries in China: Challenges and opportunities. Fish Res 140: 66-72. https://doi.org/10.1016/j.fishres.2012.12.007 doi: 10.1016/j.fishres.2012.12.007
    [39] Asche F, Roll KH, Tveteras R, et al. (2009) Economic inefficiency and environmental impact: An application to aquaculture production. J Environ Econ Manage 58: 93-105. https://doi.org/10.1016/j.jeem.2008.10.003 doi: 10.1016/j.jeem.2008.10.003
    [40] Lindim C, Becker A, Grüneberg B, et al. (2015) Modelling the effects of nutrient loads reduction and testing the N and P control paradigm in a German shallow lake. Aquac Eng 82: 418-457. https://doi.org/10.1016/j.ecoleng.2015.05.009 doi: 10.1016/j.ecoleng.2015.05.009
    [41] Syandri H, Azrita, Junaidi, et al. (2017) Levels of available nitrogen-phosphorus before and after fish mass mortality in Maninjau Lake of Indonesia. J Fish Aquat Sci 12: 191-196. https://doi.org/10.3923/jfas.2017.191.196 doi: 10.3923/jfas.2017.191.196
    [42] Du H, Chen Z, Mao G, et al. (2019) Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol Indic 102: 686-692. https://doi.org/10.1016/j.ecolind.2019.03.032 doi: 10.1016/j.ecolind.2019.03.032
    [43] Ni Z, Wu X, Li L, et al. (2017) Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. J Clean Prod 172: 2256-2265. https://doi.org/10.1016/j.jclepro.2017.11.185 doi: 10.1016/j.jclepro.2017.11.185
    [44] Young N, Brattland C, Digiovanni, et al. (2019) Limitations to growth: Social-ecological challenges to aquaculture development in five wealthy nations. Mar Policy 104: 216-224. https://doi.org/10.1016/j.marpol.2019.02.022 doi: 10.1016/j.marpol.2019.02.022
    [45] Holden JS, Collicutt B, Covernton G, et al. (2019) Synergies on the coast: Challenges facing shellfish aquaculture development on the central and north coast of British Columbia. Mar Policy 101: 108-117. https://doi.org/10.1016/j.marpol.2019.01.001. doi: 10.1016/j.marpol.2019.01.001
    [46] Weitzman J (2019) Applying the ecosystem services concept to aquaculture: A review of approaches, definitions, and uses. Ecosyst Serv 35: 194-206. https://doi.org/10.1016/j.ecoser.2018.12.009. doi: 10.1016/j.ecoser.2018.12.009
  • This article has been cited by:

    1. Changjin Xu, Wei Zhang, Peiluan Li, Chuangxia Huang, Periodic Oscillating Dynamics for a Delayed Nicholson-Type Model with Harvesting Terms, 2021, 2021, 1563-5147, 1, 10.1155/2021/9734342
    2. Xianhui Zhang, Convergence analysis of a patch structure Nicholson’s blowflies system involving an oscillating death rate, 2021, 0952-813X, 1, 10.1080/0952813X.2021.1908433
    3. Jian Zhang, Ancheng Chang, Gang Yang, Periodicity on Neutral-Type Inertial Neural Networks Incorporating Multiple Delays, 2021, 13, 2073-8994, 2231, 10.3390/sym13112231
    4. Qian Cao, Positive almost periodicity on a n-species food chain system incorporating time-varying delays and polluted environments, 2022, 0952-813X, 1, 10.1080/0952813X.2022.2080279
    5. Xiaojin Guo, Chuangxia Huang, Jinde Cao, Nonnegative periodicity on high-order proportional delayed cellular neural networks involving D operator, 2020, 6, 2473-6988, 2228, 10.3934/math.2021135
    6. Wenke Wang, Le Li, Xuejun Yi, Chuangxia Huang, Convergence on Population Dynamics and High-Dimensional Haddock Conjecture, 2021, 13, 2073-8994, 2252, 10.3390/sym13122252
    7. Xiaodan Ding, Global attractivity of Nicholson’s blowflies system with patch structure and multiple pairs of distinct time-varying delays, 2023, 16, 1793-5245, 10.1142/S1793524522500814
    8. Yang Gao, Global stability for a new predator–prey model with cross-dispersal among patches based on graph theory, 2021, 2021, 1687-1847, 10.1186/s13662-021-03645-w
    9. Chuangxia Huang, Xiaojin Guo, Jinde Cao, Ardak Kashkynbayev, Bistable dynamics on a tick population equation incorporating Allee effect and two different time-varying delays, 2022, 15, 1937-1632, 3173, 10.3934/dcdss.2022122
    10. Hong Zhang, Qian Cao, Hedi Yang, Dynamics analysis of delayed Nicholson-type systems involving patch structure and asymptotically almost periodic environments, 2022, 34, 0952-813X, 725, 10.1080/0952813X.2021.1924869
    11. Xiaoyuan Chang, Junping Shi, Bistable and oscillatory dynamics of Nicholson's blowflies equation with Allee effect, 2022, 27, 1531-3492, 4551, 10.3934/dcdsb.2021242
    12. Yanli Xu, Stability on a patch-structured Nicholson's blowflies system incorporating mature delay and feedback delay, 2022, 0020-7179, 1, 10.1080/00207179.2022.2081260
    13. Chuangxia Huang, Lihong Huang, Jianhong Wu, Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays, 2022, 27, 1531-3492, 2427, 10.3934/dcdsb.2021138
    14. Rajendiran Eswari, Jehad Alzabut, Mohammad Esmael Samei, Hui Zhou, On periodic solutions of a discrete Nicholson’s dual system with density-dependent mortality and harvesting terms, 2021, 2021, 1687-1847, 10.1186/s13662-021-03521-7
    15. Yang Liu, Zhen Wang, Qian Ma, Hao Shen, Multistability analysis of delayed recurrent neural networks with a class of piecewise nonlinear activation functions, 2022, 152, 08936080, 80, 10.1016/j.neunet.2022.04.015
    16. Xian Zhao, Chuangxia Huang, Bingwen Liu, Jinde Cao, Stability analysis of delay patch-constructed Nicholson’s blowflies system, 2024, 222, 03784754, 379, 10.1016/j.matcom.2023.09.012
    17. Qian Wang, Lihong Huang, Almost Periodic Dynamics of a Delayed Patch-Constructed Nicholson’s Blowflies System, 2024, 23, 1575-5460, 10.1007/s12346-024-01129-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5737) PDF downloads(399) Cited by(3)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog