Processing math: 61%
Research article Special Issues

Supercongruences involving Apéry-like numbers and binomial coefficients

  • Let {Sn} be the Apéry-like sequence given by Sn=nk=0(nk)(2kk)(2n2knk). We show that for any odd prime p, p1n=1nSn8n(1(1)p12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=nk=0(nk)(8)nkkr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for p1k=0(2kk)3164k ( mod p3), p1k=0(2kk)3164k(k+1)2 ( mod p2) and p1k=0(2kk)3164k(2k1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.

    Citation: Zhi-Hong Sun. Supercongruences involving Apéry-like numbers and binomial coefficients[J]. AIMS Mathematics, 2022, 7(2): 2729-2781. doi: 10.3934/math.2022153

    Related Papers:

    [1] Kwang-Wu Chen, Fu-Yao Yang . Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Mathematics, 2024, 9(7): 16885-16900. doi: 10.3934/math.2024820
    [2] Chunli Li, Wenchang Chu . Remarkable series concerning (3nn) and harmonic numbers in numerators. AIMS Mathematics, 2024, 9(7): 17234-17258. doi: 10.3934/math.2024837
    [3] Jizhen Yang, Yunpeng Wang . Congruences involving generalized Catalan numbers and Bernoulli numbers. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240
    [4] Aleksa Srdanov . Invariants in partition classes. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401
    [5] Jing Huang, Qian Wang, Rui Zhang . On a binary Diophantine inequality involving prime numbers. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407
    [6] Takao Komatsu, Huilin Zhu . Hypergeometric Euler numbers. AIMS Mathematics, 2020, 5(2): 1284-1303. doi: 10.3934/math.2020088
    [7] Junyong Zhao . On the number of unit solutions of cubic congruence modulo n. AIMS Mathematics, 2021, 6(12): 13515-13524. doi: 10.3934/math.2021784
    [8] Hye Kyung Kim . Note on r-central Lah numbers and r-central Lah-Bell numbers. AIMS Mathematics, 2022, 7(2): 2929-2939. doi: 10.3934/math.2022161
    [9] Daud Mohamad, Nur Hazwani Aqilah Abdul Wahid, Nurfatin Nabilah Md Fauzi . Some properties of a new subclass of tilted star-like functions with respect to symmetric conjugate points. AIMS Mathematics, 2023, 8(1): 1889-1900. doi: 10.3934/math.2023097
    [10] Takao Komatsu, Ram Krishna Pandey . On hypergeometric Cauchy numbers of higher grade. AIMS Mathematics, 2021, 6(7): 6630-6646. doi: 10.3934/math.2021390
  • Let {Sn} be the Apéry-like sequence given by Sn=nk=0(nk)(2kk)(2n2knk). We show that for any odd prime p, p1n=1nSn8n(1(1)p12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=nk=0(nk)(8)nkkr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for p1k=0(2kk)3164k ( mod p3), p1k=0(2kk)3164k(k+1)2 ( mod p2) and p1k=0(2kk)3164k(2k1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.



    Let Z be the set of integers. In 2009, Zagier [36] studied the Apéry-like numbers {un} satisfying

    u0=1, u1=band(n+1)2un+1=(an(n+1)+b)uncn2un1 (n1),

    where a,b,cZ, c0 and unZ for n1. Let

    An=nk=0(nk)2(n+kk),fn=nk=0(nk)3=nk=0(nk)2(2kn),Sn=[n/2]k=0(2kk)2(n2k)4n2k=nk=0(nk)(2kk)(2n2knk),an=nk=0(nk)2(2kk),Qn=nk=0(nk)(8)nkfk,Wn=[n/3]k=0(2kk)(3kk)(n3k)(3)n3k, (1.1)

    where [x] is the greatest integer not exceeding x. According to [2,36], {An}, {fn}, {Sn}, {an}, {Qn} and {Wn} are Apéry-like sequences with (a,b,c)=(11,3,1),(7,2,8), (12,4,32),(10,3,9),(17, 6,72),(9,3,27), respectively. The sequence {fn} is called Franel numbers. In [22,23,24,25], the author systematically investigated congruences for sums involving Sn, fn and Wn. For {An}, {fn}, {Sn}, {an}, {Qn} and {Wn} see A005258, A000172, A081085, A002893, A093388 and A291898 in Sloane's database "The On-Line Encyclopedia of Integer Sequences".

    Let p be an odd prime. In [29], Z. W. Sun posed many congruences modulo p2 involving Apéry-like numbers. In [24,25], the author conjectured many congruences modulo p3 involving Apéry-like numbers. In Section 2, we show that for any odd prime p,

    p1n=1nSn8n(1(1)p12)p2 ( mod p3), (1.2)

    and obtain a congruence for p1n=0(2nn)An4n ( mod p). In Section 3, we establish some transformation formulas for congruences involving Apéry-like numbers and obtain some congruences involving an and Qn. For example, for any prime p>3 we have

    p1n=0Qn(8)n1 ( mod p2)andp1n=0Qn(9)n(p3) ( mod p2), (1.3)

    where (ap) is the Legendre symbol. We also pose some conjectures on congruences involving Qn and an.

    For positive integers a,b and n, if n=ax2+by2 for some integers x and y, we briefly write that n=ax2+by2. Let p>3 be a prime. In 1987, Beukers [4] conjectured a congruence equivalent to

    p1k=0(2kk)364k{0 ( mod p2)if p3 ( mod 4)4x22p ( mod p2)if p1 ( mod 4) and so p=x2+4y2. (1.4)

    This congruence was proved by several authors including Ishikawa [8] (p1 ( mod 4)), Van Hamme [7] (p3 ( mod 4)) and Ahlgren [1]. Actually, (1.4) follows immediately from the following identity due to Bell (see [5, (6.35)], [17]):

    nk=0(2kk)2(n+k2k)1(4)k={0if n is odd, 122n(nn/2)2if n is even. (1.5)

    In 2003, Rodriguez-Villegas [14] posed 22 conjectures on supercongruences modulo p2. In particular, the following congruences are equivalent to conjectures due to Rodriguez-Villegas:

    p1k=0(2kk)2(3kk)108k{4x22p ( mod p2)if p=x2+3y21 ( mod 3)0 ( mod p2)if p2 ( mod 3)p1k=0(2kk)2(4k2k)256k{4x22p ( mod p2)if p=x2+2y21,3 ( mod 8)0 ( mod p2)if p5,7 ( mod 8)(p3)p1k=0(2kk)(3kk)(6k3k)123k{4x22p ( mod p2)if p=x2+4y21 ( mod 4)0 ( mod p2)if p3 ( mod 4). (1.6)

    These conjectures have been solved by Mortenson [13] and Zhi-Wei Sun [28]. Since (2kk)k+1=(2kk)(2kk+1), from (1.4), (1.6) and [28], one may deduce that

    p1k=0(2kk)364k(k+1){4x22p ( mod p2) if p=x2+4y21 ( mod 4)(2p+22p1)((p1)/2(p+1)/4)2 ( mod p2)if p3 ( mod 4)p1k=0(2kk)3(8)k(k+1)6x24p ( mod p2)forp=x2+4y21 ( mod 4),p1k=0(2kk)2(3kk)108k(k+1)4x22p ( mod p2)forp=x2+3y21 ( mod 3),p1k=0(2kk)2(4k2k)256k(k+1)4x22p ( mod p2)forp=x2+2y21,3 ( mod 8),(p3)p1k=0(2kk)(3kk)(6k3k)123k(k+1)4x22p ( mod p2)forp=x2+4y21 ( mod 4). (1.7)

    Let p be an odd prime, and let m be an integer such that pm. In [27,29], Z. W. Sun posed many conjectures for congruences modulo p2 involving the sums

    p1k=0(2kk)3mk,p1k=0(2kk)2(3kk)mk,p1k=0(2kk)2(4k2k)mk,p1k=0(2kk)(3kk)(6k3k)mk.

    For 13 similar conjectures see [16]. Most of these congruences modulo p were proved by the author in [17,18,19]. In [25,26], the author conjectured many congruences modulo p3 involving the above sums. For instance, for any prime p2,7,

    p1k=0(2kk)3{4x22pp24x2 ( mod p3)if p1,2,4 ( mod 7) and so p=x2+7y2114p2(3[p/7][p/7])211p2([3p/7][p/7])2 ( mod p3) if 7p39964p2(3[p/7][p/7])21116p2([3p/7][p/7])2 ( mod p3) if 7p525176p2(3[p/7][p/7])2114p2([3p/7][p/7])2 ( mod p3)if 7p6.

    Let p be an odd prime. In Section 4, we deduce congruences for

    p1k=0(2kk)364k ( mod p3),p1k=0(2kk)364k(k+1)2 ( mod p2)andp1k=0(2kk)364k(2k1) ( mod p).

    In Section 5, based on calculations by Maple, we pose lots of challenging conjectures on congruences modulo p3 for the sums

    p1k=0(2kk)3mk(k+1),p1k=0(2kk)3mk(2k1),p1k=0(2kk)3mk(2k1)2,p1k=0(2kk)3mk(2k1)3,p1k=0(2kk)2(3kk)mk(k+1),p1k=0(2kk)2(3kk)mk(2k1),p1k=0(2kk)2(4k2k)mk(k+1),p1k=0(2kk)2(4k2k)mk(2k1),p1k=0(2kk)(3kk)(6k3k)mk(k+1),p1k=0(2kk)(3kk)(6k3k)mk(2k1),

    and congruences modulo p2 for the sums

    p1k=0(2kk)2mk(k+1)2,p1k=0(2kk)2mk(2k1)2,p1k=0(2kk)3mk(k+1)2,p1k=0(2kk)2(3kk)mk(k+1)2,p1k=0(2kk)2(4k2k)mk(k+1)2,p1k=0(2kk)(3kk)(6k3k)mk(k+1)2,

    where m is an integer not divisible by p. As two typical conjectures, if p is an odd prime with p1,2,4 ( mod 7) and so p=x2+7y2, then

    (p1)/2k=01k+1(2kk)344y2+2p ( mod p3);

    if p1,3,4,5,9 ( mod 11) and so 4p=x2+11y2, then

    (2p)(p2+p1k=0(2kk)(3kk)(6k3k)(32)3k(k+1))26y2+2p ( mod p3).

    In Section 6, we pose many conjectures on p1k=0(2kk)ukmk(2k1) modulo p2, where un{An,fn,Sn,an, Qn,Wn}.

    In addition to the above notation, throughout this paper we use the following notations. For a prime p, let Zp be the set of rational numbers whose denominator is not divisible by p. For aZp, let qp(a)=(ap11)/p and ap be determined by ap{0,1,,p1} and aap ( mod p). Let H0=0, Hn=1+12++1n (n1) and let {En} be the Euler numbers given by

    E2n1=0,E0=1,E2n=nk=1(2n2k)E2n2k (n=1,2,3,).

    Let {Sn} be the Apéry-like sequence given by (1.1). In this section, we prove the congruence (1.2). Z. W. Sun stated the identity

    Sn=nk=0(2kk)2(knk)(4)nk(n=0,1,2,), (2.1)

    which can be easily proved by using WZ method, see [34]. Using this identity we see that for any positive integer p and a give sequence {cn},

    p1n=0cnSn8n=p1n=0cn8nnk=0(2kk)2(knk)(4)nk=p1k=0(2kk)2(4)kp1n=kcn(2)n(knk)=p1k=0(2kk)2(4)kp1kr=0ck+r(2)k+r(kr)=p1k=0(2kk)28kp1kr=0(kr)ck+r(2)r.

    Thus, for p{1,3,5,},

    p1n=0cnSn8n=(p1)/2k=0(2kk)28kkr=0(kr)ck+r(2)r+p1k=(p+1)/2(2kk)28kp1kr=0(kr)ck+r(2)r. (2.2)

    Theorem 2.1. Let p be an odd prime, then

    p1n=1nSn8n(1(1)p12)p2 ( mod p3).

    Proof. Clearly,

    kr=0(kr)k+r(2)r=kkr=0(kr)(12)rk2kr=1(k1r1)(12)r1=k2kk212k1=0.

    Thus, taking cn=n in (2.2) and then applying the above gives

    p1n=1nSn8n=p1k=(p+1)/2(2kk)28kp1kr=0(kr)k+r(2)r=(p1)/2s=1(2(ps)ps)28pss1r=0(psr)ps+r(2)r.

    Observe that p(2kk) for p2<k<p. By [27, Lemma 2.1],

    (2(ps)ps)p2s(2ss) ( mod p)fors=1,2,,p12.

    Now, from the above we deduce that

    p1n=1nSn8np2(p1)/2s=148s1s2(2ss)2s1r=0(sr)rs(2)r ( mod p3). (2.3)

    By [5, (1.79)], nk=0(n+kk)/2k=2n. Since (xr)=(1)r(x1+rr), we see that for s1,

    s1r=0(sr)1(2)r=s1r=0(s1+rr)12r=2s1

    and

    s1r=0(sr)r(2)r=s1r=1sr(s1r1)r(2)r=ss1r=1(s+r1r1)12r=s2s2t=0(s+tt)12t=s2(st=0(s+tt)12t(2ss)12s(2s1s1)12s1)=s2(2s(2ss)22s)=s(2s1(2ss)12s).

    It then follows that

    s1r=0(sr)rs(2)r=s(2s1(2ss)12s)s2s1=s(2ss)12s.

    Substituting into (2.3) yields

    p1n=1nSn8np2(p1)/2s=148s1s2(2ss)2(s)(2ss)12s=p22(p1)/2s=14ss(2ss) ( mod p3).

    By [12, (25)],

    2ns=14s1s(2ss)=4n(2nn)1.

    Thus,

    (p1)/2s=14ss(2ss)=2(4p12(p1p12)1)2((1)p121) ( mod p)

    and so

    p1n=1nSn8np22(p1)/2s=14ss(2ss)(1(1)p12)p2 ( mod p3),

    which completes the proof.

    Theorem 2.2. Let p be a prime with p2,11, then

    p1n=0(2nn)An4n{x2 ( mod p)if (p11)=1 and so 4p=x2+11y20 ( mod p)if (p11)=1.

    Proof. For nonnegative integers k,m and n with knm, it is known that (mn)(nk)=(mk)(mknk). Thus, applying Vandermonde's identity we see that

    mn=0(mn)(1)mnnk=0(nk)2(n+kk)=mn=0nk=0(mk)(mknk)(2kk)(n+k2k)(1)mn=mk=0(mk)(2kk)(1)mkmn=k(mknk)(n+k2k)(1)nk=mk=0(mk)(2kk)(1)mkmkr=0(mkr)(2k+rr)(1)r=mk=0(mk)(2kk)(1)mkmkr=0(mkmkr)(2k1r)=mk=0(mk)(2kk)(1)mk(m3k1mk)=mk=0(mk)(2kk)(2kmk)=mk=0(mk)(2(mk)mk)(2m2kk).

    Note that p(2kk) for p2<k<p and (p12k)(12k)=(2kk)(4)k ( mod p) for k<p2. Taking m=p12 in the above, we deduce that

    p1n=0(2nn)An4n(1)p12(p1)/2n=0(p12n)(1)p12nAn=(1)p12(p1)/2k=0(p12k)(2(p12k)p12k)(p12kk)(1)p12(p1)/2k=0(p12k)(p12p12k)(4)p12k(2k1k)=(p1)/2k=0(p12k)24p12k(3kk)(p1)/2k=0(2kk)2(3kk)64kp1k=0(2kk)2(3kk)64k ( mod p).

    Now applying [18, Theorem 4.4], we deduce the result.

    Remark 2.1. In [29], Z. W. Sun conjectured that for any odd prime p,

    p1k=0(2kk)Ak4k{x22p ( mod p2)if (p11)=1 and so 4p=x2+11y20 ( mod p2)if (p11)=1.

    In this section, we establish some transformation formulas for congruences involving Apéry-like numbers, obtain some congruences involving an and Qn, and pose ten conjectures on related congruences.

    Lemma 3.1. Let n be a nonnegative integer, then

    fn=nk=0(nk)(1)nkak=nk=0(nk)8nkQk,Qn=nk=0(nk)(9)nkak,an=nk=0(nk)fk=nk=0(nk)9nkQk.

    Proof. By [15, (38)], an=nk=0(nk)fk. Applying the binomial inversion formula gives fn=nk=0(nk)(1)nkak. Since Qn(8)n=nk=0(nk)(1)kfk8k, applying the binomial inversion formula gives fn8n=nk=0(nk)Qk8k. Also,

    nk=0(nk)(9)nkak=nk=0(nk)(1)nkaknkr=0(nkr)8r=nr=0(nr)(8)rnrk=0(nrk)(1)nrkak=nr=0(nr)(8)rfnr=Qn.

    Applying the binomial inversion formula yields an=nk=0(nk)9nkQk, which completes the proof.

    Theorem 3.1. Let p>3 be a prime, then

    p1n=0Qn(8)n1 ( mod p2)andp1n=0Qn(9)n(p3) ( mod p2).

    Proof. It is well known that p1n=k(nk)=(pk+1) and (p1k)(1)k ( mod p) for 0kp1. Since Qn=nk=0(nk)(8)nkfk, we see that

    p1n=0Qn(8)n=p1n=0nk=0(nk)fk(8)k=p1k=0fk(8)kp1n=k(nk)=p1k=0fk(8)k(pk+1)=fp1(8)p1+p2k=0fk(8)kpk+1(p1k)fp18p1+pp2k=0fk(k+1)8k=fp18p1+pp1k=1fp1k(pk)8p1kfp18p1pp1k=18kfp1kk ( mod p2).

    By [11], fk(8)kfp1k ( mod p). Thus,

    p1n=0Qn(8)nfp18p1pp1k=1(1)kfkk ( mod p2).

    By [30, Theorem 1.1 and Lemma 2.5],

    fp11+3pqp(2) ( mod p2)andp1k=1(1)kfkk0 ( mod p2).

    Thus,

    p1n=0Qn(8)nfp18p11+3pqp(2)(1+pqp(2))31 ( mod p2).

    Using Lemma 3.1,

    p1n=0Qn(9)n=p1n=0nk=0(nk)ak(9)k=p1k=0ak(9)kp1n=k(nk)=p1k=0ak(9)k(pk+1)=p1k=0ak(9)kpk+1(p1k)ap1(9)p1+p2k=0ak9kpk+1=ap19p1+p1r=1ap1r9p1rpprap19p1pp1r=19rap1rr ( mod p2).

    By [11] or [25, Theorem 3.1], ar(p3)9rap1r ( mod p). By [32, Lemma 3.2], ap1(p3)(1+2pqp(3))(p3)9p1 ( mod p2). Taking x=1 in [32, (3.6)] gives p1r=1arr0 ( mod p). Now, from the above we deduce that

    p1n=0Qn(9)nap19p1pp1r=19rap1rr(p3)p(p3)p1r=1arr(p3) ( mod p2).

    This completes the proof.

    Lemma 3.2. Let p be an odd prime and mZp with m0,1 ( mod p). Suppose that u0,u1,,up1Zp and vn=nk=0(nk)uk (n0). Then

    p1k=0vkmkp1k=0uk(m1)k ( mod p).

    Proof. It is clear that

    p1k=0vkmk=p1k=01mkks=0(ks)us=p1s=0p1k=s1mk(1sks)(1)ksus=p1s=0usmsp1k=s(1sks)1(m)ks=p1s=0usmsp1sr=0(1sr)(1m)rp1s=0usmsp1sr=0(p1sr)(1m)r=p1s=0usms(11m)p1sp1s=0us(m1)s ( mod p).

    This proves the lemma.

    Theorem 3.2. Suppose that p is an odd prime, mZp and m0,1 ( mod p), then

    p1k=0akmk{p1k=0(2kk)(3kk)((m3)3/(m1))k ( mod p)if m3 ( mod p)p1k=0(2kk)(3kk)((m+3)3/(m1)2)k ( mod p)if m3 ( mod p)

    and

    p1k=0Qk(8m)k{p1k=0(2kk)(3kk)((4m3)3/(m1))k ( mod p)if m34 ( mod p)p1k=0(2kk)(3kk)((2m3)3/(m1)2)k ( mod p)if m32 ( mod p).

    Proof. By Lemma 3.1, an=nk=0(nk)fk. From Lemma 3.2, p1k=0akmkp1k=0fk(m1)k  ( mod p). Now applying [23, Theorem 2.12 and Lemma 2.4 (with z=1m1)] yields the first result. Since Qn(8)n=nk=0(nk)fk(8)k, applying Lemma 3.2 gives p1k=0Qk(8m)kp1k=0fk(8(m1))k ( mod p). From [23, Theorem 2.12 and Lemma 2.4 (with z=18(m1))] we deduce the remaining part.

    Theorem 3.3. Suppose that p is a prime with p>3, then

    p1n=0Qn(6)np1n=0Qn(12)n{2x ( mod p)if 3p1p=x2+3y2 and 3x10 ( mod p)if p2 ( mod 3).

    Proof. Putting m=34,32 in Theorem 3.2 yields

    p1n=0Qn(6)np1n=0Qn(12)np1k=0(2kk)(3kk)54k ( mod p).

    Now applying [20, Theorem 3.4] yields the result.

    Lemma 3.3. [31, Theorem 2.2] Let p be an odd prime, u0,u1,,up1Zp and vn=nk=0(nk)(1)kuk for n0. For mZp with m0,4 ( mod p),

    p1k=0(2kk)vkmk(m(m4)p)p1k=0(2kk)uk(4m)k ( mod p).

    Theorem 3.4. Let p be an odd prime, mZp and m±2 ( mod p), then

    p1k=0(2kk)ak(m+2)k((m+2)(m2)p)p1k=0(2kk)fk(m2)k ( mod p), (3.1)
    p1k=0(2kk)Qk(8(m+2))k((m+2)(m2)p)p1k=0(2kk)fk(8(m2))k ( mod p), (3.2)
    p1k=0(2kk)Qk(9(m+2))k((m+2)(m2)p)p1k=0(2kk)ak(9(m2))k ( mod p), (3.3)

    and for 9m140 ( mod p),

    p1k=0(2kk)Qk(9(m+2))k((m+2)(9m14)p)p1k=0(2kk)fk(9m+14)k ( mod p). (3.4)

    Proof. We first note that p(2kk) for p+12kp1. By Lemma 3.1, taking uk=(1)kfk and vk=ak in Lemma 3.3 gives (3.1). Since Qn(8)n=nk=0(nk)fk(8)k, taking uk=fk8k and vk=Qk(8)k in Lemma 3.3 gives (3.2). By Lemma 3.1, taking uk=ak9k and vk=Qk(9)k in Lemma 3.3 yields (3.3). Combining (3.3) with (3.1) yields (3.4).

    Theorem 3.5. Suppose that p is a prime with p>5, then

    (1)p12p1n=0(2nn)an54np1n=0(2nn)Qn18np1n=0(2nn)Qn(36)n{4x2 ( mod p)if p1 ( mod 3) and so p=x2+3y20 ( mod p)if p2 ( mod 3).

    Proof. Taking m=52 in (3.1) and then applying [23, Theorem 2.2], we obtain

    p1n=0(2nn)an54n(3p)p1k=0(2kk)fk50k{(1)p124x2 ( mod p)if 3p1 and so p=x2+3y20 ( mod p)if p2 ( mod 3).

    Taking m=4 in (3.3) gives p1n=0(2nn)Qn18n(3p)p1n=0(2nn)an54n ( mod p). Taking m=2 in (3.4) and applying the congruence for p1k=0(2kk)fk(4)k ( mod p) (see [23, p.124]) yields

    p1n=0(2nn)Qn(36)np1k=0(2kk)fk(4)k{4x2 ( mod p)if 3p1 and so p=x2+3y20 ( mod p)if p2 ( mod 3).

    Now combining the above proves the theorem.

    Theorem 3.6. Suppose that p is a prime such that p1,19 ( mod 30) and so p=x2+15y2, then

    p1n=0(2nn)an9np1n=0(2nn)an(45)np1n=0(2nn)Qn(27)np1n=0(2nn)Qn(81)n4x2 ( mod p).

    Proof. Taking m=7 in (3.1) and then applying [23, Theorem 2.5] gives

    p1n=0(2nn)an9n(5p)p1k=0(2kk)fk5k4x2 ( mod p).

    Putting m=47 in (3.1) and then applying [23, Theorem 2.4] gives

    p1n=0(2nn)an(45)n(5p)p1k=0(2kk)fk(49)k4x2 ( mod p).

    Taking m=1,7 in (3.3) gives

    p1n=0(2nn)Qn(27)np1k=0(2kk)ak9k ( mod p),p1n=0(2nn)Qn(81)np1k=0(2kk)ak(45)k ( mod p).

    Now combining the above proves the theorem.

    Theorem 3.7. Suppose that p is a prime with p>3, then

    p1n=0(2nn)Qn(32)np1n=0(2nn)Qn64n{4x2 ( mod p)if p=x2+2y21,3 ( mod 8)0 ( mod p)if p5,7 ( mod 8)p1n=0(2nn)an20np1n=0(2nn)Qn(16)n4x2 ( mod p)forp=x2+5y21,9 ( mod 20),p1n=0(2nn)Qn(48)n{4x2 ( mod p)if p=x2+9y21 ( mod 12)0 ( mod p)if p11 ( mod 12).

    Proof. Taking m=149,829 in (3.3) yields

    p1n=0(2nn)Qn(32)n(2p)p1n=0(2nn)an4n ( mod p),p1n=0(2nn)Qn64np1n=0(2nn)an100n ( mod p).

    Now applying [23, Theorem 2.14] and [21, Theorem 5.6] yields the first congruence. Taking m=0 in (3.2), m=18 in (3.1) and then applying [23, Theorem 2.10] yields the second congruence. Taking m=103 in (3.3) and then applying [21, Theorem 4.3] gives the third congruence.

    Based on calculations by Maple, we pose the following conjectures.

    Conjecture 3.1. Let p>3 be a prime, then

    p1n=0(n+3)Qn(8)n{3p2 ( mod p3)if p1 ( mod 3)15p2 ( mod p3)if p2 ( mod 3)p1n=0(n2)Qn(9)n{2p2 ( mod p3)if p1 ( mod 3)14p2 ( mod p3)if p2 ( mod 3).

    Conjecture 3.2. Let p be a prime with p>3.

    (ⅰ) If p1 ( mod 3) and so p=x2+3y2 with 3x1, then

    p1n=0Qn(6)np1n=0Qn(12)n2xp2x ( mod p2).

    (ⅱ) If p2 ( mod 3), then

    p1n=0Qn(6)n2p1n=0Qn(12)np((p1)/2(p5)/6) ( mod p2).

    Conjecture 3.3. Let p be a prime with p>3.

    (ⅰ) If p1 ( mod 3) and so p=x2+3y2, then

    p1n=0(2nn)Qn18np1n=0(2nn)Qn(36)n4x22pp24x2 ( mod p3).

    (ⅱ) If p2 ( mod 3), then

    p1n=0(2nn)Qn18n2p1n=0(2nn)Qn(36)np2((p1)/2(p5)/6)2 ( mod p3).

    Conjecture 3.4. Let p>5 be a prime, then

    p1n=0(2nn)Qn(27)np1n=0(2nn)Qn(81)n(p3)p1n=0(2nn)an(45)n(p3)p1n=0(2nn)an9n ( mod p2).

    (ⅰ) If p1,17,19,23 ( mod 30), then

    (p3)p1n=0(2nn)an9n{4x22pp24x2 ( mod p3)ifp1,19 ( mod 30)andsop=x2+15y2,2p12x2+p212x2 ( mod p3)ifp17,23 ( mod 30)andsop=3x2+5y2.

    (ⅱ) If p7,11,13,29 ( mod 30), then

    (p3)p1n=0(2nn)an9n{3116p25[p/3]([p/3][p/15])2 ( mod p3)ifp7 ( mod 30),314p25[p/3]([p/3][p/15])2 ( mod p3)ifp11 ( mod 30),31256p25[p/3]([p/3][p/15])2 ( mod p3)ifp13 ( mod 30),3164p25[p/3]([p/3][p/15])2 ( mod p3)ifp29 ( mod 30).

    Conjecture 3.5. Let p>3 be a prime, then

    (1)p12p1n=0(2nn)an54n{4x22p ( mod p2)ifp=x2+3y21 ( mod 3),0 ( mod p2)ifp2 ( mod 3).

    Conjecture 3.6. Let p be an odd prime, then

    p1n=0(2nn)Qn(32)np1n=0(2nn)Qn64n{4x22p ( mod p2)ifp=x2+2y21,3 ( mod 8),0 ( mod p2)ifp5,7 ( mod 8).

    Conjecture 3.7 Let p be a prime with p2,5, then

    (1)p12p1n=0(2nn)an20n(1)p12p1n=0(2nn)Qn(16)n{4x22p ( mod p2)ifp1,9 ( mod 20)andsop=x2+5y2,2x22p ( mod p2)ifp3,7 ( mod 20)andso2p=x2+5y2,0 ( mod p2)ifp11,13,17,19 ( mod 20).

    Conjecture 3.8. Let p>3 be a prime, then

    p1n=0(2nn)Qn(48)n{4x22p ( mod p2)if12p1andsop=x2+9y2,2p2x2 ( mod p2)if12p5andso2p=x2+9y2,0 ( mod p2)ifp3 ( mod 4).

    Conjecture 3.9. Let p be a prime with p>3. If m{7,25,169,1519,70225,20,56,650, 2450} and pm(m2), then

    p1n=0(2nn)Qn(16(m2))n(m(m2)p)p1n=0(2nn)fn(16m)n ( mod p2).

    Conjecture 3.10. Let p be a prime with p>3. If m{112,400,2704,24304,1123600} and pm(m+4), then

    p1n=0(2nn)an(m+4)n(m(m+4)p)p1n=0(2nn)fnmn ( mod p2).

    For an odd prime p and xZp, the p-adic Gamma function Γp(x) is defined by

    Γp(0)=1,Γp(n)=(1)nk{1,2,,n1},pkkforn=1,2,3, and Γp(x)=limn{0,1,},|xn|p0Γp(n).

    Theorem 4.1. [25, Conjecture 4.10] Let p be an odd prime, then

    p1k=0(2kk)364k{4x22pp24x2 ( mod p3)ifp=x2+4y21 ( mod 4),p24((p3)/2(p3)/4)2 ( mod p3)ifp3 ( mod 4)

    and

    (1)p14p1k=0(2kk)3(512)k4x22pp24x2 ( mod p3)forp=x2+4y21 ( mod 4).

    Proof. From [10, Theorems 3 and 29],

    p1k=0(2kk)364k{Γp(14)4 ( mod p3)if p1 ( mod 4)p216Γp(14)4 ( mod p3)if p3 ( mod 4)

    and

    (1)p14p1k=0(2kk)3(512)kΓp(14)4 ( mod p3)for p1 ( mod 4).

    By [35, (9)],

    Γp(14)4{12p1(p12p14)2(1p22Ep3) ( mod p3)if 4p12p3(16+32p+(488Ep3)p2)(p32p34)2 ( mod p3)if 4p3. (4.1)

    By [24, Theorem 2.8], for p=x2+4y21 ( mod 4),

    12p1(p12p14)2(1p22Ep3)4x22pp24x2 ( mod p3). (4.2)

    Combining (4.1) with (4.2) gives

    Γp(14)44x22pp24x2 ( mod p3)for p=x2+4y21 ( mod 4). (4.3)

    Now combining all the above proves the theorem.

    Theorem 4.2. Suppose that p is an odd prime, then

    p1k=0(2kk)364k(k+1)2{8x25p ( mod p2)ifp=x2+4y21 ( mod 4),6R1(p)p ( mod p2)ifp3 ( mod 4),p1k=0(2kk)364k(k+1)3{1+6(2p1p)+6p2x2 ( mod p3)ifp=x2+4y21 ( mod 4),1+6(2p1p)24R1(p) ( mod p2)ifp3 ( mod 4),

    where R1(p)=(2p+22p1)((p1)/2(p3)/4)2.

    Proof. By [35], for any positive integer n,

    nk=0(2kk)2(n+k2k)(4)k(k+1)2={2(2[n2][n2])216[n2]if 2n2n2+2n1(n+1)2(2[n2][n2])216[n2]if 2n. (4.4)

    From [16],

    (p12+k2k)(2kk)(16)k ( mod p2)fork=0,1,,p12. (4.5)

    Now, taking n=p12 in (4.4) and then applying (4.5) gives

    (p1)/2k=0(2kk)364k(k+1)2(p1)/2k=0(2kk)2(p12+k2k)(4)k(k+1)2{2((p1)/2(p1)/4)216p14 ( mod p2)if 4p1p2121(p+12)2((p3)/2(p3)/4)216p34=2p262p1(p1)2((p1)/2(p3)/4)2 ( mod p2)if 4p3.

    For p=x2+4y21 ( mod 4), from [17, Lemma 3.4],

    4x22p12p1(p12p14)2 ( mod p2). (4.6)

    Thus,

    (p1)/2k=0(2kk)364k(k+1)222p1(p12p14)28x24p ( mod p2).

    For p3 ( mod 4), we see that

    2p262p1(p1)26(1+2p11)(12p)61+(2p112p)6(2p+22p1) ( mod p2)

    and so

    (p1)/2k=0(2kk)364k(k+1)26(2p+22p1)(p12p34)2 ( mod p2).

    Note that p(2kk) for p2<k<p and

    1p2(2(p1)p1)3=p((2p2)(2p3)(p+1)(p1)!)3p ( mod p2).

    Then we get

    p1k=0(2kk)364k(k+1)2(2p2p1)364p1p2+(p1)/2k=0(2kk)364k(k+1)2p+(p1)/2k=0(2kk)364k(k+1)2 ( mod p2).

    Now, combining all the above proves the congruence for p1k=0(2kk)364k(k+1)2 ( mod p2). By [35],

    p12k=0(2kk)364k(k+1)3{824p2Γp(14)4 ( mod p3)if p1 ( mod 4)8384Γp(14)4 ( mod p3)if p3 ( mod 4).

    This together with (4.1) and (4.3) yields

    p12k=0(2kk)364k(k+1)3{8+6p2x2 ( mod p3)if p=x2+4y21 ( mod 4)8962p1(1+2p)(p32p34)2 ( mod p2)if p3 ( mod 4).

    For p3 ( mod 4) we see that ((p1)/2(p3)/4)=2(p1)p+1((p3)/2(p3)/4) and so

    (p32p34)2(p+12(p1))2(p12p34)2(p+1)44(p12p34)24p+14(p12p34)2 ( mod p2).

    Thus,

    (p1)/2k=0(2kk)364k(k+1)3896(1+(2p11))(1+2p)(p32p34)28961+2p11+2p4p+14(p12p34)2824(1(2p11+2p))(4p+1)((p1)/2(p3)/4)2824R1(p) ( mod p2).

    It is well known that (2p1p1)1 ( mod p2). Hence,

    (2(p1)p1)364p1p3=(2p1p1)3(1+2p11)6(2p1)31(1+6(2p11))(16p)(16(2p11))(1+6p)(16(2p11)+6p)=32p6p7 ( mod p2).

    Since p(2kk) for p2<k<p,

    p1k=0(2kk)364k(k+1)3p12k=0(2kk)364k(k+1)3+(2(p1)p1)364p1p3p12k=0(2kk)364k(k+1)3+32p6p7 ( mod p2).

    Now combining all the above proves the theorem.

    Theorem 4.3. Let p be an odd prime, then

    p1k=0(2kk)364k(2k1)(p212p)(p12[p4])2pp1k=0(2kk)364k(2k1)2 ( mod p2)

    and so

    p1k=0(2kk)364k(2k1)12(p12[p4])2 ( mod p).

    Proof. Using (4.5),

    (p12+1+k2k)=p12+1+kp12+1k(p12+k2k)=(2(p+1)p(2k1)1)(p12+k2k)(2(p+1)(p+2k1)(2k1)21)(2kk)(16)k(22k1+(2k1)p+p(2k1)21)(2kk)(16)k=(1+22k1+2p2k1+2p(2k1)2)(2kk)(16)k ( mod p2).

    Thus,

    p12k=0(2kk)2(p12+1+k2k)1(4)kp12k=0(2kk)364k(1+22k1+2p2k1+2p(2k1)2) ( mod p2)

    and so

    2(p1)/2k=0(2kk)364k(12k1+p2k1+p(2k1)2)(p1)/2k=0(2kk)364k+(p1)/2k=0(2kk)2(p12+1+k2k)1(4)k ( mod p2).

    By (1.5),

    (p1)/2k=0(2kk)2(p12+1+k2k)1(4)k=(p+1)/2k=0(2kk)2(p+12+k2k)1(4)k(p+1p+12)21(4)p+12{0 ( mod p2)if p1 ( mod 4)12p+1((p+1)/2(p+1)/4)2=12p1((p1)/2(p3)/4)2 ( mod p2)if p3 ( mod 4).

    From the above, (1.4) and (4.6),

    (p1)/2k=0(2kk)364k(12k1+p2k1+p(2k1)2){12(4x22p)1212p1((p1)/2(p1)/4)2 ( mod p2)if p=x2+4y21 ( mod 4)1212p1((p1)/2(p3)/4)2 ( mod p2)if p3 ( mod 4).

    Hence,

    (p1)/2k=0(2kk)364k(2k1)12(p12[p4])2 ( mod p)

    and so

    (p1)/2k=0(2kk)364k(2k1)p2(p12[p4])2+p(p1)/2k=0(2kk)364k(2k1)212p(p12[p4])2 ( mod p2).

    To see the result, we recall that p(2kk) for p2<k<p.

    For k=1,2,3,, it is clear that

    12k1(2kk)=2((2k2k1)(2k2k))=2k(2k2k1)=2Ck1Z,

    where Ck=1k+1(2kk) is the k-th Catalan number. For an odd prime p, let

    R1(p)=(2p+22p1)((p1)/2[p/4])2, (5.1)
    R2(p)=(54(1)p12)(1+(4+2(1)p12)p4(2p11)p2[p/8]k=11k)(p12[p8])2, (5.2)
    R3(p)=(1+2p+43(2p11)32(3p11))((p1)/2[p/6])2. (5.3)

    Calculations with Maple suggest the following challenging conjectures.

    Conjecture 5.1. Let p>3 be a prime, then

    p1k=0(2kk)2(3kk)(192)k(k+1){32x24pp2 ( mod p3)if3p1andso4p=x2+27y2,2(2p+1)([2p/3][p/3])2+p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(3kk)(192)k(k+1)2{14x23p ( mod p2)if3p1andso4p=x2+27y2,13(2p+1)([2p/3][p/3])2+p2 ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(3kk)(192)k(2k1){34x2+9p8+3p28x2 ( mod p3)if3p1andso4p=x2+27y2,12(2p+1)([2p/3][p/3])2+38p ( mod p2)ifp2 ( mod 3).

    Conjecture 5.2. Let p>5 be a prime, then

    (10p)p1k=0(2kk)(3kk)(6k3k)(12288000)k(k+1){260825y2+2p(10p)p2 ( mod p3)if3p1andso4p=x2+27y2,1280(2p+1)([2p/3][p/3])2+19225p ( mod p2)ifp2 ( mod 3),(10p)p1k=0(2kk)(3kk)(6k3k)(12288000)k(k+1)2{11260425x2+(29365625(10p))p ( mod p2)if3p1andso4p=x2+27y2,11776(2p+1)([2p/3][p/3])2(6844825+(10p))p ( mod p2)ifp2 ( mod 3),(10p)p1k=0(2kk)(3kk)(6k3k)(12288000)k(2k1){177200x2+5319932000p+5615764000x2p2 ( mod p3)if3p1andso4p=x2+27y2,120(2p+1)([2p/3][p/3])2+344132000p ( mod p2)ifp2 ( mod 3).

    Remark 5.1. Let p be a prime with p>5. In [25], the author conjectured that if p1 ( mod 3) and so 4p=x2+27y2, then

    p1k=0(2kk)2(3kk)(192)k(10p)p1k=0(2kk)(3kk)(6k3k)(12288000)kx22pp2x2 ( mod p3);

    if p2 ( mod 3), then

    p1k=0(2kk)2(3kk)(192)k800161(10p)p1k=0(2kk)(3kk)(6k3k)(12288000)k34p2([2p/3][p/3])2 ( mod p3).

    The congruence for p1k=0(2kk)2(3kk)(192)k ( mod p2) was conjectured by Z. W. Sun [27] earlier.

    Let p>3 be a prime. In [27,29], Z. W. Sun conjectured congruences for p1k=0(2kk)3/mk  ( mod p2) with m=1,8,16,64,256,512,4096. Such conjectures were proved by the author in [17]. In [25], the author conjectured congruences for p1k=0(2kk)3/mk  ( mod p3) in the cases m=1,8,16,64,256,512,4096.

    Conjecture 5.3. Let p be an odd prime, then

    (p1)/2k=0(2kk)3(8)k(k+1){24y2+2p ( mod p3)ifp=x2+4y21 ( mod 4),12R1(p)+p ( mod p2)ifp3 ( mod 4),p1k=0(2kk)3(8)k(k+1)2{32y2 ( mod p2)ifp=x2+4y21 ( mod 4),3R1(p)+2p ( mod p2)ifp3 ( mod 4),p1k=0(2kk)3(8)k(2k1){4x254x2p2 ( mod p3)ifp=x2+4y21 ( mod 4),2p2R1(p) ( mod p2)ifp3 ( mod 4),p1k=0(2kk)3(8)k(2k1)2{4x2+2p+194x2p2 ( mod p3)ifp=x2+4y21 ( mod 4),6R1(p) ( mod p2)ifp3 ( mod 4),p1k=0(2kk)3(8)k(2k1)3{48y2+3316y2p2 ( mod p3)ifp=x2+4y21 ( mod 4),6p12R1(p) ( mod p2)ifp3 ( mod 4).

    Conjecture 5.4. Let p be an odd prime, then

    (p1)/2k=0(2kk)364k(k+1)16y2+2p ( mod p3)forp=x2+4y21 ( mod 4),p1k=0(2kk)364k(2k1){2x2+p+p24x2 ( mod p3)ifp=x2+4y21 ( mod 4),12R1(p) ( mod p2)ifp3 ( mod 4),p1k=0(2kk)364k(2k1)2{2x2pp22x2 ( mod p3)ifp=x2+4y21 ( mod 4),32R1(p) ( mod p2)ifp3 ( mod 4),p1k=0(2kk)364k(2k1)3{34x2p2 ( mod p3)ifp=x2+4y21 ( mod 4),3R1(p) ( mod p2)ifp3 ( mod 4).

    Conjecture 5.5. Let p be an odd prime, then

    (1)[p4](p1)/2k=0(2kk)3(512)k(k+1){32y2+2p ( mod p3)ifp=x2+4y21 ( mod 4),4R1(p)2p ( mod p2)ifp3 ( mod 4),(1)[p4]p1k=0(2kk)3(512)k(k+1)2{16x2+(8(1)[p4])p ( mod p2)ifp=x2+4y21 ( mod 4),24R1(p)(1)[p4]p ( mod p2)ifp3 ( mod 4),(1)[p4]p1k=0(2kk)3(512)k(2k1){3x2+54p+532x2p2 ( mod p3)ifp=x2+4y21 ( mod 4),p4+14R1(p) ( mod p2)ifp3 ( mod 4),(1)[p4]p1k=0(2kk)3(512)k(2k1)2{2x258pp232x2 ( mod p3)ifp=x2+4y21 ( mod 4),34R1(p)+38p ( mod p2)ifp3 ( mod 4),(1)[p4]p1k=0(2kk)3(512)k(2k1)3{32x2+38p332x2p2 ( mod p3)ifp=x2+4y21 ( mod 4),32R1(p)38p ( mod p2)ifp3 ( mod 4).

    Conjecture 5.6. Let p>3 be a prime, then

    p1k=0(2kk)2(4k2k)648k(k+1){403y2+2pp2 ( mod p3)ifp=x2+4y21 ( mod 4),32R1(p)p3 ( mod p2)ifp3 ( mod 4),p1k=0(2kk)2(4k2k)648k(k+1)2{1129x2649p ( mod p2)ifp=x2+4y21 ( mod 4),11R1(p)109p ( mod p2)ifp3 ( mod 4),p1k=0(2kk)2(4k2k)648k(2k1){7627x2+10481p+67324x2p2 ( mod p3)ifp=x2+4y21 ( mod 4),29R1(p)+1081p ( mod p2)ifp3 ( mod 4).

    Conjecture 5.7. Let p>3 be a prime, then

    (p3)p1k=0(2kk)(3kk)(6k3k)123k(k+1){16y2+2p(p3)p2 ( mod p3)ifp=x2+4y21 ( mod 4),35R1(p) ( mod p2)ifp3 ( mod 4),(p3)p1k=0(2kk)(3kk)(6k3k)123k(k+1)2{8x2(4+(p3))p ( mod p2)ifp=x2+4y21 ( mod 4),13825R1(p)(p3)p ( mod p2)ifp3 ( mod 4),(p3)p1k=0(2kk)(3kk)(6k3k)123k(2k1){269x2+139p+p24x2 ( mod p3)ifp=x2+4y21 ( mod 4),16R1(p) ( mod p2)ifp3 ( mod 4).

    Conjecture 5.8. Let p be a prime with p2,3,11, then

    (33p)p1k=0(2kk)(3kk)(6k3k)663k(k+1){104y2+2p(33p)p2 ( mod p3)ifp=x2+4y21 ( mod 4),36310R1(p)15p ( mod p2)ifp3 ( mod 4),(33p)p1k=0(2kk)(3kk)(6k3k)663k(k+1)2{488x2(295+(33p))p ( mod p2)ifp=x2+4y21 ( mod 4),834925R1(p)+(51(33p))p ( mod p2)ifp3 ( mod 4),(33p)p1k=0(2kk)(3kk)(6k3k)663k(2k1){37161089x2+1884811979p+11215324x2p2 ( mod p3)ifp=x2+4y21 ( mod 4),233R1(p)+5303993p ( mod p2)ifp3 ( mod 4)$.

    Conjecture 5.9. Let p>3 be a prime, then

    (p1)/2k=0(2kk)316k(k+1){16y2+2p ( mod p3)ifp=x2+3y21 ( mod 3),43R3(p)23p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)316k(k+1)2{24y2+p ( mod p2)ifp=x2+3y21 ( mod 3),8R3(p)3p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)316k(2k1){4y2p24y2 ( mod p3)ifp=x2+3y21 ( mod 3),83R3(p)+23p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)316k(2k1)2{12y2+2p+3p24y2 ( mod p3)ifp=x2+3y21 ( mod 3),8R3(p) ( mod p2)ifp2 ( mod 3),p1k=0(2kk)316k(2k1)3{12y254y2p2 ( mod p3)ifp=x2+3y21 ( mod 3),16R3(p)2p ( mod p2)ifp2 ( mod 3).

    Conjecture 5.10. Let p>3 be a prime, then

    (1)p12(p1)/2k=0(2kk)3256k(k+1){8y2+2p ( mod p3)ifp=x2+3y21 ( mod 3),163R3(p)+23p ( mod p2)ifp2 ( mod 3),(1)p12p1k=0(2kk)3256k(k+1)2{16x2(8+(1)p12)p ( mod p2)ifp=x2+3y21 ( mod 3),32R3(p)(1)p12p ( mod p2)ifp2 ( mod 3),(1)p12p1k=0(2kk)3256k(2k1){8y232pp216y2 ( mod p3)ifp=x2+3y21 ( mod 3),23R3(p)p6 ( mod p2)ifp2 ( mod 3),(1)p12p1k=0(2kk)3256k(2k1)2{2x234p316x2p2 ( mod p3)ifp=x2+3y21 ( mod 3),2R3(p)+p4 ( mod p2)ifp2 ( mod 3),(1)p12p1k=0(2kk)3256k(2k1)3{x2+p4+316x2p2 ( mod p3)ifp=x2+3y21 ( mod 3),4R3(p)p4 ( mod p2)ifp2 ( mod 3).

    Moreover,

    (1)p12p1k=0(2kk)3256k(2k1)14p1k=0(2kk)316k(2k1) ( mod p3)forp2 ( mod 3).

    Conjecture 5.11. Let p>3 be a prime, then

    p1k=0(2kk)2(3kk)108k(k+1){12y2+2pp2 ( mod p3)ifp=x2+3y21 ( mod 3),2R3(p) ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(3kk)108k(k+1)2{8x25p ( mod p2)ifp=x2+3y21 ( mod 3),13R3(p)p ( mod p2)ifp2 ( mod 3),(p1)/2k=0(2kk)2(3kk)108k(k+1)3{92x2+p ( mod p2)ifp=x2+3y21 ( mod 3),91152R3(p) ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(3kk)108k(2k1){59(4x22p)+p24x2 ( mod p3)ifp=x2+3y21 ( mod 3),89R3(p) ( mod p2)ifp2 ( mod 3).

    Conjecture 5.12. Let p>3 be a prime, then

    p1k=0(2kk)2(4k2k)(144)k(k+1){16y2+2pp2 ( mod p3)ifp=x2+3y21 ( mod 3),43R3(p)+23p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(4k2k)(144)k(k+1)2{403y2p3 ( mod p2)ifp=x2+3y21 ( mod 3),889R3(p)+59p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(4k2k)(144)k(2k1){289x2+89pp236x2 ( mod p3)ifp=x2+3y21 ( mod 3),89R3(p)+23p ( mod p2)ifp2 ( mod 3).

    Conjecture 5.13. Let p>5 be a prime, then

    (p5)p1k=0(2kk)(3kk)(6k3k)54000k(k+1){485y2+2p(p5)p2 ( mod p3)ifp=x2+3y21 ( mod 3),20R3(p)185p ( mod p2)ifp2 ( mod 3),(p5)p1k=0(2kk)(3kk)(6k3k)54000k(k+1)2{250425x2(141425+(p5))p ( mod p2)ifp=x2+3y21 ( mod 3),184R3(p)+(16225(p5))p ( mod p2)ifp2 ( mod 3),(p5)p1k=0(2kk)(3kk)(6k3k)54000k(2k1){748225x2+17081125p+103500x2p2 ( mod p3)ifp=x2+3y21 ( mod 3),845R3(p)+18125p ( mod p2)ifp2 ( mod 3).

    Conjecture 5.14. Let p>3 be a prime, then

    p1k=0(2kk)2(3kk)1458k(k+1){2(1)p12pp2 ( mod p3)ifp1 ( mod 3),12R3(p)+2(1)p12p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(3kk)1458k(k+1)2{42x2(22+2(1)p12)p ( mod p2)ifp=x2+3y21 ( mod 3),78R3(p)(1+2(1)p12)p ( mod p2)ifp2 ( mod 3),p1k=0(2kk)2(3kk)1458k(2k1){6181(4x22pp24x2)44243(1)p12p ( mod p3)ifp=x2+3y21 ( mod 3),3281R3(p)44243(1)p12p ( mod p2)ifp2 ( mod 3).

    Conjecture 5.15. Let p be an odd prime, then

    (1)p12(p1)/2k=0(2kk)3(64)k(k+1){12y2+2p ( mod p3)ifp=x2+2y21,3 ( mod 8),12R2(p)p ( mod p2)ifp5,7 ( mod 8),(1)p12p1k=0(2kk)3(64)k(k+1)2{4x25p ( mod p2)ifp=x2+2y21 ( mod 8),4x23p ( mod p2)ifp=x2+2y23 ( mod 8),3R2(p)(2+(1)p12)p ( mod p2)ifp5,7 ( mod 8),(1)p12p1k=0(2kk)3(64)k(2k1){p3x2 ( mod p3) ifp=x2+2y21,3 ( mod 8),14R2(p)p2 ( mod p2)ifp5,7 ( mod 8),(1)p12p1k=0(2kk)3(64)k(2k1)2{x2+p22x2 ( mod p3)ifp=x2+2y21,3 ( mod 8),34R2(p)+p2 ( mod p2)ifp5,7 ( mod 8),(1)p12p1k=0(2kk)3(64)k(2k1)3{2x2+pp2x2 ( mod p3)ifp=x2+2y21,3 ( mod 8),32R2(p) ( mod p2)ifp5,7 ( mod 8).

    Conjecture 5.16. Let p be an odd prime, then

    p1k=0(2kk)2(4k2k)256k(k+1){8y2+2pp2 ( mod p3)ifp=x2+2y21,3 ( mod 8),13R2(p) ( mod p2)ifp5,7 ( mod 8),p1k=0(2kk)2(4k2k)256k(k+1)2{16y2+3p ( mod p2)ifp=x2+2y21,3 ( mod 8),229R2(p)p ( mod p2)ifp5,7 ( mod 8),p1k=0(2kk)2(4k2k)256k(2k1){5y254pp28y2 ( mod p3)ifp=x2+2y21,3 ( mod 8),18R2(p) ( mod p2)ifp5,7 ( mod 8).

    Conjecture 5.17. Let p be a prime with p2,7, then

    p1k=0(2kk)2(4k2k)284k(k+1){284x2+(142+144(p3))pp2 ( mod p3)ifp=x2+2y21,3 ( mod 8),147R2(p)+144(p3)p ( mod p2)ifp5,7 ( mod 8),p1k=0(2kk)2(4k2k)284k(k+1)2{5576x2(2789+864(p3))p ( mod p2)ifp=x2+2y21,3 ( mod 8),1078R2(p)(1+864(p3))p ( mod p2)ifp5,7 ( mod 8),p1k=0(2kk)2(4k2k)284k(2k1){2363686x2+165411224(p3)9604p+2041p29604x2 ( mod p3)ifp=x2+2y21,3 ( mod 8),9392R2(p)3062401(p3)p ( mod p2)ifp5,7 ( mod 8).

    Conjecture 5.18. Let p be an odd prime, then

    p1k=0(2kk)2(3kk)8k(k+1){11y2+2pp2 ( mod p3)ifp=x2+2y21,3 ( mod 8),18R2(p)34p ( mod p2)ifp5,7 ( mod 8),p1k=0(2kk)2(3kk)8k(k+1)2{312y2+p2 ( mod p2)ifp=x2+2y21,3 ( mod 8),1316R2(p)278p ( mod p2)ifp5,7 ( mod 8),p1k=0(2kk)2(3kk)8k(2k1){2y2+52p1716y2p2 ( mod p3)ifp=x2+2y21,3 ( mod 8),34R2(p)+3p ( mod p2)ifp5,7 ( mod 8).

    Conjecture 5.19. Let p be a prime with p2,5, then

    (5p)p1k=0(2kk)(3kk)(6k3k)203k(k+1){285y2+2p(5p)p2 ( mod p3)ifp=x2+2y21,3 ( mod 8),56R2(p)+35p ( mod p2)ifp5,7 ( mod 8),(5p)p1k=0(2kk)(3kk)(6k3k)203k(k+1)2{48425x2(24425+(5p))p ( mod p2)ifp=x2+2y21,3 ( mod 8),233R2(p)(225+(5p))p ( mod p2)ifp5,7 ( mod 8),(5p)p1k=0(2kk)(3kk)(6k3k)203k(2k1){7925x2+181125p+26125x2p2 ( mod p3)ifp=x2+2y21,3 ( mod 8),120R2(p)33250p ( mod p2)ifp5,7 ( mod 8).

    Remark 5.2. Let p be a prime with p>7 and p71. In [25], the author conjectured congruences for p1k=0(2kk)2(4k2k)256k, p1k=0(2kk)2(4k2k)284k and p1k=0(2kk)(3kk)(6k3k)203k modulo p3. The congruence for p1k=0(2kk)2(4k2k)284k ( mod p2) was conjectured by Z. W. Sun [27].

    For any odd prime p, let

    R7(p)=(p1)/2k=0(2kk)3k+1.

    Conjecture 5.20. Let p be a prime with p2,7, then

    R7(p)=(p1)/2k=0(2kk)3k+1{44y2+2p ( mod p3)ifp=x2+7y21,2,4 ( mod 7),17([3p/7][p/7])2 ( mod p)ifp3 ( mod 7),167([3p/7][p/7])2 ( mod p)ifp5 ( mod 7),47([3p/7][p/7])2 ( mod p)ifp6 ( mod 7),p1k=0(2kk)3(k+1)2{68y2 ( mod p2)ifp=x2+7y21,2,4 ( mod 7),6R7(p)+2p ( mod p2)ifp3,5,6 ( mod 7),p1k=0(2kk)32k1{36y2+14p74y2p2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),32R7(p)+48p ( mod p2)ifp3,5,6 ( mod 7),p1k=0(2kk)3(2k1)2{284y2+34p+234y2p2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),96R7(p)96p ( mod p2)ifp3,5,6 ( mod 7),p1k=0(2kk)3(2k1)3{804y218p394y2p2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),192R7(p)+144p ( mod p2)ifp3,5,6 ( mod 7).

    Conjecture 5.21. Let p be a prime with p2,7, then

    (1)p12(p1)/2k=0(2kk)34096k(k+1){72y2+2p ( mod p3)ifp=x2+7y21,2,4 ( mod 7),64R7(p)66p ( mod p2)ifp3,5,6 ( mod 7),(1)p12p1k=0(2kk)34096k(k+1)2{1136y2+(64(1)p12)p ( mod p2)ifp=x2+7y21,2,4 ( mod 7),384R7(p)(456+(1)p12)p ( mod p2)ifp3,5,6 ( mod 7),
    (1)p12p1k=0(2kk)34096k(2k1){22y274p7p2256y2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),12R7(p)34p ( mod p2)ifp3,5,6 ( mod 7),(1)p12p1k=0(2kk)34096k(2k1)2{17y2+9764p+5p2256y2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),32R7(p)+12964p ( mod p2)ifp3,5,6 ( mod 7),(1)p12p1k=0(2kk)34096k(2k1)3{20116y28164p3p2256y2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),3R7(p)24364p ( mod p2)ifp3,5,6 ( mod 7)

    and

    (1)p12p1k=0(2kk)34096k(2k1)164p1k=0(2kk)32k1 ( mod p3)forp3,5,6 ( mod 7).

    Conjecture 5.22. Let p be a prime with p2,3,7, then

    p1k=0(2kk)2(4k2k)81k(k+1){1003y2+2pp2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),32R7(p)+43p ( mod p2)ifp3,5,6 ( mod 7),p1k=0(2kk)2(4k2k)81k(k+1)2{4369y2+43p ( mod p2)ifp=x2+7y21,2,4 ( mod 7),11R7(p)+949p ( mod p2)ifp3,5,6 ( mod 7),p1k=0(2kk)2(4k2k)81k(2k1){43627y25081p23p2324y2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),169R7(p)+20881p ( mod p2)ifp3,5,6 ( mod 7).

    Conjecture 5.23. Let p be a prime with p2,3,7, then

    p1k=0(2kk)2(4k2k)(3969)k(k+1){1963y2+2pp2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),21R7(p)643p ( mod p2)ifp3,5,6 ( mod 7),p1k=0(2kk)2(4k2k)(3969)k(k+1)2{3569x2+1889p ( mod p2)ifp=x2+7y21,2,4 ( mod 7),154R7(p)16129p ( mod p2)ifp3,5,6 ( mod 7),p1k=0(2kk)2(4k2k)(3969)k(2k1){4204189y270903969p2929p2111132y2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),3263R7(p)+30883969p ( mod p2)ifp3,5,6 ( mod 7).

    Conjecture 5.24. Let p be a prime with p>7, then

    (15p)p1k=0(2kk)(3kk)(6k3k)(15)3k(k+1){1885y2+2p(15p)p2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),154R7(p)+185p ( mod p2)ifp3,5,6 ( mod 7),(15p)p1k=0(2kk)(3kk)(6k3k)(15)3k(k+1)2{17225y2(75+(15p))p ( mod p2)ifp=x2+7y21,2,4 ( mod 7),692R7(p)+(96325(15p))p ( mod p2)ifp3,5,6 ( mod 7),(15p)p1k=0(2kk)(3kk)(6k3k)(15)3k(2k1){5084225y221381125p11p2500y2 ( mod p3)ifp=x2+7y21,2,4 ( mod 7),815R7(p)112125p ( mod p2)ifp3,5,6 ( mod 7).

    Conjecture 5.25. Let p>3 be a prime, then

    p1k=0(2kk)2(4k2k)(12288)k(k+1){144y2+2pp2 ( mod p3)if12p1andsop=x2+9y2,72y22pp2 ( mod p3)if12p5andso2p=x2+9y2,24([p/3][p/12])2 ( mod p)ifp7 ( mod 12),48([p/3][p/12])2 ( mod p)ifp11 ( mod 12),p1k=0(2kk)2(4k2k)(12288)k(k+1)2{128x2+75p ( mod p2)if12p1andsop=x2+9y2,64x277p ( mod p2)if12p5andso2p=x2+9y2,176([p/3][p/12])2 ( mod p)ifp7 ( mod 12),352([p/3][p/12])2 ( mod p)ifp11 ( mod 12),p1k=0(2kk)2(4k2k)(12288)k(2k1){134x2+9364p+25p2128x2 ( mod p3)if12p1andsop=x2+9y2,138x29364p25p264x2 ( mod p3)if12p5andso2p=x2+9y2,316([p/3][p/12])2 ( mod p)ifp7 ( mod 12),38([p/3][p/12])2 ( mod p)ifp11 ( mod 12).

    Conjecture 5.26. Let p be a prime with p2,5, and R20(p)=(p12[p/20])(p12[3p/20]), then

    p1k=0(2kk)2(4k2k)(1024)k{4x22pp24x2 ( mod p3)ifp1,9 ( mod 20)andsop=x2+5y2,2p2x2+p22x2 ( mod p3)ifp3,7 ( mod 20)andso2p=x2+5y2,2p2R20(p) ( mod p3)ifp11 ( mod 20),2p29R20(p) ( mod p3)ifp13 ( mod 20),6p27R20(p) ( mod p3)ifp17 ( mod 20),2p221R20(p) ( mod p3)ifp19 ( mod 20).

    Remark 5.3. For any prime p2,5, the congruence for p1k=0(2kk)2(4k2k)(1024)k modulo p2 was first conjectured by Z. W. Sun in [27]. Let p1 ( mod 20) be a prime and so p=x2+5y2. In 1840, Cauchy proved that

    4x2((p1)/2(p1)/20)((p1)/23(p1)/20) ( mod p),

    see [3, p.291].

    Conjecture 5.27. Let p be a prime with p2,5, then

    p1k=0(2kk)2(4k2k)(1024)k(k+1){85R20(p) ( mod p)ifp1,3,7,9 ( mod 20),45R20(p) ( mod p)ifp11 ( mod 20),365R20(p) ( mod p)ifp13 ( mod 20),2815R20(p) ( mod p)ifp17 ( mod 20),845R20(p) ( mod p)ifp19 ( mod 20).

    Moreover, if (5p)=1, then

    p1k=0(2kk)2(4k2k)(1024)k(k+1){32y2+2pp2 ( mod p3)ifp1,9 ( mod 20)andsop=x2+5y2,16y22pp2 ( mod p3)ifp3,7 ( mod 20)andso2p=x2+5y2,p1k=0(2kk)2(4k2k)(1024)k(k+1)2{32y25p ( mod p2)ifp1,9 ( mod 20)andsop=x2+5y2,16y2+3p ( mod p2)ifp3,7 ( mod 20)andso2p=x2+5y2,p1k=0(2kk)2(4k2k)(1024)k(2k1){312y22916pp232y2 ( mod p3)ifp1,9 ( mod 20)andsop=x2+5y2,314y2+2916p+p216y2 ( mod p3)ifp3,7 ( mod 20)andso2p=x2+5y2;

    if (5p)=1, then

    p1k=0(2kk)2(4k2k)(1024)k(k+1)2223p1k=0(2kk)2(4k2k)(1024)k(k+1)+(8(1)p121)p ( mod p2),p1k=0(2kk)2(4k2k)(1024)k(2k1)332p1k=0(2kk)2(4k2k)(1024)k(k+1)38(1)p12p ( mod p2).

    Conjecture 5.28. Let p>3 be a prime with (6p)=1 and R24(p)=(p12[p24])(p12[5p24]), then

    p1k=0(2kk)2(4k2k)482k{p25R24(p) ( mod p3)ifp13,17 ( mod 24),p277R24(p) ( mod p3)ifp19,23 ( mod 24)

    and

    p1k=0(2kk)2(3kk)216k{7p25R24(p) ( mod p3)ifp13 ( mod 24),7p25R24(p) ( mod p3)ifp17 ( mod 24),p211R24(p) ( mod p3)ifp19 ( mod 24),p211R24(p) ( mod p3)ifp23 ( mod 24).

    Conjecture 5.29. Let p>3 be a prime, then

    p1k=0(2kk)2(3kk)216k(k+1){78R24(p) ( mod p)ifp1,11 ( mod 24),78R24(p) ( mod p)ifp5,7 ( mod 24),58R24(p) ( mod p)ifp13 ( mod 24),58R24(p) ( mod p)ifp17 ( mod 24),778R24(p) ( mod p)ifp19 ( mod 24),778R24(p) ( mod p)ifp23 ( mod 24).

    Moreover, if (6p)=1, then

    p1k=0(2kk)2(3kk)216k(k+1){21y2+2pp2 ( mod p3)ifp=x2+6y21,7 ( mod 24),7x22pp2 ( mod p3)ifp=2x2+3y25,11 ( mod 24),p1k=0(2kk)2(3kk)216k(k+1)2{434x2254p ( mod p2)ifp=x2+6y21,7 ( mod 24),432x2132p ( mod p2)ifp=2x2+3y25,11 ( mod 24),p1k=0(2kk)2(3kk)216k(2k1){239x2+76p+5p224x2 ( mod p3)ifp=x2+6y21,7 ( mod 24),469x2+2518p+5p248x2 ( mod p3)ifp=2x2+3y25,11 ( mod 24);

    if (6p)=1, then

    p1k=0(2kk)2(3kk)216k(k+1)2132p1k=0(2kk)2(3kk)216k(k+1)(1+32(p3))p ( mod p2),p1k=0(2kk)2(3kk)216k(2k1)29p1k=0(2kk)2(3kk)216k(k+1)16(p3)p ( mod p2).

    Conjecture 5.30. Let p>3 be a prime, then

    p1k=0(2kk)2(4k2k)482k(k+1){13R24(p) ( mod p)ifp1,5 ( mod 24),13R24(p) ( mod p)ifp7,11 ( mod 24),53R24(p) ( mod p)ifp13,17 ( mod 24),773R24(p) ( mod p)ifp19,23 ( mod 24).

    Moreover, if (6p)=1, then

    p1k=0(2kk)2(4k2k)482k(k+1){8y2+2pp2 ( mod p3)ifp=x2+6y21,7 ( mod 24),4y22pp2 ( mod p3)ifp=2x2+3y25,11 ( mod 24),p1k=0(2kk)2(4k2k)482k(k+1)2{2809x21579p ( mod p2)ifp=x2+6y21,7 ( mod 24),5609x2+1399p ( mod p2)ifp=2x2+3y25,11 ( mod 24),p1k=0(2kk)2(4k2k)482k(2k1){5518x2+4936p+7p236x2 ( mod p3)ifp=x2+6y21,7 ( mod 24),559x24936p7p272x2 ( mod p3)ifp=2x2+3y25,11 ( mod 24);

    if (\frac {{-6}}{p}) = -1 , then

    \begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv- \frac 83\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p3\Big(2\Big( \frac {p}{3}\Big)+4\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)^2} \equiv- \frac {176}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p9\Big(35\Big( \frac {p}{3}\Big)-8\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(2k-1)} \equiv- \frac {1}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p{36}\Big(\Big( \frac {p}{3}\Big)-6\Big)\ (\text{ mod}\ {p^2}). \end{align*}

    Remark 5.4. Let p be a prime with p > 3 . In [25, Conjecture 4.24], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} modulo p^3 in the case (\frac {{-6}}{p}) = 1 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun in [27]. In 2019, Guo and Zudilin [6] proved Z. W. Sun's conjecture:

    \sum_{k = 0}^{p-1}(8k+1) \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} \equiv \Big(\frac {p}{3}\Big)p\ (\text{ mod}\ {p^3}).

    Conjecture 5.31. Let p > 5 be a prime.

    (ⅰ) If p \equiv 1, 19\ (\text{ mod}\ {30}) and so p = x^2+15y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv -84y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv -96y^2\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv \frac {148}3y^2- \frac {26}9p+ \frac {p^2}{36y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv 60y^2+2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv -1320y^2+36p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv \frac {3508}{75}y^2- \frac {1954}{1125}p- \frac {287p^2}{22500y^2} \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If p \equiv 17, 23\ (\text{ mod}\ {30}) and so p = 3x^2+5y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv 28y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv 32y^2-2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv - \frac {148}9y^2+ \frac {26}9p- \frac {p^2}{12y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv -20y^2-2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv 440y^2-38p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv - \frac {3508}{225}y^2+ \frac {1954}{1125}p+ \frac {287p^2}{7500y^2} \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-15}}{p}) = -1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv\begin{cases} \frac 25\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {30}) , } \\ \frac 1{10}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {30}) , } \\ \frac {32}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {30}) , } \\ \frac {8}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {30}) .} \end{cases}

    Moreover,

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}+\Big(3\Big( \frac {p}{3}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv- \frac {16}9 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac 83\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv-20 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-12\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv-130 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-\Big(1+111\Big( \frac {p}{3}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv- \frac {64}{225} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac {152}{375}\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). \end{align*}

    Conjecture 5.32. Let p be a prime with p > 5 and

    R_{40}(p) = \frac { \binom{(p-1)/2}{[7p/40]} \binom{(p-1)/2}{[9p/40]} \binom{[3p/40]}{[p/40]}}{ \binom{[19p/40]}{[p/20]}}.

    (ⅰ) If (\frac {{-10}}{p}) = 1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {49}{15}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1,23\ (\text{ mod}\ {40}) ,} \\- \frac {49}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {40}) ,} \\ \frac {7}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {40}) ,} \\ \frac {833}{195}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {40}) ,} \\- \frac {833}{285}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {40}) ,} \\- \frac {98}{555}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {40}) ,} \\- \frac {98}{55}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 37\ (\text{ mod}\ {40}) .} \end{cases}

    Moreover,

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} \frac {392}{3}y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {196}{3}y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv\begin{cases}- \frac {20176}{9}y^2+ \frac {265}{3}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\ \frac {10088}{9}y^2- \frac {271}{3}p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv\begin{cases} \frac {883}{27}y^2- \frac {581}{324}p- \frac {13p^2}{648y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {883}{54}y^2+ \frac {581}{324}p+ \frac {13p^2}{324y^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40})}\end{cases} \end{align*}

    and

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9, 11, 19\ (\text{ mod}\ {40})\; and so \;p = x^2+10y^2, } \\2p-8x^2+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}); and so \;p = 2x^2+5y^2.}\end{cases} \end{align*}

    (ⅱ) If (\frac {{-10}}{p}) = -1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {21}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {40}) ,} \\- \frac {4446}{155}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {40}) ,} \\- \frac {189}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 21\ (\text{ mod}\ {40}) ,} \\- \frac {702}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 27\ (\text{ mod}\ {40}) ,} \\ \frac {66}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {40}) ,} \\ \frac {1026}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 31\ (\text{ mod}\ {40}) ,} \\- \frac {462}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 33\ (\text{ mod}\ {40}) ,} \\- \frac {858}{85}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 39\ (\text{ mod}\ {40}). } \end{cases}

    Moreover,

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv \frac {22}3\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} +\Big( \frac {256}3\Big( \frac {p}{5}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv \frac 1{216}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} + \frac {16}{81}\Big( \frac {p}{5}\Big)p\ (\text{ mod}\ {p^2}) \end{align*}

    and

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\Big) \equiv - \frac {49}{15}p^2\ (\text{ mod}\ {p^3}).

    Remark 5.5. Let p > 3 be a prime. In [27], Z. W. Sun conjectured the congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\ (\text{ mod}\ {p^2}) .

    Conjecture 5.33. Let p be a prime with p\not = 2, 11 and R_{11}(p) = \binom{[\frac {3p}{11}]}{[\frac p{11}]}^2 \binom{[\frac {6p}{11}]}{[\frac {3p}{11}]}^2/ \binom{[\frac {4p}{11}]}{[\frac {2p}{11}]}^2 .

    (ⅰ) If p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv\begin{cases} \frac {25}{22}R_{11}(p)\ (\text{ mod}\ p)& {if\; p \equiv 1, 4, 5, 9\ (\text{ mod}\ {11}) , } \\ \frac 2{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {11}) .} \end{cases}

    Moreover,

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv - \frac {25}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv - \frac {83}4y^2+2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac {23}4y^2- \frac 78p- \frac {p^2}{8y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)} \equiv -26y^2+2p-\Big( \frac {{-2}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)^2} \equiv 148y^2-\Big(24+\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(2k-1)} \equiv \frac {73}{8}y^2- \frac {467}{256}p- \frac {37p^2}{512y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv \begin{cases} - \frac {50}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {11}) , } \\- \frac {32}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 6\ (\text{ mod}\ {11}) , } \\- \frac {2}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {11}) , } \\- \frac {72}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {11}) , } \\- \frac {18}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {11}) .} \end{cases}

    Moreover,

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac 34\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+ \frac 38p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)} \equiv \frac {128}{15}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} - \frac 25p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)^2} \equiv \frac {5888}{75}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} +\Big( \frac {608}{25}-\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(2k-1)} \equiv - \frac 18\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}- \frac {51}{256}p\ (\text{ mod}\ {p^2}) \end{align*}

    and

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k}\Big) \equiv \frac {25}{22}p^2\ (\text{ mod}\ {p^3}).

    Remark 5.6. Let p be a prime with p\not = 2, 3, 11 . In [25], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}} modulo p^3 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun [29]. Suppose that p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 . In [9], Lee and Hahn proved that

    x \equiv \begin{cases} \binom{3n}n \binom{6n}{3n} \binom{4n}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-1 $ and $ 11\mid x-2 $, } \\- \binom{3n+1}n \binom{6n+1}{3n} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-3 $ and $ 11\mid x-10 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-4 $ and $ 11\mid x-7 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-5 $ and $ 11\mid x-8 $, } \\- \binom{3n+2}n \binom{6n+4}{3n+2} \binom{4n+3}{2n+1}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-9 $ and $ 11\mid x-6 $, }\end{cases}

    where n = [p/11] . The case p \equiv 1\ (\text{ mod}\ {11}) is due to Jacobi.

    Conjecture 5.34. Let p > 3 be a prime and

    R_{19}(p) = \binom{[8p/19]}{[p/19]}^2 \binom{[10p/19]}{[4p/19]}^2 \binom{[5p/19]}{[2p/19]}^{-2}.

    (ⅰ) If (\frac {{p}}{{19}}) = 1 and so 4p = x^2+19y^2 , then

    \Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} - \frac {1183}{1368}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1, 7, 11\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{342}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 4, 6\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{2432}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 5\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{18392}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{27702}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 16\ (\text{ mod}\ {19}) , } \\ - \frac {57967}{12312}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {19}) .} \end{cases}

    Moreover,

    \begin{align*} &\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv \frac {1183}{72}y^2- \frac {4273}{2304}p- \frac {23p^2}{512y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv -394y^2+2p-\Big( \frac {{-6}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv 6772y^2-\Big(536+\Big( \frac {{-6}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}) . \end{align*}

    (ⅱ) If (\frac {{p}}{{19}}) = -1 , then

    \Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} \frac {49}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {19}) , } \\ \frac {1}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {19}) , } \\ \frac {27}{14896}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {19}) , } \\ \frac {3}{19}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {19}) , } \\ \frac {121}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 12\ (\text{ mod}\ {19}) , } \\ \frac {4}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {19}) , } \\ \frac {121}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 14\ (\text{ mod}\ {19}) , } \\ \frac {27}{76}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 15\ (\text{ mod}\ {19}) , } \\ \frac {49}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 18\ (\text{ mod}\ {19}) .} \end{cases}

    Moreover,

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv - \frac {9216}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}-270\Big( \frac {{-6}}{p}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv \frac {46}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)}+\Big(540\Big( \frac {{-6}}{p}\Big)-1\Big)p\ (\text{ mod}\ {p^2}) \end{align*}

    and

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}}\Big) \equiv - \frac {985}{87552}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.35. Let p > 5 be a prime.

    (ⅰ) If (\frac {{p}}{{43}}) = 1 and so 4p = x^2+43y^2 , then

    \begin{align*} &\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(k+1)} \equiv- \frac {1867778}5y^2+2p-\Big( \frac {{-15}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)} \equiv \frac {140501}{3600}y^2- \frac {4384321}{2304000}p- \frac {10751p^2}{512000y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {{p}}{{43}}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}}\Big) \equiv - \frac {933889}{198144000}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.36. Let p be a prime with p\not = 2, 3, 5, 11 .

    (ⅰ) If (\frac {{p}}{{67}}) = 1 and so 4p = x^2+67y^2 , then

    \begin{align*} &\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(k+1)} \equiv- \frac {310714322}5y^2+2p-\Big( \frac {{-330}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)} \\&{\quad} \equiv \frac 1{217800}\Big(13501789y^2- \frac {736842481}{1760}p- \frac {10552671p^2}{3520y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {{p}}{{67}}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}}\Big) \equiv - \frac {155357161}{51365952000}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.37. Let p be a prime with p\not = 2, 3, 5, 23, 29 . If (\frac {{p}}{{163}}) = 1 and so 4p = x^2+163y^2 , then

    \begin{align*} &\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}(k+1)} \equiv- \frac {554179195816658}5y^2+2p-\Big( \frac {{-10005}}{p}\Big)p^2\ (\text{ mod}\ {p^3}). \end{align*}

    Remark 5.7. Suppose that p > 3 is a prime. In [29], Z. W. Sun conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{m^{3k}} modulo p^2 in the cases m = -32, -96, -960, -5280, -640320 . The corresponding congruences modulo p were proved by the author in [19].

    Conjecture 5.38. Let p be a prime with p > 5 .

    (ⅰ) If p \equiv 1, 4\ (\text{ mod}\ {15}) and so 4p = x^2+75y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv - \frac {825}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv \frac {14925}4y^2-78p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv- \frac {29}{36}x^2+ \frac {517}{360}p+ \frac {31p^2}{40x^2} \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If p \equiv 7, 13\ (\text{ mod}\ {15}) and so 4p = 3x^2+25y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv \frac {275}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv - \frac {4975}4y^2+76p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv \frac {29}{12}x^2- \frac {517}{360}p- \frac {31p^2}{120x^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If p \equiv 2\ (\text{ mod}\ 3) , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)}\Big) \equiv \frac {11}{2}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.39. Let p be a prime with p > 3 .

    (ⅰ) If (\frac {p}{3}) = (\frac {p}{{17}}) = 1 and so 4p = x^2+51y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv - \frac {249}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv \frac {1965}4y^2-18p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv \frac {475}{12}y^2- \frac {127}{72}p- \frac {p^2}{72y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {p}{3}) = (\frac {p}{{17}}) = -1 and so 4p = 3x^2+17y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv \frac {83}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv - \frac {655}4y^2+16p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv- \frac {475}{36}y^2+ \frac {127}{72}p+ \frac {p^2}{24y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-51}}{p}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)}\Big) \equiv \frac {83}{34}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.40. Let p be a prime with p > 3 .

    (ⅰ) If (\frac {p}{3}) = (\frac {p}{{41}}) = 1 and so 4p = x^2+123y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv - \frac {8673}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv \frac {280605}4y^2-792p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv \frac {19903}{192}y^2- \frac {8425}{4608}p- \frac {31p^2}{4608y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {p}{3}) = (\frac {p}{{41}}) = -1 and so 4p = 3x^2+41y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv \frac {2891}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv- \frac {93535}4y^2+790p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv- \frac {19903}{576}y^2+ \frac {8425}{4608}p+ \frac {31p^2}{1536y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-123}}{p}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)}\Big) \equiv \frac {2891}{82}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.41. Let p be a prime with p > 3 .

    (ⅰ) If (\frac {p}{3}) = (\frac {p}{{89}}) = 1 and so 4p = x^2+267y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv - \frac {2052321}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv \frac {113759157}4y^2-131490p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv \frac {8910623}{37500}y^2- \frac {2118511}{1125000}p- \frac {3721p^2}{1125000y^2} \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {p}{3}) = (\frac {p}{{89}}) = -1 and so 4p = 3x^2+89y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv \frac {684107}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv- \frac {37919719}4y^2+131488p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv- \frac {8910623}{112500}y^2+ \frac {2118511}{1125000}p+ \frac {3721p^2}{375000y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-267}}{p}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)}\Big) \equiv \frac {684107}{178}p^2\ (\text{ mod}\ {p^3}).

    Remark 5.8. Let p > 5 be a prime. In [18], the author proved the congruences modulo p for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k in the cases m = -8640, -12^3, -48^3, -300^3 . In [29], Z. W. Sun conjectured the corresponding congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k\ (\text{ mod}\ {p^2}) in the cases m = -12^3, -48^3, -300^3 .

    Conjecture 5.42. Let p > 3 be a prime.

    (ⅰ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = 1 and so p = x^2+13y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv - \frac {2272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv \frac {96032}9y^2- \frac {911}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv \frac {2357}{54}y^2- \frac {2365}{1296}p- \frac {41p^2}{2592y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = -1 and so 2p = x^2+13y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv \frac {1136}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv- \frac {48016}9y^2+ \frac {905}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv - \frac {2357}{108}y^2+ \frac {2365}{1296}p+ \frac {41p^2}{1296y^2} \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-13}}{p}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)}\Big) \equiv \frac {568}{39}p^2.

    Conjecture 5.43. Let p be a prime with p\not = 2, 3, 7 .

    (ⅰ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = 1 and so p = x^2+37y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv - \frac {5044960}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv \frac {467407904}9y^2- \frac {1302671}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{18522}\Big(2469371y^2- \frac {5897725}{168}p- \frac {37649p^2}{336y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = -1 and so 2p = x^2+37y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv \frac {2522480}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv- \frac {233703952}9y^2+ \frac {1302665}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{37044}\Big(-2469371y^2+ \frac {5897725}{84}p+ \frac {37649p^2}{84y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-37}}{p}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)}\Big) \equiv \frac {1261240}{111}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.44. Let p be a prime with p\not = 2, 3, 11 .

    (ⅰ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = 1 and so p = x^2+22y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv \frac {63272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv - \frac {4221712}9y^2+ \frac {21289}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{297}\big(22829y^2- \frac {73085}{132}p- \frac {8471p^2}{2904y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = -1 and so p = 2x^2+11y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv- \frac {31636}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv \frac {2110856}9y^2- \frac {21295}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{594}\big(-22829y^2+ \frac {73085}{66}p+ \frac {8471p^2}{726y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-22}}{p}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)}\Big) \equiv - \frac {719}3p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.45. Let p be a prime with p\not = 2, 3, 11 .

    (ⅰ) If \big(\frac {{-2}}{p}\big) = (\frac {{29}}{p}) = 1 and so p = x^2+58y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv \frac {622903112}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv - \frac {75716418640}9y^2+ \frac {128477449}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{323433}\big(69026153y^2- \frac {736357445}{1188}p- \frac {3035509p^2} {2376y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If (\frac {{-2}}{p}) = (\frac {{29}}{p}) = -1 and so p = 2x^2+29y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv- \frac {311451556}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv \frac {37858209320}9y^2- \frac {128477455}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{646866}\big(-69026153y^2+ \frac {736357445}{594}p+ \frac {3035509p^2} {594y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If (\frac {{-58}}{p}) = -1 , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)}\Big) \equiv - \frac {77862889}{87}p^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.46. Let p > 5 be a prime.

    (ⅰ) If p \equiv 1, 9\ (\text{ mod}\ {20}) and so p = x^2+25y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv - \frac {168400}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv \frac {12142400}9y^2- \frac {52799}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac {19025}{216}y^2- \frac {194161}{103680}p- \frac {45239p^2}{5184000y^2}\ (\text{ mod}\ {p^3}). \end{align*}

    (ⅱ) If p \equiv 13, 17\ (\text{ mod}\ {20}) and so 2p = x^2+25y^2 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 2p-2x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv \frac {84200}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv- \frac {6071200}9y^2+ \frac {52793}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac 1{432}\big(-19025y^2+ \frac {194161}{240}p+ \frac {45239p^2}{6000y^2}\big) \ (\text{ mod}\ {p^3}). \end{align*}

    (ⅲ) If p \equiv 3\ (\text{ mod}\ 4) , then

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)}\Big) \equiv \frac {1684}3p^2\ (\text{ mod}\ {p^3}).

    Remark 5.9. Let p > 3 be a prime. The congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{4k}{2k}/m^k\ (\text{ mod}\ {p^2}) in the cases m = -82944, -199148544, 1584^2,396^4, -6635520 were conjectured by Z. W. Sun earlier, see [27,29] and arXiv:0911.5665v59.

    Conjecture 5.47. Let p be an odd prime.

    (ⅰ) If p \equiv 1\ (\text{ mod}\ 4) and so p = x^2+4y^2 with 4\mid x-1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv x- \frac p{4x}\ (\text{ mod}\ {p^2}){\quad}\; {and} {\quad}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(k+1)^2} \equiv 8x-7\ (\text{ mod}\ p).

    (ⅱ) If p \equiv 3\ (\text{ mod}\ 4) , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv \frac 12(2p+3-2^{p-1}) \binom{ \frac {p-1}2}{ \frac {p-3}4}\ (\text{ mod}\ {p^2}).

    Conjecture 5.48. Let p be an odd prime, then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(2k-1)^2} \equiv \begin{cases} (-1)^{ \frac {p-1}4} \frac px\ (\text{ mod}\ {p^2}){\quad} {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and \; 4\mid x-1 , } \\(-1)^{ \frac {p+1}4}(2p+3-2^{p-1}) \binom{(p-1)/2}{(p-3)/4} \ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 3\ (\text{ mod}\ 4) } \end{cases}

    and

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(k+1)^2} \equiv 5\ (\text{ mod}\ p){\quad} {for} {\quad}p \equiv 1\ (\text{ mod}\ 4).

    Conjecture 5.49. Let p be an odd prime, then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{8^k(2k-1)^2} \equiv\begin{cases} (-1)^{ \frac {p-1}4}\big(2x- \frac {3p}{2x}\big)\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and\; 4\mid x-1 , } \\2(-1)^{ \frac {p+1}4} \binom{(p-1)/2}{(p-3)/4}\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases}

    Remark 5.10. Let p be an odd prime. In [33], Z. W. Sun established the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2}{m^k(2k-1)}\ (\text{ mod}\ {p^2}) in the cases m = -16, 8, 32 .

    Now we present two general conjectures.

    Conjecture 5.50. Let a, x\in\Bbb Q and d\in\Bbb Z with adx\not = 0 , where \Bbb Q is the set of rational numbers. Suppose that \sum_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k \equiv 0\ (\text{ mod}\ p) for all odd primes p satisfying a, x\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 ,

    \sum\limits_{k = 0}^{p-1} \binom{2k}k \binom ak \binom{-1-a}k(x(1-x))^k \equiv c\Big(\sum\limits_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k\Big)^2\ (\text{ mod}\ {p^3}).

    Conjecture 5.51. Let a, m\in\Bbb Q and d\in\Bbb Z with adm\not = 0 . Suppose that

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k} \equiv 0\ (\text{ mod}\ {p^2})

    for all odd primes p satisfying a, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 ,

    \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{(k+1)m^k}\Big) \equiv cp^2\ (\text{ mod}\ {p^3}).

    For an odd prime p , let R_1(p) R_3(p) be given by (5.1)–(5.3). With the help of Maple, we discover the following conjectures involving Apéry-like numbers.

    Conjecture 6.1. Let p be an odd prime, then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(k+1)} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(2k-1)} \equiv\begin{cases} 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 1\ (\text{ mod}\ 4), } \\-R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} \end{align*}

    Conjecture 6.2. Let p > 3 be a prime, then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{32^k(2k-1)} \equiv\begin{cases} (-1)^{ \frac {p-1}2}( \frac p2-x^2)\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 14(-1)^{ \frac {p-1}2}R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{800^k(2k-1)} \equiv\begin{cases} - \frac {73}{100}(-1)^{ \frac {p-1}2}( 4x^2-2p)- \frac {24}{125}( \frac {3}{p})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {9}{100}(-1)^{ \frac {p-1}2}R_2(p)+ \frac {24}{125}( \frac {3}{p})p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8)\; and \;\\ p\not = 5, } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-768)^k(2k-1)} \equiv\begin{cases} - \frac {73}{96}( \frac {3}{p}) ( 4x^2-2p)- \frac {11}{48}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}) & {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {3}{32}( \frac {3}{p})R_2(p)- \frac {11}{48}(-1)^{ \frac {p-1}2} p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .} \end{cases} \end{align*}

    Conjecture 6.3. Let p be an odd prime, then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{7^k(2k-1)} \equiv\begin{cases} \frac {124}{49}x^2- \frac {46}{49}p\ (\text{ mod}\ {p^2}){\qquad}{\qquad} {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {64}7\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {496}{49}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{25^k(2k-1)} \equiv\begin{cases} - \frac {124}{175}x^2+ \frac {326}{875}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {448}{175}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {2576}{875}p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)\; and \;p\not = 5.} \end{cases} \end{align*}

    Conjecture 6.4. Let p > 3 be a prime, then

    \begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-32)^k(2k-1)} \equiv\begin{cases} 22y^2- \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ \\(\text{ mod}\ {24}), } \\-11y^2+ \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ \\(\text{ mod}\ {24}), } \\ \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}+ \frac p2 \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac 56p \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24})} \end{cases} \end{align*}

    and

    \begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{64^k(2k-1)} \equiv\begin{cases} 11y^2-p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), } \\ \frac {11}2y^2-p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24}) .} \end{cases} \end{align*}

    Conjecture 6.5. Let p be a prime with p > 3 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-12)^k(2k-1)} \equiv \begin{cases} 0\ (\text{ mod}\ {p^2})& {if \; p \equiv 1\ (\text{ mod}\ 3) , } \\-2(2p+1) \binom{[2p/3]}{[p/3]}^2\ (\text{ mod}\ {p^2})& {if \; p \equiv 2\ (\text{ mod}\ {3}) }. \end{cases}

    Conjecture 6.6. Let p be a prime with p > 3 , then

    \Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{54^k(2k-1)} \equiv \begin{cases} - \frac {28}9x^2+ \frac {10}9p\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , }\\ \frac 23R_1(p)- \frac 49p\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases}

    Conjecture 6.7. Let p be an odd prime, then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{8^k(2k-1)} \equiv \begin{cases} - \frac {11}2x^2+ \frac 54p\ (\text{ mod}\ {p^2}){\qquad} {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}8R_2(p)+ \frac 32p\ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 5, 7\ (\text{ mod}\ {8}) }. \end{cases}

    Conjecture 6.8. Let p be a prime with p\not = 2, 3, 7 , then

    \begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-27)^k(2k-1)} \equiv \begin{cases} - \frac {2}{3}p+ \frac {76}{9}y^2\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 83\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {28}9p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)} \end{cases} \end{align*}

    and

    \begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{243^k(2k-1)} \equiv \begin{cases} \frac {1676}{81}y^2- \frac {142}{81}p\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac {32}{27}\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {44}{27}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7) .} \end{cases} \end{align*}

