Research article Special Issues

A study of behaviour for fractional order diabetes model via the nonsingular kernel

  • A susceptible diabetes comorbidity model was used in the mathematical treatment to explain the predominance of mellitus. In the susceptible diabetes comorbidity model, diabetic patients were divided into three groups: susceptible diabetes, uncomplicated diabetics, and complicated diabetics. In this research, we investigate the susceptible diabetes comorbidity model and its intricacy via the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). The analysis backs up the idea that the aforesaid fractional order technique plays an important role in predicting whether or not a person will develop diabetes after a substantial immunological assault. Using the fixed point postulates, several theoretic outcomes of existence and Ulam's stability are proposed for the susceptible diabetes comorbidity model. Meanwhile, a mathematical approach is provided for determining the numerical solution of the developed framework employing the Adams type predictor–corrector algorithm for the ABC-fractional integral operator. Numerous mathematical representations correlating to multiple fractional orders are shown. It brings up the prospect of employing this structure to generate framework regulators for glucose metabolism in type 2 diabetes mellitus patients.

    Citation: Saima Rashid, Fahd Jarad, Taghreed M. Jawa. A study of behaviour for fractional order diabetes model via the nonsingular kernel[J]. AIMS Mathematics, 2022, 7(4): 5072-5092. doi: 10.3934/math.2022282

    Related Papers:

    [1] A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337
    [2] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [3] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [4] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [5] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [6] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [7] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [8] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593
    [9] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [10] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
  • A susceptible diabetes comorbidity model was used in the mathematical treatment to explain the predominance of mellitus. In the susceptible diabetes comorbidity model, diabetic patients were divided into three groups: susceptible diabetes, uncomplicated diabetics, and complicated diabetics. In this research, we investigate the susceptible diabetes comorbidity model and its intricacy via the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). The analysis backs up the idea that the aforesaid fractional order technique plays an important role in predicting whether or not a person will develop diabetes after a substantial immunological assault. Using the fixed point postulates, several theoretic outcomes of existence and Ulam's stability are proposed for the susceptible diabetes comorbidity model. Meanwhile, a mathematical approach is provided for determining the numerical solution of the developed framework employing the Adams type predictor–corrector algorithm for the ABC-fractional integral operator. Numerous mathematical representations correlating to multiple fractional orders are shown. It brings up the prospect of employing this structure to generate framework regulators for glucose metabolism in type 2 diabetes mellitus patients.





    [1] H. W. Hethcote, H. R. Thiem, Stability of the endemic equilibrium in epidemic models with subpopulations, Math. Biosci., 75 (1985), 205–227. https://doi.org/10.1016/0025-5564(85)90038-0 doi: 10.1016/0025-5564(85)90038-0
    [2] D. Schenzle, An age-structured model of pre and post-vaccination measles transmission, Math. Med. Bio., 1 (1984), 169–191. https://doi.org/10.1093/imammb/1.2.169 doi: 10.1093/imammb/1.2.169
    [3] H. W. Hethcote, Measles and rubella in the United States, Am. J. Epidemiol., 117 (1983), 2–13.
    [4] S. S. Alzaid, B. S. T. Alkahtani, S. Sharma, R. S. Dubey, Numerical solution of fractional model of HIV-1 infection in framework of different fractional derivatives, J. Funct. Spaces, 2021 (2021), 6642957. https://doi.org/10.1155/2021/6642957 doi: 10.1155/2021/6642957
    [5] S. Syafruddin, M. S. Md. Noorani, Lyapunov function of SIR and SEIR model for transmission of dengue fever disease. Int. J. Simul. Proc. Model., 8 (2013), 177–184.
    [6] S. Side, W. Sanusi, M. K. Aidid, S. Sidjara, Global stability of SIR and SEIR model for tuberculosis disease transmission with lyapunov function method, Asian J. Appl. Sci., 9 (2016), 87–96.
    [7] P. Widyaningsih, R. C. Affan, D. R. S. Saputro1, A Mathematical model for the epidemiology of diabetes mellitus with lifestyle and genetic factors, J. Phys.: Conf. Ser., 1028 (2018), 012110.
    [8] E. Bonyaha, K. O. Okosun, Mathematical modeling of Zika virus, Asian Pac. J. Trop. Dis., 6 (2016), 673–679. https://doi.org/10.1016/S2222-1808(16)61108-8 doi: 10.1016/S2222-1808(16)61108-8
    [9] Sutanto, A. Azizah, P. Widyaningsih, D. R. S. Saputro, SEIIrR: Drug abuse model with rehabilitation, AIP Conf. Proc., 1847 (2017), 020018. https://doi.org/10.1063/1.4983873 doi: 10.1063/1.4983873
    [10] S. S. Rich, Genetics of diabetes and its complications, JASN, 17 (2006), 353–360. https://doi.org/10.1681/ASN.2005070770 doi: 10.1681/ASN.2005070770
    [11] J. Hill, M. Nielsen, M. H. Fox, Understanding the social factors that contribute to diabetes: A means to informing health care and social policies for the chronically ill, Perm. J., 17 (2013), 67–72. https://doi.org/10.7812/TPP/12-099 doi: 10.7812/TPP/12-099
    [12] A. Boutayeb, E. H. Twizell, K. Achouay, A. Chetouani, A mathematical model for the burden of diabetes and its complications, Biomed. Eng. Online, 3 (2004), 20. https://doi.org/10.1186/1475-925X-3-20 doi: 10.1186/1475-925X-3-20
    [13] S. B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, Y. M. Chu, New fractional approaches for n -polynomial P -convexity with applications in special function theory, Adv. Differ. Equ., 2020 (2020), 543. https://doi.org/10.1186/s13662-020-03000-5 doi: 10.1186/s13662-020-03000-5
    [14] S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Mathematics, 5 (2020), 7041–7054. https://doi.org/10.3934/math.2020451 doi: 10.3934/math.2020451
    [15] S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 2020 (2020), 647. https://doi.org/10.1186/s13662-020-03108-8 doi: 10.1186/s13662-020-03108-8
    [16] S. B. Chen, S. Saleem, M. N. Alghamdi, K. S. Nisar, A. Arsalanloo, A. Issakhov, et al., Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins, Case Stud. Therm. Eng., 25 (2021), 100939. https://doi.org/10.1016/j.csite.2021.100939 doi: 10.1016/j.csite.2021.100939
    [17] S. B. Chen, S. Soradi-Zeid, H. Jahanshahi, R. Alcaraz, J. F. Gómez-Aguilar, S. Bekiros, et al., Optimal control of time-delay fractional equations via a joint application of radial basis functions and collocation method, Entropy, 22 (2020), 1213. https://doi.org/10.3390/e22111213 doi: 10.3390/e22111213
    [18] N. Sene, Theory and applications of new fractional-order chaotic system under Caputo operator. IJOCTA, 12 (2022), 20–38. http://doi.org/10.11121/ijocta.2022.1108 doi: 10.11121/ijocta.2022.1108
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, 2006.
    [20] A. Atangana, A. Akgül, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134. https://doi.org/10.1016/j.aej.2020.01.005 doi: 10.1016/j.aej.2020.01.005
    [21] N. Sene, Analysis of the stochastic model for predicting the novel coronavirus disease, Adv. Differ. Equ., 2020 (2020), 568. https://doi.org/10.1186/s13662-020-03025-w doi: 10.1186/s13662-020-03025-w
    [22] N. Sene, SIR epidemic model with Mittag–Leffler fractional derivative, Chaos Soliton. Fract, 137 (2020), 109833. https://doi.org/10.1016/j.chaos.2020.109833 doi: 10.1016/j.chaos.2020.109833
    [23] X. P. Li, N. Gul, M. A. Khan, R. Bilal, A. Ali, M. Y. Alshahrani, et al., A new Hepatitis B model in light of asymptomatic carriers and vaccination study through Atangana-Baleanu derivative, Results Phys., 29 (2021), 104603. https://doi.org/10.1016/j.rinp.2021.104603 doi: 10.1016/j.rinp.2021.104603
    [24] X. P. Li, Y. Wang, M. A. Khan, M. Y. Alshahrani, T. Muhammad, A dynamical study of SARS-COV-2: A study of third wave, Results Phys., 29 (2021), 104705. https://doi.org/10.1016/j.rinp.2021.104705 doi: 10.1016/j.rinp.2021.104705
    [25] X. P. Li, H. Al Bayatti, A. Din, A. Zeb, A vigorous study of fractional order COVID-19 model via ABC derivatives, Results Phys. 29 (2021), 104737. https://doi.org/10.1016/j.rinp.2021.104737 doi: 10.1016/j.rinp.2021.104737
    [26] S. S. Zhou, M. I. Khan, S. Qayyum, B. C. Prasannakumara, R. N. Kumar, S. U. Khan, et al., Nonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganisms, Int. J. Mod. Phys. B, 35 (2021), 2150145. https://doi.org/10.1142/S0217979221501459 doi: 10.1142/S0217979221501459
    [27] Y. Q. Song, H. Waqas, K. Al-Khaled, U. Farooq, S. U. Khan, M. I. Khan, et al., Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model, Alex. Eng. J., 60 (2021), 4663–4675. https://doi.org/10.1016/j.aej.2021.03.056 doi: 10.1016/j.aej.2021.03.056
    [28] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https.//doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [29] R. Scherer, S. L. Kalla, Y. Tang, J. Huang, The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902–917. https://doi.org/10.1016/j.camwa.2011.03.054 doi: 10.1016/j.camwa.2011.03.054
    [30] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. http://www.sciepub.com/reference/3051
    [31] Y. Q. Song, S. A. Khan, M. Imran, H. Waqas, S. U. Khan, M. I. Khan, et al., Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk, Alex. Eng. J., 60 (2021), 4607–4618. https://doi.org/10.1016/j.aej.2021.03.053 doi: 10.1016/j.aej.2021.03.053
    [32] Y. Q. Song, M. Hassan, S. U. Khan, M. I. Khan, S. Qayyum, Y. M. Chu, et al., Thermal and boundary layer flow analysis for MWCNT-SiO2 hybrid nanoparticles: an experimental thermal model, Mod. Phys. Lett. B, 35 (2021), 2150303. https://doi.org/10.1142/S0217984921503036 doi: 10.1142/S0217984921503036
    [33] J. F. Li, H. Jahanshahi, S. Kacar, Y. M. Chu, J. F. Gómez-Aguilar, N. D. Alotaibi, et al., On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control, Chaos Solition. Fract., 145 (2021), 110681. https://doi.org/10.1016/j.chaos.2021.110681 doi: 10.1016/j.chaos.2021.110681
    [34] P. Y. Xiong, A. Almarashi, H. A. Dhahad, W. H. Alawee, A. Issakhov, Y. M. Chu, Nanoparticles for phase change process of water utilizing FEM, J. Mol. Liq., 334 (2021), 116096. https://doi.org/10.1016/j.molliq.2021.116096 doi: 10.1016/j.molliq.2021.116096
    [35] P. Y. Xiong, A. Hamid, Y. M. Chu, M. I. Khan, R. J. P. Gowda, R. N. Kumar, et al., Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of cross nanofluid by a vertical thin needle point, Eur. Phys. J. Plus, 136 (2021), 315. https://doi.org/10.1140/epjp/s13360-021-01294-2 doi: 10.1140/epjp/s13360-021-01294-2
    [36] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, 2015, arXiv: 1602.03408.
    [37] I. Koca, Modelling the spread of Ebola virus with Atangana–Baleanu fractional operators. Eur. Phys. J. Plus, 133 (2018), 100. https://doi.org/10.1140/epjp/i2018-11949-4 doi: 10.1140/epjp/i2018-11949-4
    [38] S. Ahmad, A. Ullah, M. Arfan, K. Shah, On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana–Baleanu (AB) derivative, Chaos Solition. Fract., 140 (2020), 110233. https://doi.org/10.1016/j.chaos.2020.110233 doi: 10.1016/j.chaos.2020.110233
    [39] B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solition. Fract., 133 (2020), 109619. https://doi.org/10.1016/j.chaos.2020.109619 doi: 10.1016/j.chaos.2020.109619
    [40] M. U. Rahman, M. Arfan, Z. Shah, P. Kumam, M. Shutaywi, Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana–Baleanu derivative, Alex. Eng. J., 60 (2021), 2845–2856. https://doi.org/10.1016/j.aej.2021.01.015 doi: 10.1016/j.aej.2021.01.015
    [41] M. U. Saleem, M. Farman, A. Ahmad, E. U. Haquec, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulin therapies for diabetes, Ain Shams Eng. J., 11 (2020), 1309–1316. https://doi.org/10.1016/j.asej.2020.03.006 doi: 10.1016/j.asej.2020.03.006
    [42] J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ., 2018 (2018), 231. https://doi.org/10.1186/s13662-018-1680-1 doi: 10.1186/s13662-018-1680-1
    [43] R. S. Dubey, P. Goswami, Mathematical model of diabetes and its complication involving fractional operator without singular kernel, 14 (2021), 2151–2161. https://doi.org/10.3934/dcdss.2020144
    [44] B. S. T. Alkahtani, A. Atangana, I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor–corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017), 3191–3200. https://doi.org/10.22436/jnsa.010.06.32. doi: 10.22436/jnsa.010.06.32
    [45] R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005
    [46] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
  • This article has been cited by:

    1. Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, 2016, 291, 00963003, 149, 10.1016/j.amc.2016.06.032
    2. Yu Yang, Stability and Hopf bifurcation of a delayed virus infection model with Beddington-DeAngelis infection function and cytotoxic T-lymphocyte immune response, 2015, 38, 01704214, 5253, 10.1002/mma.3455
    3. Hongquan Sun, Jin Li, A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2020, 545, 03784371, 123477, 10.1016/j.physa.2019.123477
    4. A. M. Elaiw, N. H. AlShamrani, Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates, 2016, 4, 2195-268X, 303, 10.1007/s40435-015-0181-2
    5. Zhiting Xu, Youqing Xu, Stability of a CD4+ T cell viral infection model with diffusion, 2018, 11, 1793-5245, 1850071, 10.1142/S1793524518500717
    6. Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215
    7. A. M. Elaiw, A. S. Alsheri, Global Dynamics of HIV Infection of CD4+T Cells and Macrophages, 2013, 2013, 1026-0226, 1, 10.1155/2013/264759
    8. Jia Liu, Qunying Zhang, Canrong Tian, EFFECT OF TIME DELAY ON SPATIAL PATTERNS IN A AIRAL INFECTION MODEL WITH DIFFUSION, 2016, 21, 1392-6292, 143, 10.3846/13926292.2016.1137503
    9. A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, 2017, 5, 2195-268X, 811, 10.1007/s40435-016-0235-0
    10. M.L. Mann Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays, 2021, 144, 09600779, 110695, 10.1016/j.chaos.2021.110695
    11. A. M. Elaiw, N. H. AlShamrani, Global Properties of General Viral Infection Models with Humoral Immune Response, 2017, 25, 0971-3514, 453, 10.1007/s12591-015-0247-9
    12. Adrianne Jenner, Chae-Ok Yun, Arum Yoon, Peter S. Kim, Adelle C.F. Coster, Modelling heterogeneity in viral-tumour dynamics: The effects of gene-attenuation on viral characteristics, 2018, 454, 00225193, 41, 10.1016/j.jtbi.2018.05.030
    13. Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan, Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response, 2016, 26, 0218-1274, 1650234, 10.1142/S0218127416502345
    14. Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145
    15. A. M. Elaiw, N. A. Alghamdi, Global Stability of Humoral Immunity HIV Infection Models with Chronically Infected Cells and Discrete Delays, 2015, 2015, 1026-0226, 1, 10.1155/2015/370968
    16. Hai-Feng Huo, Rui Chen, Stability of an HIV/AIDS Treatment Model with Different Stages, 2015, 2015, 1026-0226, 1, 10.1155/2015/630503
    17. Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Stability and Hopf bifurcation for a five-dimensional virus infection model with Beddington–DeAngelis incidence and three delays, 2018, 12, 1751-3758, 146, 10.1080/17513758.2017.1408861
    18. Chengjun Kang, Hui Miao, Xing Chen, Jiabo Xu, Da Huang, Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response, 2017, 2017, 1687-1847, 10.1186/s13662-017-1332-x
    19. Hui Miao, Zhidong Teng, Zhiming Li, Global Stability of Delayed Viral Infection Models with Nonlinear Antibody and CTL Immune Responses and General Incidence Rate, 2016, 2016, 1748-670X, 1, 10.1155/2016/3903726
    20. Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Zhiming Li, Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, 2018, 37, 0101-8205, 3780, 10.1007/s40314-017-0543-9
    21. Jinliang Wang, Xinxin Tian, Xia Wang, Stability analysis for delayed viral infection model with multitarget cells and general incidence rate, 2016, 09, 1793-5245, 1650007, 10.1142/S1793524516500078
    22. A. M. Ełaiw, N. H. AlShamrani, Global stability of a delayed virus dynamics model with multi-staged infected progression and humoral immunity, 2016, 09, 1793-5245, 1650060, 10.1142/S1793524516500601
    23. A. M. Elaiw, N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, 2016, 39, 01704214, 4, 10.1002/mma.3453
    24. A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates, 2017, 5, 2195-268X, 381, 10.1007/s40435-015-0200-3
    25. Hongquan Sun, Jinliang Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2019, 77, 08981221, 284, 10.1016/j.camwa.2018.09.032
    26. Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Jin, Neda Jahanshad, Gautam Prasad, Talia M. Nir, Cassandra D. Leonardo, Jieping Ye, Paul M. Thompson, , Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease, 2015, 7, 1663-4365, 10.3389/fnagi.2015.00048
    27. Yan Geng, Jinhu Xu, Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation, 2020, 13, 1793-5245, 2050033, 10.1142/S1793524520500333
    28. Jinliang Wang, Jingmei Pang, Toshikazu Kuniya, Yoichi Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, 2014, 241, 00963003, 298, 10.1016/j.amc.2014.05.015
    29. A.M. Elaiw, N.H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, 2015, 26, 14681218, 161, 10.1016/j.nonrwa.2015.05.007
    30. A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, 2015, 08, 1793-5245, 1550058, 10.1142/S1793524515500588
    31. Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159
    32. Ke Guo, Songbai Guo, Lyapunov functionals for a general time-delayed virus dynamic model with different CTL responses, 2024, 34, 1054-1500, 10.1063/5.0204169
    33. Hui Miao, Global stability of a diffusive humoral immunity viral infection model with time delays and two modes of transmission, 2025, 10, 2473-6988, 14122, 10.3934/math.2025636
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2497) PDF downloads(109) Cited by(12)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog