Let {Sn} be the Apéry-like sequence given by Sn=∑nk=0(nk)(2kk)(2n−2kn−k). We show that for any odd prime p, ∑p−1n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=∑nk=0(nk)(−8)n−k∑kr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for ∑p−1k=0(2kk)3164k ( mod p3), ∑p−1k=0(2kk)3164k(k+1)2 ( mod p2) and ∑p−1k=0(2kk)3164k(2k−1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.
Citation: Zhi-Hong Sun. Supercongruences involving Apéry-like numbers and binomial coefficients[J]. AIMS Mathematics, 2022, 7(2): 2729-2781. doi: 10.3934/math.2022153
[1] | Kwang-Wu Chen, Fu-Yao Yang . Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Mathematics, 2024, 9(7): 16885-16900. doi: 10.3934/math.2024820 |
[2] | Chunli Li, Wenchang Chu . Remarkable series concerning (3nn) and harmonic numbers in numerators. AIMS Mathematics, 2024, 9(7): 17234-17258. doi: 10.3934/math.2024837 |
[3] | Jizhen Yang, Yunpeng Wang . Congruences involving generalized Catalan numbers and Bernoulli numbers. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240 |
[4] | Aleksa Srdanov . Invariants in partition classes. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401 |
[5] | Jing Huang, Qian Wang, Rui Zhang . On a binary Diophantine inequality involving prime numbers. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407 |
[6] | Takao Komatsu, Huilin Zhu . Hypergeometric Euler numbers. AIMS Mathematics, 2020, 5(2): 1284-1303. doi: 10.3934/math.2020088 |
[7] | Junyong Zhao . On the number of unit solutions of cubic congruence modulo n. AIMS Mathematics, 2021, 6(12): 13515-13524. doi: 10.3934/math.2021784 |
[8] | Hye Kyung Kim . Note on r-central Lah numbers and r-central Lah-Bell numbers. AIMS Mathematics, 2022, 7(2): 2929-2939. doi: 10.3934/math.2022161 |
[9] | Daud Mohamad, Nur Hazwani Aqilah Abdul Wahid, Nurfatin Nabilah Md Fauzi . Some properties of a new subclass of tilted star-like functions with respect to symmetric conjugate points. AIMS Mathematics, 2023, 8(1): 1889-1900. doi: 10.3934/math.2023097 |
[10] | Takao Komatsu, Ram Krishna Pandey . On hypergeometric Cauchy numbers of higher grade. AIMS Mathematics, 2021, 6(7): 6630-6646. doi: 10.3934/math.2021390 |
Let {Sn} be the Apéry-like sequence given by Sn=∑nk=0(nk)(2kk)(2n−2kn−k). We show that for any odd prime p, ∑p−1n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=∑nk=0(nk)(−8)n−k∑kr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for ∑p−1k=0(2kk)3164k ( mod p3), ∑p−1k=0(2kk)3164k(k+1)2 ( mod p2) and ∑p−1k=0(2kk)3164k(2k−1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.
Let Z be the set of integers. In 2009, Zagier [36] studied the Apéry-like numbers {un} satisfying
u0=1, u1=band(n+1)2un+1=(an(n+1)+b)un−cn2un−1 (n≥1), |
where a,b,c∈Z, c≠0 and un∈Z for n≥1. Let
A′n=n∑k=0(nk)2(n+kk),fn=n∑k=0(nk)3=n∑k=0(nk)2(2kn),Sn=[n/2]∑k=0(2kk)2(n2k)4n−2k=n∑k=0(nk)(2kk)(2n−2kn−k),an=n∑k=0(nk)2(2kk),Qn=n∑k=0(nk)(−8)n−kfk,Wn=[n/3]∑k=0(2kk)(3kk)(n3k)(−3)n−3k, | (1.1) |
where [x] is the greatest integer not exceeding x. According to [2,36], {A′n}, {fn}, {Sn}, {an}, {Qn} and {Wn} are Apéry-like sequences with (a,b,c)=(11,3,−1),(7,2,−8), (12,4,32),(10,3,9),(−17, −6,72),(−9,−3,27), respectively. The sequence {fn} is called Franel numbers. In [22,23,24,25], the author systematically investigated congruences for sums involving Sn, fn and Wn. For {A′n}, {fn}, {Sn}, {an}, {Qn} and {Wn} see A005258, A000172, A081085, A002893, A093388 and A291898 in Sloane's database "The On-Line Encyclopedia of Integer Sequences".
Let p be an odd prime. In [29], Z. W. Sun posed many congruences modulo p2 involving Apéry-like numbers. In [24,25], the author conjectured many congruences modulo p3 involving Apéry-like numbers. In Section 2, we show that for any odd prime p,
p−1∑n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3), | (1.2) |
and obtain a congruence for ∑p−1n=0(2nn)A′n4n ( mod p). In Section 3, we establish some transformation formulas for congruences involving Apéry-like numbers and obtain some congruences involving an and Qn. For example, for any prime p>3 we have
p−1∑n=0Qn(−8)n≡1 ( mod p2)andp−1∑n=0Qn(−9)n≡(p3) ( mod p2), | (1.3) |
where (ap) is the Legendre symbol. We also pose some conjectures on congruences involving Qn and an.
For positive integers a,b and n, if n=ax2+by2 for some integers x and y, we briefly write that n=ax2+by2. Let p>3 be a prime. In 1987, Beukers [4] conjectured a congruence equivalent to
p−1∑k=0(2kk)364k≡{0 ( mod p2)if p≡3 ( mod 4), 4x2−2p ( mod p2)if p≡1 ( mod 4) and so p=x2+4y2. | (1.4) |
This congruence was proved by several authors including Ishikawa [8] (p≡1 ( mod 4)), Van Hamme [7] (p≡3 ( mod 4)) and Ahlgren [1]. Actually, (1.4) follows immediately from the following identity due to Bell (see [5, (6.35)], [17]):
n∑k=0(2kk)2(n+k2k)1(−4)k={0if n is odd, 122n(nn/2)2if n is even. | (1.5) |
In 2003, Rodriguez-Villegas [14] posed 22 conjectures on supercongruences modulo p2. In particular, the following congruences are equivalent to conjectures due to Rodriguez-Villegas:
p−1∑k=0(2kk)2(3kk)108k≡{4x2−2p ( mod p2)if p=x2+3y2≡1 ( mod 3), 0 ( mod p2)if p≡2 ( mod 3), p−1∑k=0(2kk)2(4k2k)256k≡{4x2−2p ( mod p2)if p=x2+2y2≡1,3 ( mod 8), 0 ( mod p2)if p≡5,7 ( mod 8), (p3)p−1∑k=0(2kk)(3kk)(6k3k)123k≡{4x2−2p ( mod p2)if p=x2+4y2≡1 ( mod 4), 0 ( mod p2)if p≡3 ( mod 4). | (1.6) |
These conjectures have been solved by Mortenson [13] and Zhi-Wei Sun [28]. Since (2kk)k+1=(2kk)−(2kk+1), from (1.4), (1.6) and [28], one may deduce that
p−1∑k=0(2kk)364k(k+1)≡{4x2−2p ( mod p2) if p=x2+4y2≡1 ( mod 4), −(2p+2−2p−1)((p−1)/2(p+1)/4)2 ( mod p2)if p≡3 ( mod 4), p−1∑k=0(2kk)3(−8)k(k+1)≡6x2−4p ( mod p2)forp=x2+4y2≡1 ( mod 4),p−1∑k=0(2kk)2(3kk)108k(k+1)≡4x2−2p ( mod p2)forp=x2+3y2≡1 ( mod 3),p−1∑k=0(2kk)2(4k2k)256k(k+1)≡4x2−2p ( mod p2)forp=x2+2y2≡1,3 ( mod 8),(p3)p−1∑k=0(2kk)(3kk)(6k3k)123k(k+1)≡4x2−2p ( mod p2)forp=x2+4y2≡1 ( mod 4). | (1.7) |
Let p be an odd prime, and let m be an integer such that p∤m. In [27,29], Z. W. Sun posed many conjectures for congruences modulo p2 involving the sums
p−1∑k=0(2kk)3mk,p−1∑k=0(2kk)2(3kk)mk,p−1∑k=0(2kk)2(4k2k)mk,p−1∑k=0(2kk)(3kk)(6k3k)mk. |
For 13 similar conjectures see [16]. Most of these congruences modulo p were proved by the author in [17,18,19]. In [25,26], the author conjectured many congruences modulo p3 involving the above sums. For instance, for any prime p≠2,7,
p−1∑k=0(2kk)3≡{4x2−2p−p24x2 ( mod p3)if p≡1,2,4 ( mod 7) and so p=x2+7y2, −114p2(3[p/7][p/7])−2≡−11p2([3p/7][p/7])−2 ( mod p3) if 7∣p−3, −9964p2(3[p/7][p/7])−2≡−1116p2([3p/7][p/7])−2 ( mod p3) if 7∣p−5, −25176p2(3[p/7][p/7])−2≡−114p2([3p/7][p/7])−2 ( mod p3)if 7∣p−6. |
Let p be an odd prime. In Section 4, we deduce congruences for
p−1∑k=0(2kk)364k ( mod p3),p−1∑k=0(2kk)364k(k+1)2 ( mod p2)andp−1∑k=0(2kk)364k(2k−1) ( mod p). |
In Section 5, based on calculations by Maple, we pose lots of challenging conjectures on congruences modulo p3 for the sums
p−1∑k=0(2kk)3mk(k+1),p−1∑k=0(2kk)3mk(2k−1),p−1∑k=0(2kk)3mk(2k−1)2,p−1∑k=0(2kk)3mk(2k−1)3,p−1∑k=0(2kk)2(3kk)mk(k+1),p−1∑k=0(2kk)2(3kk)mk(2k−1),p−1∑k=0(2kk)2(4k2k)mk(k+1),p−1∑k=0(2kk)2(4k2k)mk(2k−1),p−1∑k=0(2kk)(3kk)(6k3k)mk(k+1),p−1∑k=0(2kk)(3kk)(6k3k)mk(2k−1), |
and congruences modulo p2 for the sums
p−1∑k=0(2kk)2mk(k+1)2,p−1∑k=0(2kk)2mk(2k−1)2,p−1∑k=0(2kk)3mk(k+1)2,p−1∑k=0(2kk)2(3kk)mk(k+1)2,p−1∑k=0(2kk)2(4k2k)mk(k+1)2,p−1∑k=0(2kk)(3kk)(6k3k)mk(k+1)2, |
where m is an integer not divisible by p. As two typical conjectures, if p is an odd prime with p≡1,2,4 ( mod 7) and so p=x2+7y2, then
(p−1)/2∑k=01k+1(2kk)3≡−44y2+2p ( mod p3); |
if p≡1,3,4,5,9 ( mod 11) and so 4p=x2+11y2, then
(−2p)(p2+p−1∑k=0(2kk)(3kk)(6k3k)(−32)3k(k+1))≡−26y2+2p ( mod p3). |
In Section 6, we pose many conjectures on ∑p−1k=0(2kk)ukmk(2k−1) modulo p2, where un∈{A′n,fn,Sn,an, Qn,Wn}.
In addition to the above notation, throughout this paper we use the following notations. For a prime p, let Zp be the set of rational numbers whose denominator is not divisible by p. For a∈Zp, let qp(a)=(ap−1−1)/p and ⟨a⟩p be determined by ⟨a⟩p∈{0,1,…,p−1} and a≡⟨a⟩p ( mod p). Let H0=0, Hn=1+12+⋯+1n (n≥1) and let {En} be the Euler numbers given by
E2n−1=0,E0=1,E2n=−n∑k=1(2n2k)E2n−2k (n=1,2,3,…). |
Let {Sn} be the Apéry-like sequence given by (1.1). In this section, we prove the congruence (1.2). Z. W. Sun stated the identity
Sn=n∑k=0(2kk)2(kn−k)(−4)n−k(n=0,1,2,…), | (2.1) |
which can be easily proved by using WZ method, see [34]. Using this identity we see that for any positive integer p and a give sequence {cn},
p−1∑n=0cnSn8n=p−1∑n=0cn8nn∑k=0(2kk)2(kn−k)(−4)n−k=p−1∑k=0(2kk)2(−4)kp−1∑n=kcn(−2)n(kn−k)=p−1∑k=0(2kk)2(−4)kp−1−k∑r=0ck+r(−2)k+r(kr)=p−1∑k=0(2kk)28kp−1−k∑r=0(kr)ck+r(−2)r. |
Thus, for p∈{1,3,5,…},
p−1∑n=0cnSn8n=(p−1)/2∑k=0(2kk)28kk∑r=0(kr)ck+r(−2)r+p−1∑k=(p+1)/2(2kk)28kp−1−k∑r=0(kr)ck+r(−2)r. | (2.2) |
Theorem 2.1. Let p be an odd prime, then
p−1∑n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). |
Proof. Clearly,
k∑r=0(kr)k+r(−2)r=kk∑r=0(kr)(−12)r−k2k∑r=1(k−1r−1)(−12)r−1=k2k−k2⋅12k−1=0. |
Thus, taking cn=n in (2.2) and then applying the above gives
p−1∑n=1nSn8n=p−1∑k=(p+1)/2(2kk)28kp−1−k∑r=0(kr)k+r(−2)r=(p−1)/2∑s=1(2(p−s)p−s)28p−ss−1∑r=0(p−sr)p−s+r(−2)r. |
Observe that p∣(2kk) for p2<k<p. By [27, Lemma 2.1],
(2(p−s)p−s)p≡−2s(2ss) ( mod p)fors=1,2,…,p−12. |
Now, from the above we deduce that
p−1∑n=1nSn8n≡p2(p−1)/2∑s=14⋅8s−1s2(2ss)2s−1∑r=0(−sr)r−s(−2)r ( mod p3). | (2.3) |
By [5, (1.79)], ∑nk=0(n+kk)/2k=2n. Since (−xr)=(−1)r(x−1+rr), we see that for s≥1,
s−1∑r=0(−sr)1(−2)r=s−1∑r=0(s−1+rr)12r=2s−1 |
and
s−1∑r=0(−sr)r(−2)r=s−1∑r=1−sr(−s−1r−1)r(−2)r=ss−1∑r=1(s+r−1r−1)12r=s2s−2∑t=0(s+tt)12t=s2(s∑t=0(s+tt)12t−(2ss)12s−(2s−1s−1)12s−1)=s2(2s−(2ss)22s)=s(2s−1−(2ss)12s). |
It then follows that
s−1∑r=0(−sr)r−s(−2)r=s(2s−1−(2ss)12s)−s⋅2s−1=−s(2ss)12s. |
Substituting into (2.3) yields
p−1∑n=1nSn8n≡p2(p−1)/2∑s=14⋅8s−1s2(2ss)2⋅(−s)(2ss)12s=−p22(p−1)/2∑s=14ss(2ss) ( mod p3). |
By [12, (25)],
2n∑s=14s−1s(2ss)=4n(2nn)−1. |
Thus,
(p−1)/2∑s=14ss(2ss)=2(4p−12(p−1p−12)−1)≡2((−1)p−12−1) ( mod p) |
and so
p−1∑n=1nSn8n≡−p22(p−1)/2∑s=14ss(2ss)≡(1−(−1)p−12)p2 ( mod p3), |
which completes the proof.
Theorem 2.2. Let p be a prime with p≠2,11, then
p−1∑n=0(2nn)A′n4n≡{x2 ( mod p)if (p11)=1 and so 4p=x2+11y2, 0 ( mod p)if (p11)=−1. |
Proof. For nonnegative integers k,m and n with k≤n≤m, it is known that (mn)(nk)=(mk)(m−kn−k). Thus, applying Vandermonde's identity we see that
m∑n=0(mn)(−1)m−nn∑k=0(nk)2(n+kk)=m∑n=0n∑k=0(mk)(m−kn−k)(2kk)(n+k2k)(−1)m−n=m∑k=0(mk)(2kk)(−1)m−km∑n=k(m−kn−k)(n+k2k)(−1)n−k=m∑k=0(mk)(2kk)(−1)m−km−k∑r=0(m−kr)(2k+rr)(−1)r=m∑k=0(mk)(2kk)(−1)m−km−k∑r=0(m−km−k−r)(−2k−1r)=m∑k=0(mk)(2kk)(−1)m−k(m−3k−1m−k)=m∑k=0(mk)(2kk)(2km−k)=m∑k=0(mk)(2(m−k)m−k)(2m−2kk). |
Note that p∣(2kk) for p2<k<p and (p−12k)≡(−12k)=(2kk)(−4)k ( mod p) for k<p2. Taking m=p−12 in the above, we deduce that
p−1∑n=0(2nn)A′n4n≡(−1)p−12(p−1)/2∑n=0(p−12n)(−1)p−12−nA′n=(−1)p−12(p−1)/2∑k=0(p−12k)(2(p−12−k)p−12−k)(p−1−2kk)≡(−1)p−12(p−1)/2∑k=0(p−12k)(p−12p−12−k)(−4)p−12−k(−2k−1k)=(p−1)/2∑k=0(p−12k)24p−12−k(3kk)≡(p−1)/2∑k=0(2kk)2(3kk)64k≡p−1∑k=0(2kk)2(3kk)64k ( mod p). |
Now applying [18, Theorem 4.4], we deduce the result.
Remark 2.1. In [29], Z. W. Sun conjectured that for any odd prime p,
p−1∑k=0(2kk)A′k4k≡{x2−2p ( mod p2)if (p11)=1 and so 4p=x2+11y2, 0 ( mod p2)if (p11)=−1. |
In this section, we establish some transformation formulas for congruences involving Apéry-like numbers, obtain some congruences involving an and Qn, and pose ten conjectures on related congruences.
Lemma 3.1. Let n be a nonnegative integer, then
fn=n∑k=0(nk)(−1)n−kak=n∑k=0(nk)8n−kQk,Qn=n∑k=0(nk)(−9)n−kak,an=n∑k=0(nk)fk=n∑k=0(nk)9n−kQk. |
Proof. By [15, (38)], an=∑nk=0(nk)fk. Applying the binomial inversion formula gives fn=∑nk=0(nk)(−1)n−kak. Since Qn(−8)n=∑nk=0(nk)(−1)kfk8k, applying the binomial inversion formula gives fn8n=∑nk=0(nk)Qk8k. Also,
n∑k=0(nk)(−9)n−kak=n∑k=0(nk)(−1)n−kakn−k∑r=0(n−kr)8r=n∑r=0(nr)(−8)rn−r∑k=0(n−rk)(−1)n−r−kak=n∑r=0(nr)(−8)rfn−r=Qn. |
Applying the binomial inversion formula yields an=∑nk=0(nk)9n−kQk, which completes the proof.
Theorem 3.1. Let p>3 be a prime, then
p−1∑n=0Qn(−8)n≡1 ( mod p2)andp−1∑n=0Qn(−9)n≡(p3) ( mod p2). |
Proof. It is well known that ∑p−1n=k(nk)=(pk+1) and (p−1k)≡(−1)k ( mod p) for 0≤k≤p−1. Since Qn=∑nk=0(nk)(−8)n−kfk, we see that
p−1∑n=0Qn(−8)n=p−1∑n=0n∑k=0(nk)fk(−8)k=p−1∑k=0fk(−8)kp−1∑n=k(nk)=p−1∑k=0fk(−8)k(pk+1)=fp−1(−8)p−1+p−2∑k=0fk(−8)k⋅pk+1(p−1k)≡fp−18p−1+pp−2∑k=0fk(k+1)8k=fp−18p−1+pp−1∑k=1fp−1−k(p−k)8p−1−k≡fp−18p−1−pp−1∑k=18kfp−1−kk ( mod p2). |
By [11], fk≡(−8)kfp−1−k ( mod p). Thus,
p−1∑n=0Qn(−8)n≡fp−18p−1−pp−1∑k=1(−1)kfkk ( mod p2). |
By [30, Theorem 1.1 and Lemma 2.5],
fp−1≡1+3pqp(2) ( mod p2)andp−1∑k=1(−1)kfkk≡0 ( mod p2). |
Thus,
p−1∑n=0Qn(−8)n≡fp−18p−1≡1+3pqp(2)(1+pqp(2))3≡1 ( mod p2). |
Using Lemma 3.1,
p−1∑n=0Qn(−9)n=p−1∑n=0n∑k=0(nk)ak(−9)k=p−1∑k=0ak(−9)kp−1∑n=k(nk)=p−1∑k=0ak(−9)k(pk+1)=p−1∑k=0ak(−9)k⋅pk+1(p−1k)≡ap−1(−9)p−1+p−2∑k=0ak9k⋅pk+1=ap−19p−1+p−1∑r=1ap−1−r9p−1−r⋅pp−r≡ap−19p−1−pp−1∑r=19rap−1−rr ( mod p2). |
By [11] or [25, Theorem 3.1], ar≡(p3)9rap−1−r ( mod p). By [32, Lemma 3.2], ap−1≡(p3)(1+2pqp(3))≡(p3)9p−1 ( mod p2). Taking x=1 in [32, (3.6)] gives ∑p−1r=1arr≡0 ( mod p). Now, from the above we deduce that
p−1∑n=0Qn(−9)n≡ap−19p−1−pp−1∑r=19rap−1−rr≡(p3)−p(p3)p−1∑r=1arr≡(p3) ( mod p2). |
This completes the proof.
Lemma 3.2. Let p be an odd prime and m∈Zp with m≢0,1 ( mod p). Suppose that u0,u1,…,up−1∈Zp and vn=∑nk=0(nk)uk (n≥0). Then
p−1∑k=0vkmk≡p−1∑k=0uk(m−1)k ( mod p). |
Proof. It is clear that
p−1∑k=0vkmk=p−1∑k=01mkk∑s=0(ks)us=p−1∑s=0p−1∑k=s1mk(−1−sk−s)(−1)k−sus=p−1∑s=0usmsp−1∑k=s(−1−sk−s)1(−m)k−s=p−1∑s=0usmsp−1−s∑r=0(−1−sr)(−1m)r≡p−1∑s=0usmsp−1−s∑r=0(p−1−sr)(−1m)r=p−1∑s=0usms(1−1m)p−1−s≡p−1∑s=0us(m−1)s ( mod p). |
This proves the lemma.
Theorem 3.2. Suppose that p is an odd prime, m∈Zp and m≢0,1 ( mod p), then
p−1∑k=0akmk≡{∑p−1k=0(2kk)(3kk)((m−3)3/(m−1))k ( mod p)if m≢3 ( mod p), ∑p−1k=0(2kk)(3kk)((m+3)3/(m−1)2)k ( mod p)if m≢−3 ( mod p) |
and
p−1∑k=0Qk(−8m)k≡{∑p−1k=0(2kk)(3kk)((4m−3)3/(m−1))k ( mod p)if m≢34 ( mod p), ∑p−1k=0(2kk)(3kk)(−(2m−3)3/(m−1)2)k ( mod p)if m≢32 ( mod p). |
Proof. By Lemma 3.1, an=∑nk=0(nk)fk. From Lemma 3.2, ∑p−1k=0akmk≡∑p−1k=0fk(m−1)k ( mod p). Now applying [23, Theorem 2.12 and Lemma 2.4 (with z=1m−1)] yields the first result. Since Qn(−8)n=∑nk=0(nk)fk(−8)k, applying Lemma 3.2 gives ∑p−1k=0Qk(−8m)k≡∑p−1k=0fk(−8(m−1))k ( mod p). From [23, Theorem 2.12 and Lemma 2.4 (with z=1−8(m−1))] we deduce the remaining part.
Theorem 3.3. Suppose that p is a prime with p>3, then
p−1∑n=0Qn(−6)n≡p−1∑n=0Qn(−12)n≡{2x ( mod p)if 3∣p−1, p=x2+3y2 and 3∣x−1, 0 ( mod p)if p≡2 ( mod 3). |
Proof. Putting m=34,32 in Theorem 3.2 yields
p−1∑n=0Qn(−6)n≡p−1∑n=0Qn(−12)n≡p−1∑k=0(2kk)(3kk)54k ( mod p). |
Now applying [20, Theorem 3.4] yields the result.
Lemma 3.3. [31, Theorem 2.2] Let p be an odd prime, u0,u1,…,up−1∈Zp and vn=∑nk=0(nk)(−1)kuk for n≥0. For m∈Zp with m≢0,4 ( mod p),
p−1∑k=0(2kk)vkmk≡(m(m−4)p)p−1∑k=0(2kk)uk(4−m)k ( mod p). |
Theorem 3.4. Let p be an odd prime, m∈Zp and m≢±2 ( mod p), then
p−1∑k=0(2kk)ak(m+2)k≡((m+2)(m−2)p)p−1∑k=0(2kk)fk(m−2)k ( mod p), | (3.1) |
p−1∑k=0(2kk)Qk(−8(m+2))k≡((m+2)(m−2)p)p−1∑k=0(2kk)fk(−8(m−2))k ( mod p), | (3.2) |
p−1∑k=0(2kk)Qk(−9(m+2))k≡((m+2)(m−2)p)p−1∑k=0(2kk)ak(−9(m−2))k ( mod p), | (3.3) |
and for 9m−14≢0 ( mod p),
p−1∑k=0(2kk)Qk(−9(m+2))k≡((m+2)(9m−14)p)p−1∑k=0(2kk)fk(−9m+14)k ( mod p). | (3.4) |
Proof. We first note that p∣(2kk) for p+12≤k≤p−1. By Lemma 3.1, taking uk=(−1)kfk and vk=ak in Lemma 3.3 gives (3.1). Since Qn(−8)n=∑nk=0(nk)fk(−8)k, taking uk=fk8k and vk=Qk(−8)k in Lemma 3.3 gives (3.2). By Lemma 3.1, taking uk=ak9k and vk=Qk(−9)k in Lemma 3.3 yields (3.3). Combining (3.3) with (3.1) yields (3.4).
Theorem 3.5. Suppose that p is a prime with p>5, then
(−1)p−12p−1∑n=0(2nn)an54n≡p−1∑n=0(2nn)Qn18n≡p−1∑n=0(2nn)Qn(−36)n≡{4x2 ( mod p)if p≡1 ( mod 3) and so p=x2+3y2, 0 ( mod p)if p≡2 ( mod 3). |
Proof. Taking m=52 in (3.1) and then applying [23, Theorem 2.2], we obtain
p−1∑n=0(2nn)an54n≡(3p)p−1∑k=0(2kk)fk50k≡{(−1)p−124x2 ( mod p)if 3∣p−1 and so p=x2+3y2, 0 ( mod p)if p≡2 ( mod 3). |
Taking m=−4 in (3.3) gives ∑p−1n=0(2nn)Qn18n≡(3p)∑p−1n=0(2nn)an54n ( mod p). Taking m=2 in (3.4) and applying the congruence for ∑p−1k=0(2kk)fk(−4)k ( mod p) (see [23, p.124]) yields
p−1∑n=0(2nn)Qn(−36)n≡p−1∑k=0(2kk)fk(−4)k≡{4x2 ( mod p)if 3∣p−1 and so p=x2+3y2, 0 ( mod p)if p≡2 ( mod 3). |
Now combining the above proves the theorem.
Theorem 3.6. Suppose that p is a prime such that p≡1,19 ( mod 30) and so p=x2+15y2, then
p−1∑n=0(2nn)an9n≡p−1∑n=0(2nn)an(−45)n≡p−1∑n=0(2nn)Qn(−27)n≡p−1∑n=0(2nn)Qn(−81)n≡4x2 ( mod p). |
Proof. Taking m=7 in (3.1) and then applying [23, Theorem 2.5] gives
p−1∑n=0(2nn)an9n≡(5p)p−1∑k=0(2kk)fk5k≡4x2 ( mod p). |
Putting m=−47 in (3.1) and then applying [23, Theorem 2.4] gives
p−1∑n=0(2nn)an(−45)n≡(5p)p−1∑k=0(2kk)fk(−49)k≡4x2 ( mod p). |
Taking m=1,7 in (3.3) gives
p−1∑n=0(2nn)Qn(−27)n≡p−1∑k=0(2kk)ak9k ( mod p),p−1∑n=0(2nn)Qn(−81)n≡p−1∑k=0(2kk)ak(−45)k ( mod p). |
Now combining the above proves the theorem.
Theorem 3.7. Suppose that p is a prime with p>3, then
p−1∑n=0(2nn)Qn(−32)n≡p−1∑n=0(2nn)Qn64n≡{4x2 ( mod p)if p=x2+2y2≡1,3 ( mod 8), 0 ( mod p)if p≡5,7 ( mod 8), p−1∑n=0(2nn)an20n≡p−1∑n=0(2nn)Qn(−16)n≡4x2 ( mod p)forp=x2+5y2≡1,9 ( mod 20),p−1∑n=0(2nn)Qn(−48)n≡{4x2 ( mod p)if p=x2+9y2≡1 ( mod 12), 0 ( mod p)if p≡11 ( mod 12). |
Proof. Taking m=149,−829 in (3.3) yields
p−1∑n=0(2nn)Qn(−32)n≡(−2p)p−1∑n=0(2nn)an4n ( mod p),p−1∑n=0(2nn)Qn64n≡p−1∑n=0(2nn)an100n ( mod p). |
Now applying [23, Theorem 2.14] and [21, Theorem 5.6] yields the first congruence. Taking m=0 in (3.2), m=18 in (3.1) and then applying [23, Theorem 2.10] yields the second congruence. Taking m=103 in (3.3) and then applying [21, Theorem 4.3] gives the third congruence.
Based on calculations by Maple, we pose the following conjectures.
Conjecture 3.1. Let p>3 be a prime, then
p−1∑n=0(n+3)Qn(−8)n≡{3p2 ( mod p3)if p≡1 ( mod 3), −15p2 ( mod p3)if p≡2 ( mod 3), p−1∑n=0(n−2)Qn(−9)n≡{−2p2 ( mod p3)if p≡1 ( mod 3), 14p2 ( mod p3)if p≡2 ( mod 3). |
Conjecture 3.2. Let p be a prime with p>3.
(ⅰ) If p≡1 ( mod 3) and so p=x2+3y2 with 3∣x−1, then
p−1∑n=0Qn(−6)n≡p−1∑n=0Qn(−12)n≡2x−p2x ( mod p2). |
(ⅱ) If p≡2 ( mod 3), then
p−1∑n=0Qn(−6)n≡−2p−1∑n=0Qn(−12)n≡−p((p−1)/2(p−5)/6) ( mod p2). |
Conjecture 3.3. Let p be a prime with p>3.
(ⅰ) If p≡1 ( mod 3) and so p=x2+3y2, then
p−1∑n=0(2nn)Qn18n≡p−1∑n=0(2nn)Qn(−36)n≡4x2−2p−p24x2 ( mod p3). |
(ⅱ) If p≡2 ( mod 3), then
p−1∑n=0(2nn)Qn18n≡−2p−1∑n=0(2nn)Qn(−36)n≡p2((p−1)/2(p−5)/6)2 ( mod p3). |
Conjecture 3.4. Let p>5 be a prime, then
p−1∑n=0(2nn)Qn(−27)n≡p−1∑n=0(2nn)Qn(−81)n≡(p3)p−1∑n=0(2nn)an(−45)n≡(p3)p−1∑n=0(2nn)an9n ( mod p2). |
(ⅰ) If p≡1,17,19,23 ( mod 30), then
(p3)p−1∑n=0(2nn)an9n≡{4x2−2p−p24x2 ( mod p3)ifp≡1,19 ( mod 30)andsop=x2+15y2,2p−12x2+p212x2 ( mod p3)ifp≡17,23 ( mod 30)andsop=3x2+5y2. |
(ⅱ) If p≡7,11,13,29 ( mod 30), then
(p3)p−1∑n=0(2nn)an9n≡{3116p2⋅5[p/3]([p/3][p/15])−2 ( mod p3)ifp≡7 ( mod 30),314p2⋅5[p/3]([p/3][p/15])−2 ( mod p3)ifp≡11 ( mod 30),31256p2⋅5[p/3]([p/3][p/15])−2 ( mod p3)ifp≡13 ( mod 30),3164p2⋅5[p/3]([p/3][p/15])−2 ( mod p3)ifp≡29 ( mod 30). |
Conjecture 3.5. Let p>3 be a prime, then
(−1)p−12p−1∑n=0(2nn)an54n≡{4x2−2p ( mod p2)ifp=x2+3y2≡1 ( mod 3),0 ( mod p2)ifp≡2 ( mod 3). |
Conjecture 3.6. Let p be an odd prime, then
p−1∑n=0(2nn)Qn(−32)n≡p−1∑n=0(2nn)Qn64n≡{4x2−2p ( mod p2)ifp=x2+2y2≡1,3 ( mod 8),0 ( mod p2)ifp≡5,7 ( mod 8). |
Conjecture 3.7 Let p be a prime with p≠2,5, then
(−1)p−12p−1∑n=0(2nn)an20n≡(−1)p−12p−1∑n=0(2nn)Qn(−16)n≡{4x2−2p ( mod p2)ifp≡1,9 ( mod 20)andsop=x2+5y2,2x2−2p ( mod p2)ifp≡3,7 ( mod 20)andso2p=x2+5y2,0 ( mod p2)ifp≡11,13,17,19 ( mod 20). |
Conjecture 3.8. Let p>3 be a prime, then
p−1∑n=0(2nn)Qn(−48)n≡{4x2−2p ( mod p2)if12∣p−1andsop=x2+9y2,2p−2x2 ( mod p2)if12∣p−5andso2p=x2+9y2,0 ( mod p2)ifp≡3 ( mod 4). |
Conjecture 3.9. Let p be a prime with p>3. If m∈{−7,−25,−169,−1519,−70225,20,56,650, 2450} and p∤m(m−2), then
p−1∑n=0(2nn)Qn(16(m−2))n≡(m(m−2)p)p−1∑n=0(2nn)fn(16m)n ( mod p2). |
Conjecture 3.10. Let p be a prime with p>3. If m∈{−112,−400,−2704,−24304,−1123600} and p∤m(m+4), then
p−1∑n=0(2nn)an(m+4)n≡(m(m+4)p)p−1∑n=0(2nn)fnmn ( mod p2). |
For an odd prime p and x∈Zp, the p-adic Gamma function Γp(x) is defined by
Γp(0)=1,Γp(n)=(−1)n∏k∈{1,2,…,n−1},p∤kkforn=1,2,3,… and Γp(x)=limn∈{0,1,…},|x−n|p→0Γp(n). |
Theorem 4.1. [25, Conjecture 4.10] Let p be an odd prime, then
p−1∑k=0(2kk)364k≡{4x2−2p−p24x2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−p24((p−3)/2(p−3)/4)−2 ( mod p3)ifp≡3 ( mod 4) |
and
(−1)p−14p−1∑k=0(2kk)3(−512)k≡4x2−2p−p24x2 ( mod p3)forp=x2+4y2≡1 ( mod 4). |
Proof. From [10, Theorems 3 and 29],
p−1∑k=0(2kk)364k≡{−Γp(14)4 ( mod p3)if p≡1 ( mod 4), −p216Γp(14)4 ( mod p3)if p≡3 ( mod 4) |
and
(−1)p−14p−1∑k=0(2kk)3(−512)k≡−Γp(14)4 ( mod p3)for p≡1 ( mod 4). |
By [35, (9)],
Γp(14)4≡{−12p−1(p−12p−14)2(1−p22Ep−3) ( mod p3)if 4∣p−1, 2p−3(16+32p+(48−8Ep−3)p2)(p−32p−34)−2 ( mod p3)if 4∣p−3. | (4.1) |
By [24, Theorem 2.8], for p=x2+4y2≡1 ( mod 4),
12p−1(p−12p−14)2(1−p22Ep−3)≡4x2−2p−p24x2 ( mod p3). | (4.2) |
Combining (4.1) with (4.2) gives
−Γp(14)4≡4x2−2p−p24x2 ( mod p3)for p=x2+4y2≡1 ( mod 4). | (4.3) |
Now combining all the above proves the theorem.
Theorem 4.2. Suppose that p is an odd prime, then
p−1∑k=0(2kk)364k(k+1)2≡{8x2−5p ( mod p2)ifp=x2+4y2≡1 ( mod 4),−6R1(p)−p ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)364k(k+1)3≡{1+6(2p−1−p)+6p2x2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),1+6(2p−1−p)−24R1(p) ( mod p2)ifp≡3 ( mod 4), |
where R1(p)=(2p+2−2p−1)((p−1)/2(p−3)/4)2.
Proof. By [35], for any positive integer n,
n∑k=0(2kk)2(n+k2k)(−4)k(k+1)2={2(2[n2][n2])2⋅16−[n2]if 2∣n, 2n2+2n−1(n+1)2(2[n2][n2])2⋅16−[n2]if 2∤n. | (4.4) |
From [16],
(p−12+k2k)≡(2kk)(−16)k ( mod p2)fork=0,1,…,p−12. | (4.5) |
Now, taking n=p−12 in (4.4) and then applying (4.5) gives
(p−1)/2∑k=0(2kk)364k(k+1)2≡(p−1)/2∑k=0(2kk)2(p−12+k2k)(−4)k(k+1)2≡{2((p−1)/2(p−1)/4)216−p−14 ( mod p2)if 4∣p−1, p2−12−1(p+12)2((p−3)/2(p−3)/4)216−p−34=2p2−62p−1(p−1)2((p−1)/2(p−3)/4)2 ( mod p2)if 4∣p−3. |
For p=x2+4y2≡1 ( mod 4), from [17, Lemma 3.4],
4x2−2p≡12p−1(p−12p−14)2 ( mod p2). | (4.6) |
Thus,
(p−1)/2∑k=0(2kk)364k(k+1)2≡22p−1(p−12p−14)2≡8x2−4p ( mod p2). |
For p≡3 ( mod 4), we see that
2p2−62p−1(p−1)2≡−6(1+2p−1−1)(1−2p)≡−61+(2p−1−1−2p)≡−6(2p+2−2p−1) ( mod p2) |
and so
(p−1)/2∑k=0(2kk)364k(k+1)2≡−6(2p+2−2p−1)(p−12p−34)2 ( mod p2). |
Note that p∣(2kk) for p2<k<p and
1p2(2(p−1)p−1)3=p((2p−2)(2p−3)⋯(p+1)(p−1)!)3≡−p ( mod p2). |
Then we get
p−1∑k=0(2kk)364k(k+1)2≡(2p−2p−1)364p−1⋅p2+(p−1)/2∑k=0(2kk)364k(k+1)2≡−p+(p−1)/2∑k=0(2kk)364k(k+1)2 ( mod p2). |
Now, combining all the above proves the congruence for ∑p−1k=0(2kk)364k(k+1)2 ( mod p2). By [35],
p−12∑k=0(2kk)364k(k+1)3≡{8−24p2Γp(14)4 ( mod p3)if p≡1 ( mod 4), 8−384Γp(14)4 ( mod p3)if p≡3 ( mod 4). |
This together with (4.1) and (4.3) yields
p−12∑k=0(2kk)364k(k+1)3≡{8+6p2x2 ( mod p3)if p=x2+4y2≡1 ( mod 4), 8−962p−1(1+2p)(p−32p−34)2 ( mod p2)if p≡3 ( mod 4). |
For p≡3 ( mod 4) we see that ((p−1)/2(p−3)/4)=2(p−1)p+1((p−3)/2(p−3)/4) and so
(p−32p−34)2≡(p+12(p−1))2(p−12p−34)2≡(p+1)44(p−12p−34)2≡4p+14(p−12p−34)2 ( mod p2). |
Thus,
(p−1)/2∑k=0(2kk)364k(k+1)3≡8−96(1+(2p−1−1))(1+2p)(p−32p−34)2≡8−961+2p−1−1+2p⋅4p+14(p−12p−34)2≡8−24(1−(2p−1−1+2p))(4p+1)((p−1)/2(p−3)/4)2≡8−24R1(p) ( mod p2). |
It is well known that (2p−1p−1)≡1 ( mod p2). Hence,
(2(p−1)p−1)364p−1p3=(2p−1p−1)3(1+2p−1−1)6(2p−1)3≡−1(1+6(2p−1−1))(1−6p)≡−(1−6(2p−1−1))(1+6p)≡−(1−6(2p−1−1)+6p)=3⋅2p−6p−7 ( mod p2). |
Since p∣(2kk) for p2<k<p,
p−1∑k=0(2kk)364k(k+1)3≡p−12∑k=0(2kk)364k(k+1)3+(2(p−1)p−1)364p−1p3≡p−12∑k=0(2kk)364k(k+1)3+3⋅2p−6p−7 ( mod p2). |
Now combining all the above proves the theorem.
Theorem 4.3. Let p be an odd prime, then
p−1∑k=0(2kk)364k(2k−1)≡(p2−12p)(p−12[p4])2−pp−1∑k=0(2kk)364k(2k−1)2 ( mod p2) |
and so
p−1∑k=0(2kk)364k(2k−1)≡−12(p−12[p4])2 ( mod p). |
Proof. Using (4.5),
(p−12+1+k2k)=p−12+1+kp−12+1−k(p−12+k2k)=(2(p+1)p−(2k−1)−1)(p−12+k2k)≡(2(p+1)(p+2k−1)−(2k−1)2−1)(2kk)(−16)k≡(−22k−1+(2k−1)p+p(2k−1)2−1)(2kk)(−16)k=−(1+22k−1+2p2k−1+2p(2k−1)2)(2kk)(−16)k ( mod p2). |
Thus,
p−12∑k=0(2kk)2(p−12+1+k2k)1(−4)k≡−p−12∑k=0(2kk)364k(1+22k−1+2p2k−1+2p(2k−1)2) ( mod p2) |
and so
−2(p−1)/2∑k=0(2kk)364k(12k−1+p2k−1+p(2k−1)2)≡(p−1)/2∑k=0(2kk)364k+(p−1)/2∑k=0(2kk)2(p−12+1+k2k)1(−4)k ( mod p2). |
By (1.5),
(p−1)/2∑k=0(2kk)2(p−12+1+k2k)1(−4)k=(p+1)/2∑k=0(2kk)2(p+12+k2k)1(−4)k−(p+1p+12)21(−4)p+12≡{0 ( mod p2)if p≡1 ( mod 4), 12p+1((p+1)/2(p+1)/4)2=12p−1((p−1)/2(p−3)/4)2 ( mod p2)if p≡3 ( mod 4). |
From the above, (1.4) and (4.6),
(p−1)/2∑k=0(2kk)364k(12k−1+p2k−1+p(2k−1)2)≡{−12(4x2−2p)≡−12⋅12p−1((p−1)/2(p−1)/4)2 ( mod p2)if p=x2+4y2≡1 ( mod 4), −12⋅12p−1((p−1)/2(p−3)/4)2 ( mod p2)if p≡3 ( mod 4). |
Hence,
(p−1)/2∑k=0(2kk)364k(2k−1)≡−12(p−12[p4])2 ( mod p) |
and so
(p−1)/2∑k=0(2kk)364k(2k−1)−p2(p−12[p4])2+p(p−1)/2∑k=0(2kk)364k(2k−1)2≡−12p(p−12[p4])2 ( mod p2). |
To see the result, we recall that p∣(2kk) for p2<k<p.
For k=1,2,3,…, it is clear that
12k−1(2kk)=2((2k−2k−1)−(2k−2k))=2k(2k−2k−1)=2Ck−1∈Z, |
where Ck=1k+1(2kk) is the k-th Catalan number. For an odd prime p, let
R1(p)=(2p+2−2p−1)((p−1)/2[p/4])2, | (5.1) |
R2(p)=(5−4(−1)p−12)(1+(4+2(−1)p−12)p−4(2p−1−1)−p2[p/8]∑k=11k)(p−12[p8])2, | (5.2) |
R3(p)=(1+2p+43(2p−1−1)−32(3p−1−1))((p−1)/2[p/6])2. | (5.3) |
Calculations with Maple suggest the following challenging conjectures.
Conjecture 5.1. Let p>3 be a prime, then
p−1∑k=0(2kk)2(3kk)(−192)k(k+1)≡{32x2−4p−p2 ( mod p3)if3∣p−1andso4p=x2+27y2,2(2p+1)([2p/3][p/3])2+p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(3kk)(−192)k(k+1)2≡{14x2−3p ( mod p2)if3∣p−1andso4p=x2+27y2,13(2p+1)([2p/3][p/3])2+p2 ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(3kk)(−192)k(2k−1)≡{−34x2+9p8+3p28x2 ( mod p3)if3∣p−1andso4p=x2+27y2,−12(2p+1)([2p/3][p/3])2+38p ( mod p2)ifp≡2 ( mod 3). |
Conjecture 5.2. Let p>5 be a prime, then
(10p)p−1∑k=0(2kk)(3kk)(6k3k)(−12288000)k(k+1)≡{−260825y2+2p−(10p)p2 ( mod p3)if3∣p−1andso4p=x2+27y2,1280(2p+1)([2p/3][p/3])2+19225p ( mod p2)ifp≡2 ( mod 3),(10p)p−1∑k=0(2kk)(3kk)(6k3k)(−12288000)k(k+1)2≡{−11260425x2+(29365625−(10p))p ( mod p2)if3∣p−1andso4p=x2+27y2,11776(2p+1)([2p/3][p/3])2−(6844825+(10p))p ( mod p2)ifp≡2 ( mod 3),(10p)p−1∑k=0(2kk)(3kk)(6k3k)(−12288000)k(2k−1)≡{−177200x2+5319932000p+5615764000x2p2 ( mod p3)if3∣p−1andso4p=x2+27y2,−120(2p+1)([2p/3][p/3])2+344132000p ( mod p2)ifp≡2 ( mod 3). |
Remark 5.1. Let p be a prime with p>5. In [25], the author conjectured that if p≡1 ( mod 3) and so 4p=x2+27y2, then
p−1∑k=0(2kk)2(3kk)(−192)k≡(10p)p−1∑k=0(2kk)(3kk)(6k3k)(−12288000)k≡x2−2p−p2x2 ( mod p3); |
if p≡2 ( mod 3), then
p−1∑k=0(2kk)2(3kk)(−192)k≡800161(10p)p−1∑k=0(2kk)(3kk)(6k3k)(−12288000)k≡34p2([2p/3][p/3])−2 ( mod p3). |
The congruence for ∑p−1k=0(2kk)2(3kk)(−192)k ( mod p2) was conjectured by Z. W. Sun [27] earlier.
Let p>3 be a prime. In [27,29], Z. W. Sun conjectured congruences for ∑p−1k=0(2kk)3/mk ( mod p2) with m=1,−8,16,−64,256,−512,4096. Such conjectures were proved by the author in [17]. In [25], the author conjectured congruences for ∑p−1k=0(2kk)3/mk ( mod p3) in the cases m=1,−8,16,−64,256,−512,4096.
Conjecture 5.3. Let p be an odd prime, then
(p−1)/2∑k=0(2kk)3(−8)k(k+1)≡{−24y2+2p ( mod p3)ifp=x2+4y2≡1 ( mod 4),12R1(p)+p ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)3(−8)k(k+1)2≡{−32y2 ( mod p2)ifp=x2+4y2≡1 ( mod 4),3R1(p)+2p ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)3(−8)k(2k−1)≡{−4x2−54x2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),2p−2R1(p) ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)3(−8)k(2k−1)2≡{−4x2+2p+194x2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),6R1(p) ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)3(−8)k(2k−1)3≡{48y2+3316y2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−6p−12R1(p) ( mod p2)ifp≡3 ( mod 4). |
Conjecture 5.4. Let p be an odd prime, then
(p−1)/2∑k=0(2kk)364k(k+1)≡−16y2+2p ( mod p3)forp=x2+4y2≡1 ( mod 4),p−1∑k=0(2kk)364k(2k−1)≡{−2x2+p+p24x2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−12R1(p) ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)364k(2k−1)2≡{2x2−p−p22x2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),32R1(p) ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)364k(2k−1)3≡{34x2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−3R1(p) ( mod p2)ifp≡3 ( mod 4). |
Conjecture 5.5. Let p be an odd prime, then
(−1)[p4](p−1)/2∑k=0(2kk)3(−512)k(k+1)≡{−32y2+2p ( mod p3)ifp=x2+4y2≡1 ( mod 4),−4R1(p)−2p ( mod p2)ifp≡3 ( mod 4),(−1)[p4]p−1∑k=0(2kk)3(−512)k(k+1)2≡{−16x2+(8−(−1)[p4])p ( mod p2)ifp=x2+4y2≡1 ( mod 4),−24R1(p)−(−1)[p4]p ( mod p2)ifp≡3 ( mod 4),(−1)[p4]p−1∑k=0(2kk)3(−512)k(2k−1)≡{−3x2+54p+532x2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−p4+14R1(p) ( mod p2)ifp≡3 ( mod 4),(−1)[p4]p−1∑k=0(2kk)3(−512)k(2k−1)2≡{2x2−58p−p232x2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−34R1(p)+38p ( mod p2)ifp≡3 ( mod 4),(−1)[p4]p−1∑k=0(2kk)3(−512)k(2k−1)3≡{−32x2+38p−332x2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),32R1(p)−38p ( mod p2)ifp≡3 ( mod 4). |
Conjecture 5.6. Let p>3 be a prime, then
p−1∑k=0(2kk)2(4k2k)648k(k+1)≡{−403y2+2p−p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−32R1(p)−p3 ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)2(4k2k)648k(k+1)2≡{1129x2−649p ( mod p2)ifp=x2+4y2≡1 ( mod 4),−11R1(p)−109p ( mod p2)ifp≡3 ( mod 4),p−1∑k=0(2kk)2(4k2k)648k(2k−1)≡{−7627x2+10481p+67324x2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−29R1(p)+1081p ( mod p2)ifp≡3 ( mod 4). |
Conjecture 5.7. Let p>3 be a prime, then
(p3)p−1∑k=0(2kk)(3kk)(6k3k)123k(k+1)≡{−16y2+2p−(p3)p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),35R1(p) ( mod p2)ifp≡3 ( mod 4),(p3)p−1∑k=0(2kk)(3kk)(6k3k)123k(k+1)2≡{8x2−(4+(p3))p ( mod p2)ifp=x2+4y2≡1 ( mod 4),13825R1(p)−(p3)p ( mod p2)ifp≡3 ( mod 4),(p3)p−1∑k=0(2kk)(3kk)(6k3k)123k(2k−1)≡{−269x2+139p+p24x2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),16R1(p) ( mod p2)ifp≡3 ( mod 4). |
Conjecture 5.8. Let p be a prime with p≠2,3,11, then
(33p)p−1∑k=0(2kk)(3kk)(6k3k)663k(k+1)≡{104y2+2p−(33p)p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−36310R1(p)−15p ( mod p2)ifp≡3 ( mod 4),(33p)p−1∑k=0(2kk)(3kk)(6k3k)663k(k+1)2≡{488x2−(295+(33p))p ( mod p2)ifp=x2+4y2≡1 ( mod 4),−834925R1(p)+(51−(33p))p ( mod p2)ifp≡3 ( mod 4),(33p)p−1∑k=0(2kk)(3kk)(6k3k)663k(2k−1)≡{−37161089x2+1884811979p+11215324x2p2 ( mod p3)ifp=x2+4y2≡1 ( mod 4),−233R1(p)+5303993p ( mod p2)ifp≡3 ( mod 4)$. |
Conjecture 5.9. Let p>3 be a prime, then
(p−1)/2∑k=0(2kk)316k(k+1)≡{−16y2+2p ( mod p3)ifp=x2+3y2≡1 ( mod 3),−43R3(p)−23p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)316k(k+1)2≡{−24y2+p ( mod p2)ifp=x2+3y2≡1 ( mod 3),−8R3(p)−3p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)316k(2k−1)≡{4y2−p24y2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−83R3(p)+23p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)316k(2k−1)2≡{−12y2+2p+3p24y2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),8R3(p) ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)316k(2k−1)3≡{−12y2−54y2p2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−16R3(p)−2p ( mod p2)ifp≡2 ( mod 3). |
Conjecture 5.10. Let p>3 be a prime, then
(−1)p−12(p−1)/2∑k=0(2kk)3256k(k+1)≡{−8y2+2p ( mod p3)ifp=x2+3y2≡1 ( mod 3),163R3(p)+23p ( mod p2)ifp≡2 ( mod 3),(−1)p−12p−1∑k=0(2kk)3256k(k+1)2≡{16x2−(8+(−1)p−12)p ( mod p2)ifp=x2+3y2≡1 ( mod 3),32R3(p)−(−1)p−12p ( mod p2)ifp≡2 ( mod 3),(−1)p−12p−1∑k=0(2kk)3256k(2k−1)≡{8y2−32p−p216y2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),23R3(p)−p6 ( mod p2)ifp≡2 ( mod 3),(−1)p−12p−1∑k=0(2kk)3256k(2k−1)2≡{2x2−34p−316x2p2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−2R3(p)+p4 ( mod p2)ifp≡2 ( mod 3),(−1)p−12p−1∑k=0(2kk)3256k(2k−1)3≡{−x2+p4+316x2p2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),4R3(p)−p4 ( mod p2)ifp≡2 ( mod 3). |
Moreover,
(−1)p−12p−1∑k=0(2kk)3256k(2k−1)≡−14p−1∑k=0(2kk)316k(2k−1) ( mod p3)forp≡2 ( mod 3). |
Conjecture 5.11. Let p>3 be a prime, then
p−1∑k=0(2kk)2(3kk)108k(k+1)≡{−12y2+2p−p2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−2R3(p) ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(3kk)108k(k+1)2≡{8x2−5p ( mod p2)ifp=x2+3y2≡1 ( mod 3),−13R3(p)−p ( mod p2)ifp≡2 ( mod 3),(p−1)/2∑k=0(2kk)2(3kk)108k(k+1)3≡{9−2x2+p ( mod p2)ifp=x2+3y2≡1 ( mod 3),9−1152R3(p) ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(3kk)108k(2k−1)≡{−59(4x2−2p)+p24x2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−89R3(p) ( mod p2)ifp≡2 ( mod 3). |
Conjecture 5.12. Let p>3 be a prime, then
p−1∑k=0(2kk)2(4k2k)(−144)k(k+1)≡{−16y2+2p−p2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),43R3(p)+23p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(4k2k)(−144)k(k+1)2≡{−403y2−p3 ( mod p2)ifp=x2+3y2≡1 ( mod 3),889R3(p)+59p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(4k2k)(−144)k(2k−1)≡{−289x2+89p−p236x2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−89R3(p)+23p ( mod p2)ifp≡2 ( mod 3). |
Conjecture 5.13. Let p>5 be a prime, then
(p5)p−1∑k=0(2kk)(3kk)(6k3k)54000k(k+1)≡{485y2+2p−(p5)p2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−20R3(p)−185p ( mod p2)ifp≡2 ( mod 3),(p5)p−1∑k=0(2kk)(3kk)(6k3k)54000k(k+1)2≡{250425x2−(141425+(p5))p ( mod p2)ifp=x2+3y2≡1 ( mod 3),−184R3(p)+(16225−(p5))p ( mod p2)ifp≡2 ( mod 3),(p5)p−1∑k=0(2kk)(3kk)(6k3k)54000k(2k−1)≡{−748225x2+17081125p+103500x2p2 ( mod p3)ifp=x2+3y2≡1 ( mod 3),−845R3(p)+18125p ( mod p2)ifp≡2 ( mod 3). |
Conjecture 5.14. Let p>3 be a prime, then
p−1∑k=0(2kk)2(3kk)1458k(k+1)≡{2(−1)p−12p−p2 ( mod p3)ifp≡1 ( mod 3),−12R3(p)+2(−1)p−12p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(3kk)1458k(k+1)2≡{42x2−(22+2(−1)p−12)p ( mod p2)ifp=x2+3y2≡1 ( mod 3),−78R3(p)−(1+2(−1)p−12)p ( mod p2)ifp≡2 ( mod 3),p−1∑k=0(2kk)2(3kk)1458k(2k−1)≡{−6181(4x2−2p−p24x2)−44243(−1)p−12p ( mod p3)ifp=x2+3y2≡1 ( mod 3),−3281R3(p)−44243(−1)p−12p ( mod p2)ifp≡2 ( mod 3). |
Conjecture 5.15. Let p be an odd prime, then
(−1)p−12(p−1)/2∑k=0(2kk)3(−64)k(k+1)≡{−12y2+2p ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−12R2(p)−p ( mod p2)ifp≡5,7 ( mod 8),(−1)p−12p−1∑k=0(2kk)3(−64)k(k+1)2≡{4x2−5p ( mod p2)ifp=x2+2y2≡1 ( mod 8),4x2−3p ( mod p2)ifp=x2+2y2≡3 ( mod 8),−3R2(p)−(2+(−1)p−12)p ( mod p2)ifp≡5,7 ( mod 8),(−1)p−12p−1∑k=0(2kk)3(−64)k(2k−1)≡{p−3x2 ( mod p3) ifp=x2+2y2≡1,3 ( mod 8),14R2(p)−p2 ( mod p2)ifp≡5,7 ( mod 8),(−1)p−12p−1∑k=0(2kk)3(−64)k(2k−1)2≡{x2+p22x2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−34R2(p)+p2 ( mod p2)ifp≡5,7 ( mod 8),(−1)p−12p−1∑k=0(2kk)3(−64)k(2k−1)3≡{−2x2+p−p2x2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),32R2(p) ( mod p2)ifp≡5,7 ( mod 8). |
Conjecture 5.16. Let p be an odd prime, then
p−1∑k=0(2kk)2(4k2k)256k(k+1)≡{−8y2+2p−p2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−13R2(p) ( mod p2)ifp≡5,7 ( mod 8),p−1∑k=0(2kk)2(4k2k)256k(k+1)2≡{−16y2+3p ( mod p2)ifp=x2+2y2≡1,3 ( mod 8),−229R2(p)−p ( mod p2)ifp≡5,7 ( mod 8),p−1∑k=0(2kk)2(4k2k)256k(2k−1)≡{5y2−54p−p28y2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−18R2(p) ( mod p2)ifp≡5,7 ( mod 8). |
Conjecture 5.17. Let p be a prime with p≠2,7, then
p−1∑k=0(2kk)2(4k2k)284k(k+1)≡{−284x2+(142+144(p3))p−p2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−147R2(p)+144(p3)p ( mod p2)ifp≡5,7 ( mod 8),p−1∑k=0(2kk)2(4k2k)284k(k+1)2≡{5576x2−(2789+864(p3))p ( mod p2)ifp=x2+2y2≡1,3 ( mod 8),−1078R2(p)−(1+864(p3))p ( mod p2)ifp≡5,7 ( mod 8),p−1∑k=0(2kk)2(4k2k)284k(2k−1)≡{−2363686x2+16541−1224(p3)9604p+2041p29604x2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−9392R2(p)−3062401(p3)p ( mod p2)ifp≡5,7 ( mod 8). |
Conjecture 5.18. Let p be an odd prime, then
p−1∑k=0(2kk)2(3kk)8k(k+1)≡{−11y2+2p−p2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−18R2(p)−34p ( mod p2)ifp≡5,7 ( mod 8),p−1∑k=0(2kk)2(3kk)8k(k+1)2≡{−312y2+p2 ( mod p2)ifp=x2+2y2≡1,3 ( mod 8),−1316R2(p)−278p ( mod p2)ifp≡5,7 ( mod 8),p−1∑k=0(2kk)2(3kk)8k(2k−1)≡{2y2+52p−1716y2p2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),−34R2(p)+3p ( mod p2)ifp≡5,7 ( mod 8). |
Conjecture 5.19. Let p be a prime with p≠2,5, then
(−5p)p−1∑k=0(2kk)(3kk)(6k3k)203k(k+1)≡{−285y2+2p−(−5p)p2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),56R2(p)+35p ( mod p2)ifp≡5,7 ( mod 8),(−5p)p−1∑k=0(2kk)(3kk)(6k3k)203k(k+1)2≡{48425x2−(24425+(−5p))p ( mod p2)ifp=x2+2y2≡1,3 ( mod 8),233R2(p)−(225+(−5p))p ( mod p2)ifp≡5,7 ( mod 8),(−5p)p−1∑k=0(2kk)(3kk)(6k3k)203k(2k−1)≡{−7925x2+181125p+26125x2p2 ( mod p3)ifp=x2+2y2≡1,3 ( mod 8),120R2(p)−33250p ( mod p2)ifp≡5,7 ( mod 8). |
Remark 5.2. Let p be a prime with p>7 and p≠71. In [25], the author conjectured congruences for ∑p−1k=0(2kk)2(4k2k)256k, ∑p−1k=0(2kk)2(4k2k)284k and ∑p−1k=0(2kk)(3kk)(6k3k)203k modulo p3. The congruence for ∑p−1k=0(2kk)2(4k2k)284k ( mod p2) was conjectured by Z. W. Sun [27].
For any odd prime p, let
R7(p)=(p−1)/2∑k=0(2kk)3k+1. |
Conjecture 5.20. Let p be a prime with p≠2,7, then
R7(p)=(p−1)/2∑k=0(2kk)3k+1≡{−44y2+2p ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),−17([3p/7][p/7])2 ( mod p)ifp≡3 ( mod 7),−167([3p/7][p/7])2 ( mod p)ifp≡5 ( mod 7),−47([3p/7][p/7])2 ( mod p)ifp≡6 ( mod 7),p−1∑k=0(2kk)3(k+1)2≡{−68y2 ( mod p2)ifp=x2+7y2≡1,2,4 ( mod 7),6R7(p)+2p ( mod p2)ifp≡3,5,6 ( mod 7),p−1∑k=0(2kk)32k−1≡{−36y2+14p−74y2p2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),32R7(p)+48p ( mod p2)ifp≡3,5,6 ( mod 7),p−1∑k=0(2kk)3(2k−1)2≡{−284y2+34p+234y2p2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),−96R7(p)−96p ( mod p2)ifp≡3,5,6 ( mod 7),p−1∑k=0(2kk)3(2k−1)3≡{−804y2−18p−394y2p2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),192R7(p)+144p ( mod p2)ifp≡3,5,6 ( mod 7). |
Conjecture 5.21. Let p be a prime with p≠2,7, then
(−1)p−12(p−1)/2∑k=0(2kk)34096k(k+1)≡{72y2+2p ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),−64R7(p)−66p ( mod p2)ifp≡3,5,6 ( mod 7),(−1)p−12p−1∑k=0(2kk)34096k(k+1)2≡{−1136y2+(64−(−1)p−12)p ( mod p2)ifp=x2+7y2≡1,2,4 ( mod 7),−384R7(p)−(456+(−1)p−12)p ( mod p2)ifp≡3,5,6 ( mod 7), |
(−1)p−12p−1∑k=0(2kk)34096k(2k−1)≡{22y2−74p−7p2256y2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),−12R7(p)−34p ( mod p2)ifp≡3,5,6 ( mod 7),(−1)p−12p−1∑k=0(2kk)34096k(2k−1)2≡{−17y2+9764p+5p2256y2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),32R7(p)+12964p ( mod p2)ifp≡3,5,6 ( mod 7),(−1)p−12p−1∑k=0(2kk)34096k(2k−1)3≡{20116y2−8164p−3p2256y2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),−3R7(p)−24364p ( mod p2)ifp≡3,5,6 ( mod 7) |
and
(−1)p−12p−1∑k=0(2kk)34096k(2k−1)≡−164p−1∑k=0(2kk)32k−1 ( mod p3)forp≡3,5,6 ( mod 7). |
Conjecture 5.22. Let p be a prime with p≠2,3,7, then
p−1∑k=0(2kk)2(4k2k)81k(k+1)≡{−1003y2+2p−p2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),32R7(p)+43p ( mod p2)ifp≡3,5,6 ( mod 7),p−1∑k=0(2kk)2(4k2k)81k(k+1)2≡{−4369y2+43p ( mod p2)ifp=x2+7y2≡1,2,4 ( mod 7),11R7(p)+949p ( mod p2)ifp≡3,5,6 ( mod 7),p−1∑k=0(2kk)2(4k2k)81k(2k−1)≡{43627y2−5081p−23p2324y2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),169R7(p)+20881p ( mod p2)ifp≡3,5,6 ( mod 7). |
Conjecture 5.23. Let p be a prime with p≠2,3,7, then
p−1∑k=0(2kk)2(4k2k)(−3969)k(k+1)≡{−1963y2+2p−p2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),−21R7(p)−643p ( mod p2)ifp≡3,5,6 ( mod 7),p−1∑k=0(2kk)2(4k2k)(−3969)k(k+1)2≡{−3569x2+1889p ( mod p2)ifp=x2+7y2≡1,2,4 ( mod 7),−154R7(p)−16129p ( mod p2)ifp≡3,5,6 ( mod 7),p−1∑k=0(2kk)2(4k2k)(−3969)k(2k−1)≡{4204189y2−70903969p−2929p2111132y2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),3263R7(p)+30883969p ( mod p2)ifp≡3,5,6 ( mod 7). |
Conjecture 5.24. Let p be a prime with p>7, then
(−15p)p−1∑k=0(2kk)(3kk)(6k3k)(−15)3k(k+1)≡{−1885y2+2p−(−15p)p2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),154R7(p)+185p ( mod p2)ifp≡3,5,6 ( mod 7),(−15p)p−1∑k=0(2kk)(3kk)(6k3k)(−15)3k(k+1)2≡{17225y2−(75+(−15p))p ( mod p2)ifp=x2+7y2≡1,2,4 ( mod 7),692R7(p)+(96325−(−15p))p ( mod p2)ifp≡3,5,6 ( mod 7),(−15p)p−1∑k=0(2kk)(3kk)(6k3k)(−15)3k(2k−1)≡{5084225y2−21381125p−11p2500y2 ( mod p3)ifp=x2+7y2≡1,2,4 ( mod 7),−815R7(p)−112125p ( mod p2)ifp≡3,5,6 ( mod 7). |
Conjecture 5.25. Let p>3 be a prime, then
p−1∑k=0(2kk)2(4k2k)(−12288)k(k+1)≡{−144y2+2p−p2 ( mod p3)if12∣p−1andsop=x2+9y2,72y2−2p−p2 ( mod p3)if12∣p−5andso2p=x2+9y2,−24([p/3][p/12])2 ( mod p)ifp≡7 ( mod 12),48([p/3][p/12])2 ( mod p)ifp≡11 ( mod 12),p−1∑k=0(2kk)2(4k2k)(−12288)k(k+1)2≡{−128x2+75p ( mod p2)if12∣p−1andsop=x2+9y2,64x2−77p ( mod p2)if12∣p−5andso2p=x2+9y2,−176([p/3][p/12])2 ( mod p)ifp≡7 ( mod 12),352([p/3][p/12])2 ( mod p)ifp≡11 ( mod 12),p−1∑k=0(2kk)2(4k2k)(−12288)k(2k−1)≡{−134x2+9364p+25p2128x2 ( mod p3)if12∣p−1andsop=x2+9y2,138x2−9364p−25p264x2 ( mod p3)if12∣p−5andso2p=x2+9y2,316([p/3][p/12])2 ( mod p)ifp≡7 ( mod 12),−38([p/3][p/12])2 ( mod p)ifp≡11 ( mod 12). |
Conjecture 5.26. Let p be a prime with p≠2,5, and R20(p)=(p−12[p/20])(p−12[3p/20]), then
p−1∑k=0(2kk)2(4k2k)(−1024)k≡{4x2−2p−p24x2 ( mod p3)ifp≡1,9 ( mod 20)andsop=x2+5y2,2p−2x2+p22x2 ( mod p3)ifp≡3,7 ( mod 20)andso2p=x2+5y2,2p2R20(p) ( mod p3)ifp≡11 ( mod 20),2p29R20(p) ( mod p3)ifp≡13 ( mod 20),6p27R20(p) ( mod p3)ifp≡17 ( mod 20),2p221R20(p) ( mod p3)ifp≡19 ( mod 20). |
Remark 5.3. For any prime p≠2,5, the congruence for ∑p−1k=0(2kk)2(4k2k)(−1024)−k modulo p2 was first conjectured by Z. W. Sun in [27]. Let p≡1 ( mod 20) be a prime and so p=x2+5y2. In 1840, Cauchy proved that
4x2≡((p−1)/2(p−1)/20)((p−1)/23(p−1)/20) ( mod p), |
see [3, p.291].
Conjecture 5.27. Let p be a prime with p≠2,5, then
p−1∑k=0(2kk)2(4k2k)(−1024)k(k+1)≡{85R20(p) ( mod p)ifp≡1,3,7,9 ( mod 20),45R20(p) ( mod p)ifp≡11 ( mod 20),365R20(p) ( mod p)ifp≡13 ( mod 20),2815R20(p) ( mod p)ifp≡17 ( mod 20),845R20(p) ( mod p)ifp≡19 ( mod 20). |
Moreover, if (−5p)=1, then
p−1∑k=0(2kk)2(4k2k)(−1024)k(k+1)≡{−32y2+2p−p2 ( mod p3)ifp≡1,9 ( mod 20)andsop=x2+5y2,16y2−2p−p2 ( mod p3)ifp≡3,7 ( mod 20)andso2p=x2+5y2,p−1∑k=0(2kk)2(4k2k)(−1024)k(k+1)2≡{32y2−5p ( mod p2)ifp≡1,9 ( mod 20)andsop=x2+5y2,−16y2+3p ( mod p2)ifp≡3,7 ( mod 20)andso2p=x2+5y2,p−1∑k=0(2kk)2(4k2k)(−1024)k(2k−1)≡{312y2−2916p−p232y2 ( mod p3)ifp≡1,9 ( mod 20)andsop=x2+5y2,−314y2+2916p+p216y2 ( mod p3)ifp≡3,7 ( mod 20)andso2p=x2+5y2; |
if (−5p)=−1, then
p−1∑k=0(2kk)2(4k2k)(−1024)k(k+1)2≡223p−1∑k=0(2kk)2(4k2k)(−1024)k(k+1)+(8(−1)p−12−1)p ( mod p2),p−1∑k=0(2kk)2(4k2k)(−1024)k(2k−1)≡−332p−1∑k=0(2kk)2(4k2k)(−1024)k(k+1)−38(−1)p−12p ( mod p2). |
Conjecture 5.28. Let p>3 be a prime with (−6p)=−1 and R24(p)=(p−12[p24])(p−12[5p24]), then
p−1∑k=0(2kk)2(4k2k)482k≡{p25R24(p) ( mod p3)ifp≡13,17 ( mod 24),−p277R24(p) ( mod p3)ifp≡19,23 ( mod 24) |
and
p−1∑k=0(2kk)2(3kk)216k≡{−7p25R24(p) ( mod p3)ifp≡13 ( mod 24),7p25R24(p) ( mod p3)ifp≡17 ( mod 24),p211R24(p) ( mod p3)ifp≡19 ( mod 24),−p211R24(p) ( mod p3)ifp≡23 ( mod 24). |
Conjecture 5.29. Let p>3 be a prime, then
p−1∑k=0(2kk)2(3kk)216k(k+1)≡{78R24(p) ( mod p)ifp≡1,11 ( mod 24),−78R24(p) ( mod p)ifp≡5,7 ( mod 24),−58R24(p) ( mod p)ifp≡13 ( mod 24),58R24(p) ( mod p)ifp≡17 ( mod 24),778R24(p) ( mod p)ifp≡19 ( mod 24),−778R24(p) ( mod p)ifp≡23 ( mod 24). |
Moreover, if (−6p)=1, then
p−1∑k=0(2kk)2(3kk)216k(k+1)≡{−21y2+2p−p2 ( mod p3)ifp=x2+6y2≡1,7 ( mod 24),7x2−2p−p2 ( mod p3)ifp=2x2+3y2≡5,11 ( mod 24),p−1∑k=0(2kk)2(3kk)216k(k+1)2≡{434x2−254p ( mod p2)ifp=x2+6y2≡1,7 ( mod 24),432x2−132p ( mod p2)ifp=2x2+3y2≡5,11 ( mod 24),p−1∑k=0(2kk)2(3kk)216k(2k−1)≡{−239x2+76p+5p224x2 ( mod p3)ifp=x2+6y2≡1,7 ( mod 24),−469x2+2518p+5p248x2 ( mod p3)ifp=2x2+3y2≡5,11 ( mod 24); |
if (−6p)=−1, then
p−1∑k=0(2kk)2(3kk)216k(k+1)2≡132p−1∑k=0(2kk)2(3kk)216k(k+1)−(1+32(p3))p ( mod p2),p−1∑k=0(2kk)2(3kk)216k(2k−1)≡29p−1∑k=0(2kk)2(3kk)216k(k+1)−16(p3)p ( mod p2). |
Conjecture 5.30. Let p>3 be a prime, then
p−1∑k=0(2kk)2(4k2k)482k(k+1)≡{13R24(p) ( mod p)ifp≡1,5 ( mod 24),−13R24(p) ( mod p)ifp≡7,11 ( mod 24),53R24(p) ( mod p)ifp≡13,17 ( mod 24),−773R24(p) ( mod p)ifp≡19,23 ( mod 24). |
Moreover, if (−6p)=1, then
p−1∑k=0(2kk)2(4k2k)482k(k+1)≡{−8y2+2p−p2 ( mod p3)ifp=x2+6y2≡1,7 ( mod 24),4y2−2p−p2 ( mod p3)ifp=2x2+3y2≡5,11 ( mod 24),p−1∑k=0(2kk)2(4k2k)482k(k+1)2≡{2809x2−1579p ( mod p2)ifp=x2+6y2≡1,7 ( mod 24),−5609x2+1399p ( mod p2)ifp=2x2+3y2≡5,11 ( mod 24),p−1∑k=0(2kk)2(4k2k)482k(2k−1)≡{−5518x2+4936p+7p236x2 ( mod p3)ifp=x2+6y2≡1,7 ( mod 24),559x2−4936p−7p272x2 ( mod p3)ifp=2x2+3y2≡5,11 ( mod 24); |
if (\frac {{-6}}{p}) = -1 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv- \frac 83\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p3\Big(2\Big( \frac {p}{3}\Big)+4\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)^2} \equiv- \frac {176}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p9\Big(35\Big( \frac {p}{3}\Big)-8\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(2k-1)} \equiv- \frac {1}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p{36}\Big(\Big( \frac {p}{3}\Big)-6\Big)\ (\text{ mod}\ {p^2}). \end{align*} |
Remark 5.4. Let p be a prime with p > 3 . In [25, Conjecture 4.24], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} modulo p^3 in the case (\frac {{-6}}{p}) = 1 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun in [27]. In 2019, Guo and Zudilin [6] proved Z. W. Sun's conjecture:
\sum_{k = 0}^{p-1}(8k+1) \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} \equiv \Big(\frac {p}{3}\Big)p\ (\text{ mod}\ {p^3}). |
Conjecture 5.31. Let p > 5 be a prime.
(ⅰ) If p \equiv 1, 19\ (\text{ mod}\ {30}) and so p = x^2+15y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv -84y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv -96y^2\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv \frac {148}3y^2- \frac {26}9p+ \frac {p^2}{36y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv 60y^2+2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv -1320y^2+36p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv \frac {3508}{75}y^2- \frac {1954}{1125}p- \frac {287p^2}{22500y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 17, 23\ (\text{ mod}\ {30}) and so p = 3x^2+5y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv 28y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv 32y^2-2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv - \frac {148}9y^2+ \frac {26}9p- \frac {p^2}{12y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv -20y^2-2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv 440y^2-38p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv - \frac {3508}{225}y^2+ \frac {1954}{1125}p+ \frac {287p^2}{7500y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-15}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv\begin{cases} \frac 25\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {30}) , } \\ \frac 1{10}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {30}) , } \\ \frac {32}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {30}) , } \\ \frac {8}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {30}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}+\Big(3\Big( \frac {p}{3}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv- \frac {16}9 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac 83\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv-20 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-12\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv-130 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-\Big(1+111\Big( \frac {p}{3}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv- \frac {64}{225} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac {152}{375}\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). \end{align*} |
Conjecture 5.32. Let p be a prime with p > 5 and
R_{40}(p) = \frac { \binom{(p-1)/2}{[7p/40]} \binom{(p-1)/2}{[9p/40]} \binom{[3p/40]}{[p/40]}}{ \binom{[19p/40]}{[p/20]}}. |
(ⅰ) If (\frac {{-10}}{p}) = 1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {49}{15}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1,23\ (\text{ mod}\ {40}) ,} \\- \frac {49}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {40}) ,} \\ \frac {7}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {40}) ,} \\ \frac {833}{195}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {40}) ,} \\- \frac {833}{285}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {40}) ,} \\- \frac {98}{555}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {40}) ,} \\- \frac {98}{55}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 37\ (\text{ mod}\ {40}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} \frac {392}{3}y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {196}{3}y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv\begin{cases}- \frac {20176}{9}y^2+ \frac {265}{3}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\ \frac {10088}{9}y^2- \frac {271}{3}p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv\begin{cases} \frac {883}{27}y^2- \frac {581}{324}p- \frac {13p^2}{648y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {883}{54}y^2+ \frac {581}{324}p+ \frac {13p^2}{324y^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40})}\end{cases} \end{align*} |
and
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9, 11, 19\ (\text{ mod}\ {40})\; and so \;p = x^2+10y^2, } \\2p-8x^2+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}); and so \;p = 2x^2+5y^2.}\end{cases} \end{align*} |
(ⅱ) If (\frac {{-10}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {21}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {40}) ,} \\- \frac {4446}{155}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {40}) ,} \\- \frac {189}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 21\ (\text{ mod}\ {40}) ,} \\- \frac {702}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 27\ (\text{ mod}\ {40}) ,} \\ \frac {66}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {40}) ,} \\ \frac {1026}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 31\ (\text{ mod}\ {40}) ,} \\- \frac {462}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 33\ (\text{ mod}\ {40}) ,} \\- \frac {858}{85}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 39\ (\text{ mod}\ {40}). } \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv \frac {22}3\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} +\Big( \frac {256}3\Big( \frac {p}{5}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv \frac 1{216}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} + \frac {16}{81}\Big( \frac {p}{5}\Big)p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\Big) \equiv - \frac {49}{15}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.5. Let p > 3 be a prime. In [27], Z. W. Sun conjectured the congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\ (\text{ mod}\ {p^2}) .
Conjecture 5.33. Let p be a prime with p\not = 2, 11 and R_{11}(p) = \binom{[\frac {3p}{11}]}{[\frac p{11}]}^2 \binom{[\frac {6p}{11}]}{[\frac {3p}{11}]}^2/ \binom{[\frac {4p}{11}]}{[\frac {2p}{11}]}^2 .
(ⅰ) If p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv\begin{cases} \frac {25}{22}R_{11}(p)\ (\text{ mod}\ p)& {if\; p \equiv 1, 4, 5, 9\ (\text{ mod}\ {11}) , } \\ \frac 2{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {11}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv - \frac {25}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv - \frac {83}4y^2+2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac {23}4y^2- \frac 78p- \frac {p^2}{8y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)} \equiv -26y^2+2p-\Big( \frac {{-2}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)^2} \equiv 148y^2-\Big(24+\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(2k-1)} \equiv \frac {73}{8}y^2- \frac {467}{256}p- \frac {37p^2}{512y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv \begin{cases} - \frac {50}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {11}) , } \\- \frac {32}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 6\ (\text{ mod}\ {11}) , } \\- \frac {2}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {11}) , } \\- \frac {72}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {11}) , } \\- \frac {18}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {11}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac 34\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+ \frac 38p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)} \equiv \frac {128}{15}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} - \frac 25p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)^2} \equiv \frac {5888}{75}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} +\Big( \frac {608}{25}-\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(2k-1)} \equiv - \frac 18\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}- \frac {51}{256}p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k}\Big) \equiv \frac {25}{22}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.6. Let p be a prime with p\not = 2, 3, 11 . In [25], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}} modulo p^3 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun [29]. Suppose that p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 . In [9], Lee and Hahn proved that
x \equiv \begin{cases} \binom{3n}n \binom{6n}{3n} \binom{4n}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-1 $ and $ 11\mid x-2 $, } \\- \binom{3n+1}n \binom{6n+1}{3n} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-3 $ and $ 11\mid x-10 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-4 $ and $ 11\mid x-7 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-5 $ and $ 11\mid x-8 $, } \\- \binom{3n+2}n \binom{6n+4}{3n+2} \binom{4n+3}{2n+1}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-9 $ and $ 11\mid x-6 $, }\end{cases} |
where n = [p/11] . The case p \equiv 1\ (\text{ mod}\ {11}) is due to Jacobi.
Conjecture 5.34. Let p > 3 be a prime and
R_{19}(p) = \binom{[8p/19]}{[p/19]}^2 \binom{[10p/19]}{[4p/19]}^2 \binom{[5p/19]}{[2p/19]}^{-2}. |
(ⅰ) If (\frac {{p}}{{19}}) = 1 and so 4p = x^2+19y^2 , then
\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} - \frac {1183}{1368}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1, 7, 11\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{342}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 4, 6\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{2432}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 5\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{18392}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{27702}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 16\ (\text{ mod}\ {19}) , } \\ - \frac {57967}{12312}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {19}) .} \end{cases} |
Moreover,
\begin{align*} &\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv \frac {1183}{72}y^2- \frac {4273}{2304}p- \frac {23p^2}{512y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv -394y^2+2p-\Big( \frac {{-6}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv 6772y^2-\Big(536+\Big( \frac {{-6}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}) . \end{align*} |
(ⅱ) If (\frac {{p}}{{19}}) = -1 , then
\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} \frac {49}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {19}) , } \\ \frac {1}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {19}) , } \\ \frac {27}{14896}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {19}) , } \\ \frac {3}{19}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {19}) , } \\ \frac {121}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 12\ (\text{ mod}\ {19}) , } \\ \frac {4}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {19}) , } \\ \frac {121}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 14\ (\text{ mod}\ {19}) , } \\ \frac {27}{76}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 15\ (\text{ mod}\ {19}) , } \\ \frac {49}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 18\ (\text{ mod}\ {19}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv - \frac {9216}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}-270\Big( \frac {{-6}}{p}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv \frac {46}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)}+\Big(540\Big( \frac {{-6}}{p}\Big)-1\Big)p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}}\Big) \equiv - \frac {985}{87552}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.35. Let p > 5 be a prime.
(ⅰ) If (\frac {{p}}{{43}}) = 1 and so 4p = x^2+43y^2 , then
\begin{align*} &\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(k+1)} \equiv- \frac {1867778}5y^2+2p-\Big( \frac {{-15}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)} \equiv \frac {140501}{3600}y^2- \frac {4384321}{2304000}p- \frac {10751p^2}{512000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{p}}{{43}}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}}\Big) \equiv - \frac {933889}{198144000}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.36. Let p be a prime with p\not = 2, 3, 5, 11 .
(ⅰ) If (\frac {{p}}{{67}}) = 1 and so 4p = x^2+67y^2 , then
\begin{align*} &\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(k+1)} \equiv- \frac {310714322}5y^2+2p-\Big( \frac {{-330}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)} \\&{\quad} \equiv \frac 1{217800}\Big(13501789y^2- \frac {736842481}{1760}p- \frac {10552671p^2}{3520y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{p}}{{67}}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}}\Big) \equiv - \frac {155357161}{51365952000}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.37. Let p be a prime with p\not = 2, 3, 5, 23, 29 . If (\frac {{p}}{{163}}) = 1 and so 4p = x^2+163y^2 , then
\begin{align*} &\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}(k+1)} \equiv- \frac {554179195816658}5y^2+2p-\Big( \frac {{-10005}}{p}\Big)p^2\ (\text{ mod}\ {p^3}). \end{align*} |
Remark 5.7. Suppose that p > 3 is a prime. In [29], Z. W. Sun conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{m^{3k}} modulo p^2 in the cases m = -32, -96, -960, -5280, -640320 . The corresponding congruences modulo p were proved by the author in [19].
Conjecture 5.38. Let p be a prime with p > 5 .
(ⅰ) If p \equiv 1, 4\ (\text{ mod}\ {15}) and so 4p = x^2+75y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv - \frac {825}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv \frac {14925}4y^2-78p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv- \frac {29}{36}x^2+ \frac {517}{360}p+ \frac {31p^2}{40x^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 7, 13\ (\text{ mod}\ {15}) and so 4p = 3x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv \frac {275}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv - \frac {4975}4y^2+76p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv \frac {29}{12}x^2- \frac {517}{360}p- \frac {31p^2}{120x^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If p \equiv 2\ (\text{ mod}\ 3) , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)}\Big) \equiv \frac {11}{2}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.39. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{17}}) = 1 and so 4p = x^2+51y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv - \frac {249}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv \frac {1965}4y^2-18p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv \frac {475}{12}y^2- \frac {127}{72}p- \frac {p^2}{72y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{17}}) = -1 and so 4p = 3x^2+17y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv \frac {83}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv - \frac {655}4y^2+16p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv- \frac {475}{36}y^2+ \frac {127}{72}p+ \frac {p^2}{24y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-51}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)}\Big) \equiv \frac {83}{34}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.40. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{41}}) = 1 and so 4p = x^2+123y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv - \frac {8673}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv \frac {280605}4y^2-792p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv \frac {19903}{192}y^2- \frac {8425}{4608}p- \frac {31p^2}{4608y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{41}}) = -1 and so 4p = 3x^2+41y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv \frac {2891}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv- \frac {93535}4y^2+790p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv- \frac {19903}{576}y^2+ \frac {8425}{4608}p+ \frac {31p^2}{1536y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-123}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)}\Big) \equiv \frac {2891}{82}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.41. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{89}}) = 1 and so 4p = x^2+267y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv - \frac {2052321}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv \frac {113759157}4y^2-131490p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv \frac {8910623}{37500}y^2- \frac {2118511}{1125000}p- \frac {3721p^2}{1125000y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{89}}) = -1 and so 4p = 3x^2+89y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv \frac {684107}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv- \frac {37919719}4y^2+131488p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv- \frac {8910623}{112500}y^2+ \frac {2118511}{1125000}p+ \frac {3721p^2}{375000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-267}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)}\Big) \equiv \frac {684107}{178}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.8. Let p > 5 be a prime. In [18], the author proved the congruences modulo p for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k in the cases m = -8640, -12^3, -48^3, -300^3 . In [29], Z. W. Sun conjectured the corresponding congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k\ (\text{ mod}\ {p^2}) in the cases m = -12^3, -48^3, -300^3 .
Conjecture 5.42. Let p > 3 be a prime.
(ⅰ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = 1 and so p = x^2+13y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv - \frac {2272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv \frac {96032}9y^2- \frac {911}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv \frac {2357}{54}y^2- \frac {2365}{1296}p- \frac {41p^2}{2592y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = -1 and so 2p = x^2+13y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv \frac {1136}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv- \frac {48016}9y^2+ \frac {905}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv - \frac {2357}{108}y^2+ \frac {2365}{1296}p+ \frac {41p^2}{1296y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-13}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)}\Big) \equiv \frac {568}{39}p^2. |
Conjecture 5.43. Let p be a prime with p\not = 2, 3, 7 .
(ⅰ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = 1 and so p = x^2+37y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv - \frac {5044960}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv \frac {467407904}9y^2- \frac {1302671}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{18522}\Big(2469371y^2- \frac {5897725}{168}p- \frac {37649p^2}{336y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = -1 and so 2p = x^2+37y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv \frac {2522480}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv- \frac {233703952}9y^2+ \frac {1302665}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{37044}\Big(-2469371y^2+ \frac {5897725}{84}p+ \frac {37649p^2}{84y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-37}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)}\Big) \equiv \frac {1261240}{111}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.44. Let p be a prime with p\not = 2, 3, 11 .
(ⅰ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = 1 and so p = x^2+22y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv \frac {63272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv - \frac {4221712}9y^2+ \frac {21289}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{297}\big(22829y^2- \frac {73085}{132}p- \frac {8471p^2}{2904y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = -1 and so p = 2x^2+11y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv- \frac {31636}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv \frac {2110856}9y^2- \frac {21295}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{594}\big(-22829y^2+ \frac {73085}{66}p+ \frac {8471p^2}{726y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-22}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)}\Big) \equiv - \frac {719}3p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.45. Let p be a prime with p\not = 2, 3, 11 .
(ⅰ) If \big(\frac {{-2}}{p}\big) = (\frac {{29}}{p}) = 1 and so p = x^2+58y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv \frac {622903112}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv - \frac {75716418640}9y^2+ \frac {128477449}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{323433}\big(69026153y^2- \frac {736357445}{1188}p- \frac {3035509p^2} {2376y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-2}}{p}) = (\frac {{29}}{p}) = -1 and so p = 2x^2+29y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv- \frac {311451556}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv \frac {37858209320}9y^2- \frac {128477455}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{646866}\big(-69026153y^2+ \frac {736357445}{594}p+ \frac {3035509p^2} {594y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-58}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)}\Big) \equiv - \frac {77862889}{87}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.46. Let p > 5 be a prime.
(ⅰ) If p \equiv 1, 9\ (\text{ mod}\ {20}) and so p = x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv - \frac {168400}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv \frac {12142400}9y^2- \frac {52799}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac {19025}{216}y^2- \frac {194161}{103680}p- \frac {45239p^2}{5184000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 13, 17\ (\text{ mod}\ {20}) and so 2p = x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 2p-2x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv \frac {84200}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv- \frac {6071200}9y^2+ \frac {52793}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac 1{432}\big(-19025y^2+ \frac {194161}{240}p+ \frac {45239p^2}{6000y^2}\big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If p \equiv 3\ (\text{ mod}\ 4) , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)}\Big) \equiv \frac {1684}3p^2\ (\text{ mod}\ {p^3}). |
Remark 5.9. Let p > 3 be a prime. The congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{4k}{2k}/m^k\ (\text{ mod}\ {p^2}) in the cases m = -82944, -199148544, 1584^2,396^4, -6635520 were conjectured by Z. W. Sun earlier, see [27,29] and arXiv:0911.5665v59.
Conjecture 5.47. Let p be an odd prime.
(ⅰ) If p \equiv 1\ (\text{ mod}\ 4) and so p = x^2+4y^2 with 4\mid x-1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv x- \frac p{4x}\ (\text{ mod}\ {p^2}){\quad}\; {and} {\quad}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(k+1)^2} \equiv 8x-7\ (\text{ mod}\ p). |
(ⅱ) If p \equiv 3\ (\text{ mod}\ 4) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv \frac 12(2p+3-2^{p-1}) \binom{ \frac {p-1}2}{ \frac {p-3}4}\ (\text{ mod}\ {p^2}). |
Conjecture 5.48. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(2k-1)^2} \equiv \begin{cases} (-1)^{ \frac {p-1}4} \frac px\ (\text{ mod}\ {p^2}){\quad} {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and \; 4\mid x-1 , } \\(-1)^{ \frac {p+1}4}(2p+3-2^{p-1}) \binom{(p-1)/2}{(p-3)/4} \ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 3\ (\text{ mod}\ 4) } \end{cases} |
and
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(k+1)^2} \equiv 5\ (\text{ mod}\ p){\quad} {for} {\quad}p \equiv 1\ (\text{ mod}\ 4). |
Conjecture 5.49. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{8^k(2k-1)^2} \equiv\begin{cases} (-1)^{ \frac {p-1}4}\big(2x- \frac {3p}{2x}\big)\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and\; 4\mid x-1 , } \\2(-1)^{ \frac {p+1}4} \binom{(p-1)/2}{(p-3)/4}\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Remark 5.10. Let p be an odd prime. In [33], Z. W. Sun established the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2}{m^k(2k-1)}\ (\text{ mod}\ {p^2}) in the cases m = -16, 8, 32 .
Now we present two general conjectures.
Conjecture 5.50. Let a, x\in\Bbb Q and d\in\Bbb Z with adx\not = 0 , where \Bbb Q is the set of rational numbers. Suppose that \sum_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k \equiv 0\ (\text{ mod}\ p) for all odd primes p satisfying a, x\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 ,
\sum\limits_{k = 0}^{p-1} \binom{2k}k \binom ak \binom{-1-a}k(x(1-x))^k \equiv c\Big(\sum\limits_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k\Big)^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.51. Let a, m\in\Bbb Q and d\in\Bbb Z with adm\not = 0 . Suppose that
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k} \equiv 0\ (\text{ mod}\ {p^2}) |
for all odd primes p satisfying a, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 ,
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{(k+1)m^k}\Big) \equiv cp^2\ (\text{ mod}\ {p^3}). |
For an odd prime p , let R_1(p) – R_3(p) be given by (5.1)–(5.3). With the help of Maple, we discover the following conjectures involving Apéry-like numbers.
Conjecture 6.1. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(k+1)} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(2k-1)} \equiv\begin{cases} 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 1\ (\text{ mod}\ 4), } \\-R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} \end{align*} |
Conjecture 6.2. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{32^k(2k-1)} \equiv\begin{cases} (-1)^{ \frac {p-1}2}( \frac p2-x^2)\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 14(-1)^{ \frac {p-1}2}R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{800^k(2k-1)} \equiv\begin{cases} - \frac {73}{100}(-1)^{ \frac {p-1}2}( 4x^2-2p)- \frac {24}{125}( \frac {3}{p})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {9}{100}(-1)^{ \frac {p-1}2}R_2(p)+ \frac {24}{125}( \frac {3}{p})p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8)\; and \;\\ p\not = 5, } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-768)^k(2k-1)} \equiv\begin{cases} - \frac {73}{96}( \frac {3}{p}) ( 4x^2-2p)- \frac {11}{48}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}) & {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {3}{32}( \frac {3}{p})R_2(p)- \frac {11}{48}(-1)^{ \frac {p-1}2} p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .} \end{cases} \end{align*} |
Conjecture 6.3. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{7^k(2k-1)} \equiv\begin{cases} \frac {124}{49}x^2- \frac {46}{49}p\ (\text{ mod}\ {p^2}){\qquad}{\qquad} {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {64}7\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {496}{49}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{25^k(2k-1)} \equiv\begin{cases} - \frac {124}{175}x^2+ \frac {326}{875}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {448}{175}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {2576}{875}p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)\; and \;p\not = 5.} \end{cases} \end{align*} |
Conjecture 6.4. Let p > 3 be a prime, then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-32)^k(2k-1)} \equiv\begin{cases} 22y^2- \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ \\(\text{ mod}\ {24}), } \\-11y^2+ \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ \\(\text{ mod}\ {24}), } \\ \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}+ \frac p2 \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac 56p \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24})} \end{cases} \end{align*} |
and
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{64^k(2k-1)} \equiv\begin{cases} 11y^2-p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), } \\ \frac {11}2y^2-p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24}) .} \end{cases} \end{align*} |
Conjecture 6.5. Let p be a prime with p > 3 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-12)^k(2k-1)} \equiv \begin{cases} 0\ (\text{ mod}\ {p^2})& {if \; p \equiv 1\ (\text{ mod}\ 3) , } \\-2(2p+1) \binom{[2p/3]}{[p/3]}^2\ (\text{ mod}\ {p^2})& {if \; p \equiv 2\ (\text{ mod}\ {3}) }. \end{cases} |
Conjecture 6.6. Let p be a prime with p > 3 , then
\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{54^k(2k-1)} \equiv \begin{cases} - \frac {28}9x^2+ \frac {10}9p\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , }\\ \frac 23R_1(p)- \frac 49p\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Conjecture 6.7. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{8^k(2k-1)} \equiv \begin{cases} - \frac {11}2x^2+ \frac 54p\ (\text{ mod}\ {p^2}){\qquad} {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}8R_2(p)+ \frac 32p\ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 5, 7\ (\text{ mod}\ {8}) }. \end{cases} |
Conjecture 6.8. Let p be a prime with p\not = 2, 3, 7 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-27)^k(2k-1)} \equiv \begin{cases} - \frac {2}{3}p+ \frac {76}{9}y^2\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 83\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {28}9p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)} \end{cases} \end{align*} |
and
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{243^k(2k-1)} \equiv \begin{cases} \frac {1676}{81}y^2- \frac {142}{81}p\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac {32}{27}\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {44}{27}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7) .} \end{cases} \end{align*} |
Conjecture 6.9. Let p be a prime with p\not = 2, 11 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-44)^k(2k-1)} \\ \equiv &\begin{cases} \frac {52}{11}y^2- \frac {116}{121}p\ (\text{ mod}\ {p^2}){\qquad} {if \;p \equiv 1, 3, 4, 5, 9 \ (\text{ mod}\ {11})\; and \;so \;4p = x^2+11y^2, } \\ \frac 9{11}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k(k+1)}+ \frac {39}{121} p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11})}. \end{cases} \end{align*} |
Conjecture 6.10. Let p be a prime with p\not = 2, 3, 19 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-108)^k(2k-1)} \\ \equiv &\begin{cases} \frac {100}9y^2- \frac 43p\ (\text{ mod}\ {p^2})& {if \;( \frac {p}{{19}}) = 1\; and \;so \;4p = x^2+19y^2, } \\8\big( \frac {{-6}}{p}\big)\sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} + \frac {241}{288}p\ (\text{ mod}\ {p^2}) & {if \;\big( \frac {p}{{19}}\big) = -1.} \end{cases} \end{align*} |
Conjecture 6.11. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{(-4)^k(2k-1)} \equiv\begin{cases} 2p-4x^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-8R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{50^k(2k-1)} \equiv\begin{cases} - \frac {13}{25}(4x^2-2p) - \frac {12}{125}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}{25}R_3(p)- \frac {12}{125}(-1)^{ \frac {p-1}2}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3)\; and \;p\not = 5.} \end{cases} \end{align*} |
Conjecture 6.12. Let p > 3 be a prime, then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{96^k(2k-1)} \equiv\begin{cases} - \frac {29}{48}( \frac {p}{3})(4x^2-2p)- \frac p6\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {3}{16}( \frac {p}{3})R_2(p)+ \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .}\end{cases} \end{align*} |
Conjecture 6.13. Let p be a prime with p\not = 2, 5 . If (\frac {{-5}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv\begin{cases} - \frac 75x^2+ \frac {9}{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, } \\- \frac {7}{10}x^2+ \frac 9{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2;}\end{cases} \end{align*} |
if (\frac {{-5}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv -6(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} - \frac {11}8p\ (\text{ mod}\ {p^2}). |
Conjecture 6.14. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \begin{cases} - \frac 74x^2+ \frac 78p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac 72x^2+ \frac {7}{8}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases} |
if (\frac {{-6}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \frac 94\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}+ \frac 14\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). |
Conjecture 6.15. Let p > 3 be a prime, then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{54^k(2k-1)} \equiv\begin{cases} \frac {52}{9}y^2- \frac {26+2(-1)^{ \frac {p-1}2}}{27}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {32}{27}R_3(p)+ \frac 2{27}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*} |
Conjecture 6.16. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{100^k(2k-1)} \equiv\begin{cases} - \frac {58}{25}x^2+ \frac {145-18( \frac {p}{3})}{125}p\ (\text{ mod}\ {p^2})& {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}{50}R_2(p)- \frac {18}{125}\big( \frac {p}{3}\big)p\ (\text{ mod}\ {p^2})& {if \; p \equiv 5, 7\ (\text{ mod}\ 8) \; and \; p\not = 5 .} \end{cases} |
Conjecture 6.17. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{(-12)^k(2k-1)} \equiv\begin{cases} p-4x^2\ (\text{ mod}\ {p^2})& {if \; 12\mid p-1 \; and \;so \; p = x^2+9y^2 , } \\ 2x^2-p\ (\text{ mod}\ {p^2})& {if \; 12\mid p-5 \; and \;so \; 2p = x^2+9y^2 , } \\3\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {12}) , } \\-6\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {12}) .} \end{cases} |
Conjecture 6.18. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then
\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv \begin{cases} - \frac {14}9x^2+ \frac 79p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac {28}9x^2+ \frac {7}{9}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases} |
if (\frac {{-6}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv -2\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}- \frac 29p\ (\text{ mod}\ {p^2}). |
Conjecture 6.19. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{(-36)^k(2k-1)} \equiv\begin{cases} - \frac 49x^2+ \frac 29p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{18^k(2k-1)} \equiv\begin{cases} - \frac {52}9x^2+ \frac {26-12(-1)^{(p-1)/2}}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}9R_3(p)- \frac 43(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*} |
Conjecture 6.20. Let p be a prime with p\not = 2, 3, 11 , then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{4^k(2k-1)} \equiv \begin{cases} 2p-2y^2\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11})\; and \;4p = x^2+11y^2, }\\ 5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) .}\end{cases} \end{align*} |
Conjecture 6.21. Let p be a prime with p\not = 2, 3, 19 . If (\frac {p}{{19}}) = 1 \; and \;so \; 4p = x^2+19y^2 , the
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv \frac {74}{9}y^2- \frac {22}{27}p\ (\text{ mod}\ {p^2}); |
if \big(\frac {p}{{19}}\big) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv- \frac {40}3 \Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} - \frac {1397}{864}p \ (\text{ mod}\ {p^2}). |
Conjecture 6.22. Let p be a prime with p > 3 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k(2k-1)} \equiv\begin{cases} - \frac 43x^2+ \frac {26}{27}p\ (\text{ mod}\ {p^2})& {if \; 4\mid p-1 \; and \;so \; p = x^2+4y^2 , } \\ \frac 8{27}p- \frac {10}9R_1(p)\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Remark 6.1. In [29], Z. W. Sun conjectured that for any prime p > 3 ,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{36^k} \equiv\begin{cases} x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = 1$ and so $4p = x^2+19y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = -1$,}\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 1\ (\text{ mod}\ 4)$ and so $p = x^2+4y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*} |
For congruences related to Conjectures 6.1–6.18 see [21,22,23,24,25].
In Sections 2–4, we prove some congruences for the sums involving binomial coefficients and Apéry-like numbers modulo p^r , where p is an odd prime and r\in\{1, 2, 3\} . Based on calculations by Maple, in Sections 3, 5 and 6 we pose 83 challenging conjectures on congruences modulo p^2 or p^3 .
The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).
The author declares no conflicts of interest regarding the publication of this paper.
[1] | S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, In: Symbolic computation, number theory, special functions, physics and combinatorics, Dordrecht: Kluwer, 2001, 1–12. doi: 10.1007/978-1-4613-0257-5_1. |
[2] | G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, In: Mirror symmetry, AMS/IP Studies in Advanced Mathematics, Vol. 38, International Press & American Mathematical Society, 2007,481–515. |
[3] | B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, New York: Wiley, 1998. |
[4] |
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201–210. doi: 10.1016/0022-314X(87)90025-4. doi: 10.1016/0022-314X(87)90025-4
![]() |
[5] | H. W. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, Morgantown: West Virginia University, 1972. |
[6] |
V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. doi: 10.1016/j.aim.2019.02.008. doi: 10.1016/j.aim.2019.02.008
![]() |
[7] | L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, In: Proceedings of the conference on p-adic analysis, Houthalen, 1987,189–195. |
[8] |
T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J., 118 (1990), 195–202. doi: 10.1017/S002776300000307X. doi: 10.1017/S002776300000307X
![]() |
[9] |
D. H. Lee, S. G. Hahn, Gauss sums and binomial coefficients, J. Number Theory, 92 (2002), 257–271. doi: 10.1006/jnth.2001.2688. doi: 10.1006/jnth.2001.2688
![]() |
[10] |
L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773–808. doi: 10.1016/j.aim.2015.11.043. doi: 10.1016/j.aim.2015.11.043
![]() |
[11] |
F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J., 22 (2010), 171–186. doi: 10.1007/s11139-009-9218-5
![]() |
[12] |
S. Mattarei, R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory, 133 (2013), 131–157. doi: 10.1016/j.jnt.2012.05.036. doi: 10.1016/j.jnt.2012.05.036
![]() |
[13] |
E. Mortenson, Supercongruences for truncated _{n+1}F_n hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc., 133 (2005), 321–330. doi: 10.1090/S0002-9939-04-07697-X. doi: 10.1090/S0002-9939-04-07697-X
![]() |
[14] | F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, In: Calabi-Yau varieties and mirror symmetry, Providence, RI: American Mathematical Society, 2003,223–231. |
[15] |
V. Strehl, Binomial identities-combinatorial and algorithmic aspects, Discrete Math., 136 (1994), 309–346. doi: 10.1016/0012-365X(94)00118-3. doi: 10.1016/0012-365X(94)00118-3
![]() |
[16] |
Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc., 139 (2011), 1915–1929. doi: 10.1090/S0002-9939-2010-10566-X. doi: 10.1090/S0002-9939-2010-10566-X
![]() |
[17] |
Z. H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory, 133 (2013), 1950–1976. doi: 10.1016/j.jnt.2012.11.004. doi: 10.1016/j.jnt.2012.11.004
![]() |
[18] |
Z. H. Sun, Congruences involving \binom2kk^2 \binom3kk, J. Number Theory, 133 (2013), 1572–1595. doi: 10.1016/j.jnt.2012.10.001. doi: 10.1016/j.jnt.2012.10.001
![]() |
[19] |
Z. H. Sun, Legendre polynomials and supercongruences, Acta Arith., 159 (2013), 169–200. doi: 10.4064/aa159-2-6
![]() |
[20] |
Z. H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143 (2014), 293–319. doi: 10.1016/j.jnt.2014.04.012. doi: 10.1016/j.jnt.2014.04.012
![]() |
[21] |
Z. H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integr. Transf. Spec. F., 26 (2015), 642–659. doi: 10.1080/10652469.2015.1034122. doi: 10.1080/10652469.2015.1034122
![]() |
[22] |
Z. H. Sun, Identities and congruences for Catalan-Larcombe-French numbers, Int. J. Number Theory, 13 (2017), 835–851. doi: 10.1142/S1793042117500440. doi: 10.1142/S1793042117500440
![]() |
[23] |
Z. H. Sun, Congruences for sums involving Franel numbers, Int. J. Number Theory, 14 (2018), 123–142. doi: 10.1142/S1793042118500094. doi: 10.1142/S1793042118500094
![]() |
[24] |
Z. H. Sun, Super congruences for two Apéry-like sequences, J. Difference Equ. Appl., 24 (2018), 1685–1713. doi: 10.1080/10236198.2018.1515930. doi: 10.1080/10236198.2018.1515930
![]() |
[25] |
Z. H. Sun, Congruences involving binomial coefficients and Apéry-like numbers, Publ. Math. Debrecen, 96 (2020), 315–346. doi: 10.5486/PMD.2020.8577
![]() |
[26] |
Z. H. Sun, Supercongruences and binary quadratic forms, Acta Arith., 199 (2021), 1–32. doi: 10.4064/aa200308-27-9. doi: 10.4064/aa200308-27-9
![]() |
[27] |
Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x. doi: 10.1007/s11425-011-4302-x
![]() |
[28] |
Z. W. Sun, On sums involving products of three binomial coefficients, Acta Arith., 156 (2012), 123–141. doi: 10.4064/aa156-2-2
![]() |
[29] | Z. W. Sun, Conjectures and results on x^2 mod p^2 with 4p = x^2+dy^2, In: Number theory and related areas, Beijing-Boston: Higher Education Press & International Press, 2013,149–197. |
[30] |
Z. W. Sun, Congruences for Franel numbers, Adv. Appl. Math., 51 (2013), 524–535. doi: 10.1016/j.aam.2013.06.004. doi: 10.1016/j.aam.2013.06.004
![]() |
[31] | Z. W. Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. Biquarterly, 32 (2015), 189–218. |
[32] |
Z. W. Sun, Congruences involving g_n(x) = \sum_{k = 0}^n \binom nk^2 \binom2kkx^k, Ramanujan J., 40 (2016), 511–533. doi: 10.1007/s11139-015-9727-3. doi: 10.1007/s11139-015-9727-3
![]() |
[33] |
Z. W. Sun, Two new kinds of numbers and related divisibility results, Colloq. Math., 154 (2018), 241–273. doi: 10.4064/cm7405-1-2018
![]() |
[34] | Z. W. Sun, List of Conjectural series for powers of \pi and other constants, In: Ramanujan's Identities, Harbin Institute of Technology Press, 2021,205–261. |
[35] | R. Tauraso, A supercongruence involving cubes of Catalan numbers, Integers, 20 (2020), #A44, 1–6. |
[36] | D. Zagier, Integral solutions of Apéry-like recurrence equations, In: Groups and symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes, Vol. 47, Providence, RI: American Mathematical Society, 2009,349–366. |
1. | Zhao Shen, On a Conjecture of J. Shallit About Apéry-Like Numbers, 2022, 1073-7928, 10.1093/imrn/rnac047 | |
2. | Zhi-Hong Sun, Supercongruences involving products of three binomial coefficients, 2023, 117, 1578-7303, 10.1007/s13398-023-01458-y | |
3. | Guoshuai Mao, Zhengkai Zhao, Proof of Some Congruence Conjectures of Z.-H. Sun, 2025, 2731-8648, 10.1007/s11464-024-0111-8 |