    Conjecture 6.9. Let p be a prime with p\not = 2, 11 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-44)^k(2k-1)} \\ \equiv &\begin{cases} \frac {52}{11}y^2- \frac {116}{121}p\ (\text{ mod}\ {p^2}){\qquad} {if \;p \equiv 1, 3, 4, 5, 9 \ (\text{ mod}\ {11})\; and \;so \;4p = x^2+11y^2, } \\ \frac 9{11}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k(k+1)}+ \frac {39}{121} p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11})}. \end{cases} \end{align*}

    Conjecture 6.10. Let p be a prime with p\not = 2, 3, 19 , then

    \begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-108)^k(2k-1)} \\ \equiv &\begin{cases} \frac {100}9y^2- \frac 43p\ (\text{ mod}\ {p^2})& {if \;( \frac {p}{{19}}) = 1\; and \;so \;4p = x^2+19y^2, } \\8\big( \frac {{-6}}{p}\big)\sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} + \frac {241}{288}p\ (\text{ mod}\ {p^2}) & {if \;\big( \frac {p}{{19}}\big) = -1.} \end{cases} \end{align*}

    Conjecture 6.11. Let p > 3 be a prime, then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{(-4)^k(2k-1)} \equiv\begin{cases} 2p-4x^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-8R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{50^k(2k-1)} \equiv\begin{cases} - \frac {13}{25}(4x^2-2p) - \frac {12}{125}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}{25}R_3(p)- \frac {12}{125}(-1)^{ \frac {p-1}2}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3)\; and \;p\not = 5.} \end{cases} \end{align*}

    Conjecture 6.12. Let p > 3 be a prime, then

    \begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{96^k(2k-1)} \equiv\begin{cases} - \frac {29}{48}( \frac {p}{3})(4x^2-2p)- \frac p6\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {3}{16}( \frac {p}{3})R_2(p)+ \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .}\end{cases} \end{align*}

    Conjecture 6.13. Let p be a prime with p\not = 2, 5 . If (\frac {{-5}}{p}) = 1 , then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv\begin{cases} - \frac 75x^2+ \frac {9}{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, } \\- \frac {7}{10}x^2+ \frac 9{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2;}\end{cases} \end{align*}

    if (\frac {{-5}}{p}) = -1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv -6(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} - \frac {11}8p\ (\text{ mod}\ {p^2}).

    Conjecture 6.14. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \begin{cases} - \frac 74x^2+ \frac 78p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac 72x^2+ \frac {7}{8}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases}

    if (\frac {{-6}}{p}) = -1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \frac 94\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}+ \frac 14\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}).

    Conjecture 6.15. Let p > 3 be a prime, then

    \begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{54^k(2k-1)} \equiv\begin{cases} \frac {52}{9}y^2- \frac {26+2(-1)^{ \frac {p-1}2}}{27}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {32}{27}R_3(p)+ \frac 2{27}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*}

    Conjecture 6.16. Let p > 3 be a prime, then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{100^k(2k-1)} \equiv\begin{cases} - \frac {58}{25}x^2+ \frac {145-18( \frac {p}{3})}{125}p\ (\text{ mod}\ {p^2})& {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}{50}R_2(p)- \frac {18}{125}\big( \frac {p}{3}\big)p\ (\text{ mod}\ {p^2})& {if \; p \equiv 5, 7\ (\text{ mod}\ 8) \; and \; p\not = 5 .} \end{cases}

    Conjecture 6.17. Let p > 3 be a prime, then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{(-12)^k(2k-1)} \equiv\begin{cases} p-4x^2\ (\text{ mod}\ {p^2})& {if \; 12\mid p-1 \; and \;so \; p = x^2+9y^2 , } \\ 2x^2-p\ (\text{ mod}\ {p^2})& {if \; 12\mid p-5 \; and \;so \; 2p = x^2+9y^2 , } \\3\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {12}) , } \\-6\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {12}) .} \end{cases}

    Conjecture 6.18. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then

    \Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv \begin{cases} - \frac {14}9x^2+ \frac 79p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac {28}9x^2+ \frac {7}{9}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases}

    if (\frac {{-6}}{p}) = -1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv -2\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}- \frac 29p\ (\text{ mod}\ {p^2}).

    Conjecture 6.19. Let p > 3 be a prime, then

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{(-36)^k(2k-1)} \equiv\begin{cases} - \frac 49x^2+ \frac 29p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{18^k(2k-1)} \equiv\begin{cases} - \frac {52}9x^2+ \frac {26-12(-1)^{(p-1)/2}}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}9R_3(p)- \frac 43(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*}

    Conjecture 6.20. Let p be a prime with p\not = 2, 3, 11 , then

    \begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{4^k(2k-1)} \equiv \begin{cases} 2p-2y^2\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11})\; and \;4p = x^2+11y^2, }\\ 5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) .}\end{cases} \end{align*}

    Conjecture 6.21. Let p be a prime with p\not = 2, 3, 19 . If (\frac {p}{{19}}) = 1 \; and \;so \; 4p = x^2+19y^2 , the

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv \frac {74}{9}y^2- \frac {22}{27}p\ (\text{ mod}\ {p^2});

    if \big(\frac {p}{{19}}\big) = -1 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv- \frac {40}3 \Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} - \frac {1397}{864}p \ (\text{ mod}\ {p^2}).

    Conjecture 6.22. Let p be a prime with p > 3 , then

    \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k(2k-1)} \equiv\begin{cases} - \frac 43x^2+ \frac {26}{27}p\ (\text{ mod}\ {p^2})& {if \; 4\mid p-1 \; and \;so \; p = x^2+4y^2 , } \\ \frac 8{27}p- \frac {10}9R_1(p)\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases}

    Remark 6.1. In [29], Z. W. Sun conjectured that for any prime p > 3 ,

    \begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{36^k} \equiv\begin{cases} x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = 1$ and so $4p = x^2+19y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = -1$,}\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 1\ (\text{ mod}\ 4)$ and so $p = x^2+4y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*}

    For congruences related to Conjectures 6.1–6.18 see [21,22,23,24,25].

    In Sections 2–4, we prove some congruences for the sums involving binomial coefficients and Apéry-like numbers modulo p^r , where p is an odd prime and r\in\{1, 2, 3\} . Based on calculations by Maple, in Sections 3, 5 and 6 we pose 83 challenging conjectures on congruences modulo p^2 or p^3 .

    The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).

    The author declares no conflicts of interest regarding the publication of this paper.



    [1] S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, In: Symbolic computation, number theory, special functions, physics and combinatorics, Dordrecht: Kluwer, 2001, 1–12. doi: 10.1007/978-1-4613-0257-5_1.
    [2] G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, In: Mirror symmetry, AMS/IP Studies in Advanced Mathematics, Vol. 38, International Press & American Mathematical Society, 2007,481–515.
    [3] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, New York: Wiley, 1998.
    [4] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201–210. doi: 10.1016/0022-314X(87)90025-4. doi: 10.1016/0022-314X(87)90025-4
    [5] H. W. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, Morgantown: West Virginia University, 1972.
    [6] V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. doi: 10.1016/j.aim.2019.02.008. doi: 10.1016/j.aim.2019.02.008
    [7] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, In: Proceedings of the conference on p-adic analysis, Houthalen, 1987,189–195.
    [8] T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J., 118 (1990), 195–202. doi: 10.1017/S002776300000307X. doi: 10.1017/S002776300000307X
    [9] D. H. Lee, S. G. Hahn, Gauss sums and binomial coefficients, J. Number Theory, 92 (2002), 257–271. doi: 10.1006/jnth.2001.2688. doi: 10.1006/jnth.2001.2688
    [10] L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773–808. doi: 10.1016/j.aim.2015.11.043. doi: 10.1016/j.aim.2015.11.043
    [11] F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J., 22 (2010), 171–186. doi: 10.1007/s11139-009-9218-5
    [12] S. Mattarei, R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory, 133 (2013), 131–157. doi: 10.1016/j.jnt.2012.05.036. doi: 10.1016/j.jnt.2012.05.036
    [13] E. Mortenson, Supercongruences for truncated _{n+1}F_n hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc., 133 (2005), 321–330. doi: 10.1090/S0002-9939-04-07697-X. doi: 10.1090/S0002-9939-04-07697-X
    [14] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, In: Calabi-Yau varieties and mirror symmetry, Providence, RI: American Mathematical Society, 2003,223–231.
    [15] V. Strehl, Binomial identities-combinatorial and algorithmic aspects, Discrete Math., 136 (1994), 309–346. doi: 10.1016/0012-365X(94)00118-3. doi: 10.1016/0012-365X(94)00118-3
    [16] Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc., 139 (2011), 1915–1929. doi: 10.1090/S0002-9939-2010-10566-X. doi: 10.1090/S0002-9939-2010-10566-X
    [17] Z. H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory, 133 (2013), 1950–1976. doi: 10.1016/j.jnt.2012.11.004. doi: 10.1016/j.jnt.2012.11.004
    [18] Z. H. Sun, Congruences involving \binom2kk^2 \binom3kk, J. Number Theory, 133 (2013), 1572–1595. doi: 10.1016/j.jnt.2012.10.001. doi: 10.1016/j.jnt.2012.10.001
    [19] Z. H. Sun, Legendre polynomials and supercongruences, Acta Arith., 159 (2013), 169–200. doi: 10.4064/aa159-2-6
    [20] Z. H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143 (2014), 293–319. doi: 10.1016/j.jnt.2014.04.012. doi: 10.1016/j.jnt.2014.04.012
    [21] Z. H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integr. Transf. Spec. F., 26 (2015), 642–659. doi: 10.1080/10652469.2015.1034122. doi: 10.1080/10652469.2015.1034122
    [22] Z. H. Sun, Identities and congruences for Catalan-Larcombe-French numbers, Int. J. Number Theory, 13 (2017), 835–851. doi: 10.1142/S1793042117500440. doi: 10.1142/S1793042117500440
    [23] Z. H. Sun, Congruences for sums involving Franel numbers, Int. J. Number Theory, 14 (2018), 123–142. doi: 10.1142/S1793042118500094. doi: 10.1142/S1793042118500094
    [24] Z. H. Sun, Super congruences for two Apéry-like sequences, J. Difference Equ. Appl., 24 (2018), 1685–1713. doi: 10.1080/10236198.2018.1515930. doi: 10.1080/10236198.2018.1515930
    [25] Z. H. Sun, Congruences involving binomial coefficients and Apéry-like numbers, Publ. Math. Debrecen, 96 (2020), 315–346. doi: 10.5486/PMD.2020.8577
    [26] Z. H. Sun, Supercongruences and binary quadratic forms, Acta Arith., 199 (2021), 1–32. doi: 10.4064/aa200308-27-9. doi: 10.4064/aa200308-27-9
    [27] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x. doi: 10.1007/s11425-011-4302-x
    [28] Z. W. Sun, On sums involving products of three binomial coefficients, Acta Arith., 156 (2012), 123–141. doi: 10.4064/aa156-2-2
    [29] Z. W. Sun, Conjectures and results on x^2 mod p^2 with 4p = x^2+dy^2, In: Number theory and related areas, Beijing-Boston: Higher Education Press & International Press, 2013,149–197.
    [30] Z. W. Sun, Congruences for Franel numbers, Adv. Appl. Math., 51 (2013), 524–535. doi: 10.1016/j.aam.2013.06.004. doi: 10.1016/j.aam.2013.06.004
    [31] Z. W. Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. Biquarterly, 32 (2015), 189–218.
    [32] Z. W. Sun, Congruences involving g_n(x) = \sum_{k = 0}^n \binom nk^2 \binom2kkx^k, Ramanujan J., 40 (2016), 511–533. doi: 10.1007/s11139-015-9727-3. doi: 10.1007/s11139-015-9727-3
    [33] Z. W. Sun, Two new kinds of numbers and related divisibility results, Colloq. Math., 154 (2018), 241–273. doi: 10.4064/cm7405-1-2018
    [34] Z. W. Sun, List of Conjectural series for powers of \pi and other constants, In: Ramanujan's Identities, Harbin Institute of Technology Press, 2021,205–261.
    [35] R. Tauraso, A supercongruence involving cubes of Catalan numbers, Integers, 20 (2020), #A44, 1–6.
    [36] D. Zagier, Integral solutions of Apéry-like recurrence equations, In: Groups and symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes, Vol. 47, Providence, RI: American Mathematical Society, 2009,349–366.
  • This article has been cited by:

    1. Zhao Shen, On a Conjecture of J. Shallit About Apéry-Like Numbers, 2022, 1073-7928, 10.1093/imrn/rnac047
    2. Zhi-Hong Sun, Supercongruences involving products of three binomial coefficients, 2023, 117, 1578-7303, 10.1007/s13398-023-01458-y
    3. Guoshuai Mao, Zhengkai Zhao, Proof of Some Congruence Conjectures of Z.-H. Sun, 2025, 2731-8648, 10.1007/s11464-024-0111-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2603) PDF downloads(86) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog