In this paper, we establish a new (p,q)-integral identity. Then, the obtained result is employed to derive (p,q)-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.
Citation: Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas. On Simpson type inequalities for generalized strongly preinvex functions via (p,q)-calculus and applications[J]. AIMS Mathematics, 2021, 6(9): 9236-9261. doi: 10.3934/math.2021537
[1] | D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096 |
[2] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266 |
[3] | A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086 |
[4] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[5] | Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479 |
[6] | Mohra Zayed, Waseem Ahmad Khan, Cheon Seoung Ryoo, Ugur Duran . An exploratory study on bivariate extended q-Laguerre-based Appell polynomials with some applications. AIMS Mathematics, 2025, 10(6): 12841-12867. doi: 10.3934/math.2025577 |
[7] | Mohamed Abdalla . On Hankel transforms of generalized Bessel matrix polynomials. AIMS Mathematics, 2021, 6(6): 6122-6139. doi: 10.3934/math.2021359 |
[8] | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167 |
[9] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[10] | Ruma Qamar, Tabinda Nahid, Mumtaz Riyasat, Naresh Kumar, Anish Khan . Gould-Hopper matrix-Bessel and Gould-Hopper matrix-Tricomi functions and related integral representations. AIMS Mathematics, 2020, 5(5): 4613-4623. doi: 10.3934/math.2020296 |
In this paper, we establish a new (p,q)-integral identity. Then, the obtained result is employed to derive (p,q)-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.
The Bessel function [1,2,3,4,5,6,7,8] has great importance in the field of mathematics, physics and engineering due to its applications. Researchers and mathematicians developed a new class of Bessel functions in the sense of multi-index functions, which motivate the future research work in the field of special functions and fractional calculus. The theory of multi-index multivariate Bessel function discussed by Dattoli et al. [9] in 1997.
Generalized multi-index Mittag-Leffler function was defined by Choi et al. in [10]. Kamarujjama et al. [11] introduced and studied the extended multi-index Bessel function. Suthar et al. [12] discussed a large number of results for the generalized multi-index Bessel function. Recently, many authors worked on generalized multi-index Bessel functions [13,14,15]. We describe extension of extended generalized multi-index Bessel function (E1GMBF) which is generalized version of generalized multi-index Bessel function.
Definition 1.1. [11] Kamarujjama et al. introduced and studied the extended generalized multi-index Bessel function, defined as:
J(αj)m,γ,c(βj)m,k,b,δ(z)=∑∞n=0(γ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+1+b2),m∈N. | (1.1) |
where αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0.
Definition 1.2. [16] Generalized fractional integral operator is defined for α,ˊα,β,ˊβ,λ∈C, and x>0 as follows:
Iα,ˊα,β,ˊβ,λ0+f(t)=x−αΓ(λ)∫x0(x−t)λ−1t−ˊαF3(α,ˊα,β,ˊβ;λ;1−tx;1−xt)f(t)dt, | (1.2) |
and
Iα,ˊα,β,ˊβ,λ−f(t)=x−ˊαΓ(λ)∫∞x(t−x)λ−1t−αF3(α,ˊα,β,ˊβ;λ;1−xt;1−tx)f(t)dt. | (1.3) |
where F3 is the Appell function.
Definition 1.3. [17] Appell function F3 also called the (Horn function) and defined for α,ˊα,β,ˊβ,λ∈C, as follows:
F3(α,ˊα,β,ˊβ;λ;x;y)=∞∑m,n=0(α)m(ˊα)n(β)m(ˊβ)n(λ)m+nm!n!xmyn,max{|x|,|y|}<1 | (1.4) |
Definition 1.4. [18,19] The integral representation of gamma function is defined for ℜ(s)>0, as follows:
Γ(s)=∫∞0us−1e−udu. | (1.5) |
Definition 1.5. [18,19] Classical beta function is defined for ℜ(x)>0 and ℜ(y)>0, as follows:
B(x,y)=∫10tx−1(1−t)y−1dt | (1.6) |
=Γ(x)Γ(y)Γ(x+y). | (1.7) |
Definition 1.6. [20,21] Extended beta function is defined for ℜ(x)>0, ℜ(y)>0, ℜ(p)>0 as follows:
Bp(x,y)=∫10tx−1(1−t)y−1exp(−pt(1−t))dt, | (1.8) |
if p=0, then extended beta function Bp(x,y) reduces into the classical beta function.
Definition 1.7. [22] Generalized Wright type hypergeometric function is defined as follows:
rψs(z)=rψs[(yj,hj)1,r(xi,qi)1,s|z]≡∑∞n=0∏rj=1Γ(yj+hjn)∏si=1Γ(xi+qin)znn!. | (1.9) |
where z∈C, yj,xi∈C and hj,qi∈ℜ (j=1,2⋯r;i=1,2⋯s).
Definition 1.8. [23] Laplace transform is defined ℜ(s)>0, as follows:
Ł[f(t)]=f(s)=∫∞0e−stf(t)dt. | (1.10) |
Definition 1.9. [24] Euler transform of a function f(z) is defined as follows:
B{f(z);a,b}=∫10za−1(1−z)b−1f(z)dz(ℜ(a)>0,ℜ(b)>0). | (1.11) |
Definition 1.10. [24] Mellin transform of the function f(z) is defined as follows:
M{f(z);s}=∫∞0zs−1f(z)dz=f∗(s),ℜ(s)>0, | (1.12) |
then inverse Mellin transform
f(z)=M−1[f∗(s);z]=12πi∫λ+i∞λ−i∞f∗z−sds,λ>0. | (1.13) |
Definition 1.11. The Pochhammer symbol defined as
(δ)n={1,n=0δ(δ+1)(δ+2)⋯(δ+n−1),n=1,2⋯ | (1.14) |
or
(δ)n=Γ(δ+n)Γ(δ) | (1.15) |
(δ)kn=Γ(δ+kn)Γ(δ), | (1.16) |
where δ∈C and n,k∈N.
Definition 1.12. The E1GMBF J(αj)m,γ,c(βj)m,k,b,δ(z) is defined in the following way:
Jc,b,δ(γ,d);k[(αj,βj)m;(z;p)]=Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2). | (1.17) |
where αj,βj,b,d,δ,γ,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0.
Remark 1.1. The E1GMBF can also be write as
Jc,b,δ(γ,d);k[(αj,βj)m;(z;p)]=Jb,δ(γ,d);k[(αj,βj)m;(cz;p)]. | (1.18) |
In this section, we establish some particular special cases of E1GMBF as below
● if we set p=0, then E1GMBF reduce into extended multi-index Bessel function
Jc,b,δγ;k[(αj,βj)m;(z)]=J(αj)m,γ,c(βj)m,k,b,δ(z)=∞∑n=0(c)n(γ)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2). | (2.1) |
● when p=0, c=b=δ=1, then
J1,1,1γ;k[(αj,βj)m;(z)]=J(αj)m,γ(βj)m,k(z)=∞∑n=0(γ)kn(−z)nn!∏mj=1Γ(αjn+βj+1). | (2.2) |
● if we put p=0, c=b=δ=m=1, then E1GMBF reduce to the generalized Bessel-Maitland function as,
J1,1,1γ;k[(α,β);(z)]=Jα,γβ,k(z)=∞∑n=0(γ)kn(−z)nn!Γ(αn+β+1). | (2.3) |
● when p=0, k=0, δ=c=b=1, then E1GMBF reduce to the Bessel-Maitland function as given below
J1,1,1γ[(α,β);(z)]=Jαβ(z)=∞∑n=0(−z)nn!Γ(αn+β+1). | (2.4) |
● if we put p=0, c=δ=1, z=−z and set βj=βj−1, then E1GMBF reduce to the multi-index Mittag Leffler function as given below
J1,b,1γ;k[(αj,βj)m;(−z)]=Eγ,k[(αj,β)j)mj=1]=∞∑n=0(γ)kn∏mj=1(αjn+βj)znn!. | (2.5) |
● if we set p=k=0, b=c=m=1, α1=δ=1, β1=ν and replace z=z24 then E1GMBF reduce into Bessel function of fist kind
J1,1,1γ;0[(1,ν)m;(z24)]=∞∑n=0(−z)nn!Γ(n+ν+1). | (2.6) |
In this section, we investigate the E1GMBF, and studied some important observations. Moreover, we develop integral and differential of E1GMBF in the form of theorems.
Theorem 3.1. The E1GMBF can be able to represent with αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0 then following relation holds
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−pt(1−t)J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt. | (3.1) |
Proof. Using the definition of Eq (1.8) in (1.17), we obtain
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=∞∑n=0{∫10tγ+kn−1(1−t)d−γ−1e−pt(1−t)}×cn(d)kn(−z)nB(γ,d−γ)(δ)n∏mj=1Γ(αjn+βj+1+b2)dt. | (3.2) |
Changing the order of summation and integration, and after simplification of Eq (3.2), we get
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−pt(1−t)∞∑n=0cn(d)kn(−tkz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)dt. | (3.3) |
Using Eq (1.1) in Eq (3.3), we obtain the desired result in theorem 3.1.
Corollary 3.1. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Taking t=r1+r in theorem 3.1, then following relation holds
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫∞0rγ−1(1+r)de−p(1+r)2rJ(αj)m,γ,c(βj)m,k,b,δ(rkz(1+r)k)dr. | (3.4) |
Corollary 3.2. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0 and consider t=cos2θ in theorem 3.1, then following relation holds
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=2B(γ,d−γ)∫π20(cosθ)2γ−1(sinθ)2d−2γ−1exp(−psin2θcos2θ)×J(αj)m,γ,c(βj)m,k,b,δ(zcos2kθ)dθ. | (3.5) |
Theorem 3.2. Let α,β,b,δ,γ,c∈C be such that ℜ(α)>max{0;ℜ(k)−1}; k>0, ℜ(β)>−1, ℜ(γ)>0, ℜ(δ)>0, then the following recurrence relation holds in the definition (1.17) for j=1 as
Jk,c,(γ,d);kδ,b,α,β(z;p)=(β+b+12)Jk,c,(γ,d);kδ,b,α,β+1(z;p)+αzddzJk,c,(γ,d);kδ,b,(α,β+1)(z;p). | (3.6) |
Proof. Consider the definition of (1.17) for j=1, and the right side of the Eq (3.6), we get
(β+b+12)Jk,c,(γ,d);kδ,b,(α,β+1)(z;p)+αzddzJk,c,(γ,d);kδ,b,(α,β+1)(z;p)=(β+b+12)∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)nΓ(αn+β+1+1+b2)+αzddz∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)nΓ(αn+β+1+1+b2)=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(δ)n×[(β+b+12)(−z)nΓ(αn+β+1+1+b2)+αzddz(−z)nΓ(αn+β+1+1+b2)]=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(αn+β+1+b2)(δ)nΓ(αn+β+1+1+b2)=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−z)n(δ)nΓ(αn+β+1+b2)=Jk,c,(γ,d);kδ,b,(α,β)(z;p) | (3.7) |
Theorem 3.3. For the E1GMBF we have the following higher derivative formula for δ=1, is given below
dndznJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(−c)n(d)k(d+k)k⋯(d+(n−1)k)kJk,c,(γ+kn,d+kn);k1,b,(αj,βj+αjn)m(z;p). | (3.8) |
where αj,βj,b,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0.
Proof. Differentiation with respect to z in Eq (1.17), we get
ddzJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=∞∑n=1Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−1)nnzn−1n!∏mj=1Γ(αjn+βj+1+b2)=∞∑n=1Bp(γ+k(n−1)+k,d−γ)B(γ,d−γ)(−c)n(d)k(n−1)+knzn−1n(n−1)!∏mj=1Γ(αjn+βj+1+b2) | (3.9) |
we can write the pochhammer symbols as
(d)k(n−1)+k=Γ(d+k(n−1)+k)Γ(d)=Γ(d+k(n−1)+k)Γ(d+k)Γ(d+k)Γ(d)=(d+k)(n−1)k(d)k. | (3.10) |
Now, using the Eq (3.10) in Eq (3.9), we have
ddzJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(−c)(d)k∞∑n=1Bp(γ+k+k(n−1),d−γ)(−c)n−1(d+k)k(n−1)zn−1B(γ,d−γ)(n−1)!∏mj=1Γ(αj(n−1)+αj+βj+1+b2)=(−c)(d)kJk,c,(γ+k,d+k);k1,b,(αj,βj+αj)m(z;p). | (3.11) |
Again differentiation with respect to z in Eq (3.9), we have
d2dz2Jk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(−c)2(d)k(d+k)kJk,c,(γ+2k,d+2k);k1,b,(αj,βj+2αj)m(z;p), |
continue this technique up to n times, we obtain the desired result which state in the theorem 3.3.
Theorem 3.4. Let αj,βj,d,γ,c,λ∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0 then the following relation holds as:
dndzn{zβ1⋯βm−1Jk,c,(γ,d);k1,−1,(αj,βj)m(λzα1⋯αm;p)}=Jk,c,(γ,d);k1,−1,(αj,βj−n)m(λzα1⋯αm;p)zn−β1⋯−βm+1. | (3.12) |
Proof. Replacing z by λzαj⋯αj, b=−1 and δ=1 in Eq (1.17), take its product zβ1⋯βj, and after taking differentiation with respect to z up to n times, we obtain our required result.
In this section, we establish some integral transforms (Euler, Mellin and Laplace transform) of E1GMBF in the form of theorems, and also discuss its sub cases.
Theorem 4.1. Euler transform of E1GMBF holds for αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0.
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=Jk,c,(γ,d);kδ,−1,(αj,βj+1)m(λ;p). | (4.1) |
Proof. Apply the definition of Euler transform (1.9) in Eq (1.17), we get
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=∫10zβ1⋯βm−1(1−z)1−1∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)×cn(d)kn(−1)n(λzαj)n(δ)n∏mj=1Γ(αjn+βj)dz. | (4.2) |
Interchanging the order of summations and integration in Eq (4.2), we get
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−λ)n(δ)n∏mj=1Γ(αjn+βj)×∫10zβ1⋯βm+αjn−1(1−z)1−1dz. | (4.3) |
Using the Eq (1.6) and Eq (1.7) in Eq (4.3), then we obtain
B{Jk,c,(γ,d);kδ,−1,(αj,βj)m(λzαj;p);β1⋯βm,1}=∞∑n=0Bp(γ+kn,d−γ)cn(d)kn(−λ)nB(γ,d−γ)(δ)n∏mj=1Γ(αjn+βj+1)=Jk,c,(γ,d);kδ,−1,(αj,βj+1)m(λ;p). | (4.4) |
Theorem 4.2. The Mellin transform of E1GMBF is given by for αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Then the following relation holds
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)Γ(δ)Γ(d)Γ(d−γ+s)[Γ(γ)]2Γ(d−γ)3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|−cz]. |
Proof. By applying the definition of the Mellin transform to the E1GMBF, we have
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=∫∞0ps−1Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)dp. | (4.5) |
Using theorem 3.1 in right side of Eq (4.5), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=1B(γ,d−γ)∫∞0ps−1{∫10tγ−1(1−t)d−γ−1e−pt(1−t)J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt}dp. | (4.6) |
Interchanging the order of integration in Eq (4.6), then we have
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1J(αj)m,γ,c(βj)m,k,b,δ(tkz){∫∞0ps−1e−pt(1−t)dp}dt. | (4.7) |
Now, putting pt(1−t)=u in Eq (4.7), and applying the mathematical formula of Eq (1.5), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,d−γ)∫10tγ+s−1(1−t)d−γ+s−1J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt. | (4.8) |
Using Eq (1.1), and interchanging the order of integration and summation in Eq (4.8), we obtain
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,d−γ)∞∑n=0(c)n(γ)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2)∫10tγ+s+kn−1(1−t)d−γ+s−1dt. | (4.9) |
Using Eq (1.6) and Eq (1.7) in Eq (4.9), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,d−γ)∞∑n=0(c)n(γ)kn(−z)n(δ)n∏mj=1Γ(αjn+βj+1+b2)Γ(γ+s+kn)Γ(d−γ+s)Γ(2s+kn+d). | (4.10) |
After simplification in Eq (4.10), we get
M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)Γ(δ)Γ(d)Γ(d−γ+s)[Γ(γ)]2Γ(d−γ)∞∑n=0Γ(γ+kn)(−cz)nΓ(δ+n)∏mj=1Γ(αjn+βj+1+b2)Γ(γ+s+kn)Γ(2s+kn+d)=Γ(s)Γ(δ)Γ(d)Γ(d−γ+s)[Γ(γ)]2Γ(d−γ)3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|−cz]. |
Corollary 4.1. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Taking s=1 in theorem 4.2, then the following relation holds
∫∞0Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)dp=(d−γ)Γ(δ)Γ(γ)3ψm+2[(γ,k)(γ+1,k)(1,1)(δ,1)(d+2,k)(βj+1+b2,αj)|mj=1|−cz]. | (4.11) |
Corollary 4.2. Let αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0. Applying the inverse Mellin transform on left and right side of Eq (1.17), we gain the important complex integral representation as follows:
M−1{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=12πiΓ(γ)Γ(d−γ)∫λ+i∞λ−i∞Γ(s)Γ(δ)Γ(d−γ+s)×3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|−cz]p−sds. | (4.12) |
Theorem 4.3. The Laplace transform of E1GMBF is given as for αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0.
Ł(Jk,c,(γ,d);k1,b,(αj,βj)m(z;p))=1sJk,c,(γ,d);k1,b,(αj,βj)m(1s;p). | (4.13) |
Proof. Using the definition of Laplace transform (1.8) in Eq (1.17), we have
Ł(Jk,c,(γ,d);k1,b,(αj,βj)m(z;p))=∫∞0e−st∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−t)nn!∏mj=1Γ(αjn+βj+1+b2)dt=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−1)nn!∏mj=1Γ(αjn+βj+1+b2)∫∞0e−sttndt=∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−1)nn!∏mj=1Γ(αjn+βj+1+b2)n!sn+1=1s∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)cn(d)kn(−s)n∏mj=1Γ(αjn+βj+1+b2)=1sJk,c,(γ,d);k1,b,(αj,βj)m(1s;p). | (4.14) |
In this section, the authors represent the E1GMBF in terms of Laguerre polynomial, and Whittaker function in the form of theorems.
Theorem 5.1. Let αj,βj,b,d,δ,γ,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0, then the E1GMBF holds
e2pJk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=Γ(δ)∑∞a,b=0Lb(p)La(p)Γ(b+d−γ+1)Γ(γ)B(γ,d−γ)×3ψm+2[(γ,k)(a+γ+1,k)(1,1)(δ,1)(a+b+d+2,k)(βj+1+b2,αj)|mj=1|−cz]. | (5.1) |
Proof. We being recalling the valuable identity [25] which is
e−pt(1−t)=e−2p∞∑a,b=0Lb(p)La(p)ta+1(1−t)b+1,(0<t<1). | (5.2) |
Applying Eq (5.2) in theorem 3.1, we get
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−2p∞∑a,b=0Lb(p)La(p)ta+1(1−t)b+1J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−2p∞∑a,b=0Lb(p)La(p)ta+1(1−t)b+1×∞∑n=0(c)n(γ)kn(−tkz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)dt. | (5.3) |
Interchanging the order of integration and summations in Eq (5.3), we obtain
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=e−2pB(γ,d−γ)∞∑a,b,n=0Lb(p)La(p)(γ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)∫10ta+kn+γ(1−t)b+d−γdt. | (5.4) |
Using Eq (1.6) and Eq (1.7) in Eq (5.4), then we have
e2pJk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∞∑a,b,n=0Lb(p)La(p)(γ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+1+b2)Γ(a+kn+γ+1)Γ(b+d−γ+1)Γ(a+b+d+kn+2)=Γ(δ)∑∞a,b=0Lb(p)La(p)Γ(b+d−γ+1)Γ(γ)B(γ,d−γ)×3ψm+2[(γ,k)(a+γ+1,k)(1,1)(δ,1)(a+b+d+2,k)(βj+1+b2,αj)|mj=1|−cz]. | (5.5) |
Theorem 5.2. For the E1GMBF with αj,βj,b,δ,γ,c∈C (j=1,2⋯m) be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>−1, ℜ(γ)>0, ℜ(δ)>0, we have
e3p2Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=e−pB(γ,d−γ)∞∑a,n=0La(p)(δ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+b+12)×Γ(d−γ+1)pγ+kn2W−1+γ−2d−kn2,γ+kn2. | (5.6) |
Proof. Allowing for the following equality e−pt(1−t)=e(−p1−t)e(−pt) and via generating function related to the Laguerre polynomial [25], we obtain
e−pt(1−t)=e−pe−pt(1−t)∞∑a=0La(p)tn. | (5.7) |
Using Eq (5.7) in Eq (1.17), we have
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,d−γ)∫10tγ−1(1−t)d−γ−1e−pe−pt(1−t)∞∑a=0La(p)tnJ(αj)m,γ,c(βj)m,k,b,δ(tkz)dt=e−pB(γ,d−γ)∞∑a,n=0La(p)(δ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+b+12)∫10tγ+kn−1(1−t)d−γe−ptdt. | (5.8) |
Now, integral representation of Whittaker function is defined [26] as follows
∫10tμ−1(1−t)ν−1e−ptdt=Γ(ν)pμ−12e−p2W1−μ−2ν2,μ2(p). | (5.9) |
Using Eq (5.9) in Eq (5.8), then we have
Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=e−pB(γ,d−γ)∞∑a,n=0La(p)(δ)kn(−cz)n(δ)n∏mj=1Γ(αjn+βj+b+12)×Γ(d−γ+1)pγ+kn2e−p2W−1+γ−2d−kn2,γ+kn2. | (5.10) |
Theorem 5.3. Let αj,βj,b,d,δ,γ,σ,η,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0 the E1GMBF holds
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)(λ−ˊα−σn+ηn−α−β+1)(γ)(d−γ)(δ+n)(λ−ˊα−σn+ηn−β+1)×(1−ˊα−σn+ηn+ˊβ)(1−σn+ηn)(1−σn+ηn+ˊβ)(λ−ˊα−σn+ηn−α+1)(αjn+βj+1+b2)|mj=1]. |
Proof. Consider the composition of generalized fractional integral operator having Appell function as its kernel with the E1GMBF,
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=x−αΓ(λ)∫x0(x−t)λ−1t−ˊαF3(α,ˊα,β,ˊβ;λ;1−tx;1−xt)∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)×cn(d)kn(−1)nt−σn+ηn(δ)n∏mj=1Γ(αjn+βj+1+b2)dt=x−α+λ−1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∫x0(1−tx)λ−1t−ˊα−σn+ηn∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!×(1−tx)m(1−xt)sdt=x−α+λ−1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫x0(1−tx)m+λ−1×(1−xt)st−ˊα−σn+ηndt. | (5.11) |
Putting these values tx=τ ⇒ dτ=xdt, t=x⇒τ=1 and t=0⇒τ=0 in Eq (5.11), then we have
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=x−α+λ−1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫10(1−τ)m+λ−1×(1−1τ)s(xτ)−ˊα−σn+ηnxdτ=x−α−ˊα+λΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(xηxσ;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!∫10(1−τ)s+m+λ−1×τ−ˊα−σn+ηn−sdτ. | (5.12) |
Using Eqs (1.6) and (1.7) in Eq (5.12), we obtain
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)−x−α+λ−ˊαJk,c,(γ,d);kδ,b,(αj,βj)m(xηxσ;p)|∞n=0=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!Γ(s+m+λ)Γ(−ˊα−σn+ηn−s+1)Γ(λ)Γ(m+λ−ˊα−σn+ηn+1)=Γ(−ˊα−σn+ηn+1)Γ(λ−ˊα−σn+ηn+1)∞∑m=0(α)m(β)m(λ−ˊα−σn+ηn+1)mm!∞∑s=0(ˊα)s(ˊβ)s(ˊα+σn−ηn)ss!=Γ(−ˊα−σn+ηn+1)Γ(λ−ˊα−σn+ηn−α−β+1)Γ(ˊα+σn−ηn)Γ(σn−ηn−ˊβ)Γ(λ−ˊα−σn+ηn−α+1)Γ(λ−ˊα−σn+ηn−β+1)Γ(σn−ηn)Γ(ˊα+σn−ηn−ˊβ)=Γ(λ−ˊα−σn+ηn−α−β+1)Γ(1−ˊα−σn+ηn+ˊβ)Γ(1−σn+ηn)Γ(λ−ˊα−σn+ηn−α+1)Γ(λ−ˊα−σn+ηn−β+1)Γ(1−σn+ηn+ˊβ). | (5.13) |
we have the required result
(Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(t−σ+η;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)(λ−ˊα−σn+ηn−α−β+1)(γ)(d−γ)(δ+n)(λ−ˊα−σn+ηn−β+1)×(1−ˊα−σn+ηn+ˊβ)(1−σn+ηn)(1−σn+ηn+ˊβ)(λ−ˊα−σn+ηn−α+1)(αjn+βj+1+b2)|mj=1]. |
Theorem 5.4. Let αj,βj,b,d,δ,γ,σ,η,c∈C (j=1,2⋯m), p≥0 be such that ∑mj=1ℜ(αj)>max{0;ℜ(k)−1}; k>0, ℜ(βj)>0, ℜ(d)>0, ℜ(γ)>0, ℜ(δ)>0, then the E1GMBF holds true:
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)((d−σ)n(η+b)n−β)((d−σ)n(η+b)n+α−λ+ˊβ)(γ)(d−γ)(δ+n)((d−σ)n(η+b)n)((d−σ)n(η+b)n+α−β)×((d−σ)n(η+b)n+α−λ+ˊα)((d−σ)n(η+b)n+α−λ+ˊα+ˊβ)(αjn+βj+1+b2)|mj=1]. |
Proof. Consider the composition of right side generalized fractional integral operator with the E1GMBF \newpage
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)=x−ˊαΓ(λ)∫∞x(t−x)λ−1t−αF3(α,ˊα,β,ˊβ;λ;1−xt;1−tx)∞∑n=0Bp(γ+kn,d−γ)B(γ,d−γ)×cn(d)kn(−1)ntσn−dnηn+bn(δ)n∏mj=1Γ(αjn+βj+1+b2)dt=x−ˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∫∞x(1−xt)λ−1t(σ−d)n(η+b)n−α+λ−1∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!×(1−xt)m(1−tx)sdt=x−ˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫∞x(1−xt)λ+m−1(1−tx)s×t(σ−d)n(η+b)n−α+λ−1dt. | (5.14) |
Putting these values xt=u ⇒ −xu2du=dt, t=x⇒u=1 and t=∞⇒u=0 in Eq (5.14), then we have
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)−x−ˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|∞n=0=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!∫01(1−u)λ+m−1(1−1u)s(xu)(σ−d)n(η+b)n−α+λ−1(−xu2)du=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!x(σ−d)n(η+b)n−α+λ∫10(1−u)λ+m+s−1u(d−σ)n(η+b)n+α−λ−s−1du. | (5.15) |
Using Eqs (1.6) and (1.7) in Eq (5.15), we have
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)−x−ˊα+λ−αJk,c,(γ,d);kδ,b,(αj,βj)m(xσ−dη+b;p)|∞n=0=∞∑m,s=0(α)m(ˊα)s(β)m(ˊβ)s(−1)sλm+sm!s!Γ(λ+m+s)Γ((d−σ)n(η+b)n+α−λ−s)Γ(λ)Γ((d−σ)n(η+b)n+α+m)=Γ((d−σ)n(η+b)n+α−λ)Γ((d−σ)n(η+b)n+α)∞∑m=0(α)m(β)m((d−σ)n(η+b)n+α)mm!∞∑s=o(ˊα)s(ˊβ)s(1−(d−σ)n(η+b)n−α+λ)ss!=Γ((d−σ)n(η+b)n+α−λ)Γ((d−σ)n(η+b)n−β)Γ((d−σ)n(η+b)n)Γ((d−σ)n(η+b)n+α−β)Γ(1−(d−σ)n(η+b)n−α+λ)Γ(1−(d−σ)n(η+b)n−α+λ−ˊα−ˊβ)Γ(1−(d−σ)n(η+b)n−α+λ−ˊα)Γ(1−(d−σ)n(η+b)n−α+λ−ˊβ)=Γ((d−σ)n(η+b)n−β)Γ((d−σ)n(η+b)n+α−λ+ˊβ)Γ((d−σ)n(η+b)n+α−λ+ˊα)Γ((d−σ)n(η+b)n)Γ((d−σ)n(η+b)n+α−β)Γ((d−σ)n(η+b)n+α−λ+ˊα+ˊβ). |
We have a desired result
(Iα,ˊα,β,ˊβ,λ−Jc,b,δ(γ,d);k[(αj,βj)m;(tσ−dη+b;p)])(x)=∞∑n=0Bp(γ+kn,d−γ)(−c)nxσn−ηn+α−λ+ˊαΓ[(d+kn)(δ)((d−σ)n(η+b)n−β)((d−σ)n(η+b)n+α−λ+ˊβ)(γ)(d−γ)(δ+n)((d−σ)n(η+b)n)((d−σ)n(η+b)n+α−β)×((d−σ)n(η+b)n+α−λ+ˊα)((d−σ)n(η+b)n+α−λ+ˊα+ˊβ)(αjn+βj+1+b2)|mj=1]. |
In this research, we described extension of extended generalized multi-index Bessel function (E1GMBF) and developed some results with the Laguerre polynomial and Whittaker function, integral representation, derivatives and solved integral transforms (beta transform, Laplace transform, Mellin transforms). Moreover, we discussed the composition of the generalized fractional integral operator having Appell function as a kernel with the E1GMBF and obtained results in terms of Wright functions.
The authors declare that they have no competing interests.
[1] | F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[2] | H. Exton, q-Hypergeometric functions and applications, New York: Halstead Press, 1983. |
[3] |
P. P. Raychev, R. P. Roussev, Yu. F. Smirnov, The quantum algebra SUq(2) and rotational spectra of deformed nuclei, J. Phys. G: Nucl. Part. Phys., 16 (1990), 137–141. doi: 10.1088/0954-3899/16/8/006
![]() |
[4] |
D. N. Page, Information in black hole radiation, Phys. Rev. Lett., 71 (1993), 3743–3746. doi: 10.1103/PhysRevLett.71.3743
![]() |
[5] |
A. M. Gavrilik, q-Serre relations in Uq(un) and q-deformed meson mass sum rules, J. Phys. A: Math. Gen., 27 (1994), L91–L94. doi: 10.1088/0305-4470/27/3/006
![]() |
[6] | H. Gauchman, Integral inequalities in q-calculus, J. Comput. Appl. Math., 47 (2002), 281–300. |
[7] |
T. Ernst, A method for q-calculus, J. Nonlinear Math. Phys., 10 (2003), 487–525. doi: 10.2991/jnmp.2003.10.4.5
![]() |
[8] | G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl., 289 (2004), 650–665. |
[9] |
B. Ahmad, S. K. Ntouyas, I. K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Differ. Equations, 2012 (2012), 140. doi: 10.1186/1687-1847-2012-140
![]() |
[10] |
A. Dobrogowska, A. Odzijewicz, Second order q-difference equation solvable by factorization method, J. Comput. Appl. Math., 193 (2006), 319–346. doi: 10.1016/j.cam.2005.06.009
![]() |
[11] |
M. E. H. Ismail, P. Simeonov, q-difference operators for orthogonal polynomials, J. Comput. Appl. Math., 233 (2009), 749–761. doi: 10.1016/j.cam.2009.02.044
![]() |
[12] | Y. Miao, F. Qi, Several q-integral inequalities, J. Math. Inequal., 3 (2009), 115–121. |
[13] | M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation, Proc. Am. Math. Soc., 138 (2010), 1733–1738. |
[14] | B. Ahmad, Boundary-value problems for nonlinear third-order q-difference equations, Electron. J. Differ. Equations, 2011 (2011), 1–7. |
[15] | T. Ernst, A Comprehensive treatment of q-Calculus, Springer: Basel, 2012. |
[16] | A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, Springer: Science+Business Media, 2013. |
[17] | V. Kac, P. Cheung, Quantum calculus, Springer: New York, 2002. |
[18] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equations, 2013 (2013), 282. doi: 10.1186/1687-1847-2013-282
![]() |
[19] |
H. Kalsoom, J. D. Wu, S. Hussain, M. A. Latif, Simpson's type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11 (2019), 768. doi: 10.3390/sym11060768
![]() |
[20] |
M. Vivas-Cortez, M. Aamir Ali, A. Kashuri, I. Bashir Sial, Z. Zhang, Some new Newton's type Integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476
![]() |
[21] |
S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlaopon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632
![]() |
[22] | J. Prabseang, K. Nonlaopon, S. K. Ntouyas, On the refinement of quantum Hermite-Hadamard inequalities for convex functions, J. Math. Inequal., 14 (2020), 875–885. |
[23] | J. Prabseang, K. Nonlaopon, J. Tariboon, Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions, J. Math. Inequal., 13 (2019), 675–686. |
[24] | M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiabble convex functions, J. Math. Inequal., 10 (2016), 1013–1018. |
[25] |
W. Yang, Some new Fejér type inequalities via quantum calculus on finite intervals, ScienceAsia, 43 (2017), 123–134. doi: 10.2306/scienceasia1513-1874.2017.43.123
![]() |
[26] |
R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-paramenter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711–L718. doi: 10.1088/0305-4470/24/13/002
![]() |
[27] | M. Tunç, E. Göv, (p,q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1–13. |
[28] | M. Tunç, E. Göv, Some integral inequalities via (p,q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1–12. |
[29] | M. Kunt, Î. Îșcan, N. Alp, M. Z. Sarakaya, (p,q)-Hermite-Hadamard inequalities and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. R. Acad. Cienc., 112 (2018), 969–992. |
[30] | U. Duran, M. Acikgoz, A. Esi, S. Araci, A note on the (p,q)-Hermite polynomials, Appl. Math. Inf. Sci., 12 (2018), 227–231. |
[31] |
H. Kalsoom, M. Amer, M.-u.-D. Junjua, S. Hussain, G. Shahzadi, Some (p,q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi-convex functions, Mathematics, 7 (2019), 683. doi: 10.3390/math7080683
![]() |
[32] |
S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p,q)-derivative operator and associated divided differences, J. Inequal. Appl., 2016 (2016), 301. doi: 10.1186/s13660-016-1240-8
![]() |
[33] |
P. N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas, Results Math., 73 (2018), 1–21. doi: 10.1007/s00025-018-0773-1
![]() |
[34] |
M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some opial-type integral inequalities via (p,q)-calculus, J. Inequal. Appl., 2019 (2019), 295. doi: 10.1186/s13660-019-2247-8
![]() |
[35] |
J. Prabseang, K. Nonlaopon, J. Tariboon, (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex functions, Axioms, 8 (2019), 68. doi: 10.3390/axioms8020068
![]() |
[36] |
M. A. Latif, M. Kunt, S. S. Dragomir, Î. Îșcan, Post-quantum trapezoid type inequalities, AIMS Math., 5 (2020), 4011–4026. doi: 10.3934/math.2020258
![]() |
[37] | J. Soontharanon, T. Sitthiwirattham, On fractional (p,q)-calculus, Adv. Differ. Equations, 2020 (2020), 35. |
[38] | S. Thongjob, K. Nonlaopon, S. K. Ntouyas, Some (p,q)-Hardy type inequalities for (p,q)-integrable functions, AIMS Math., 6 (2020), 77–89. |
[39] |
F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via (p,q)-calculus, Mathematics, 9 (2021), 698. doi: 10.3390/math9070698
![]() |
[40] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2
![]() |
[41] | J. Lee, G. E. Vîlcu, Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms, Taiwan J. Math., 19 (2015), 691–702. |
[42] |
G. E. Vîlcu, An optimal inequality for lagrangian submanifolds in complex space forms involving casorati curvature, J. Math. Anal. Appl., 465 (2018), 1209–1222. doi: 10.1016/j.jmaa.2018.05.060
![]() |
[43] |
M. Aquib, J. E. Lee, G. E. Vîlcu, D. W. Yoon, Classification of casorati ideal lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. doi: 10.1016/j.difgeo.2018.12.006
![]() |
[44] |
A. D. Vîlcu, G. E. Vîlcu, On quasi-homogeneous production functions, Symmetry, 11 (2019), 976. doi: 10.3390/sym11080976
![]() |
[45] | A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B., 28 (1986), 1–9. |
[46] |
T. Weir, B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
![]() |
[47] | M. A. Noor, Generalized convex functions, Pan-Am. Math. J., 4 (1994), 73–89. |
[48] |
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057
![]() |
[49] | X. J. Long, J. W. Peng, Semi-B-preinvex functions, J. Optim. Theory Appl., 131 (2006), 301–305. |
[50] |
G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math., 31 (2015), 173–180. doi: 10.37193/CJM.2015.02.04
![]() |
[51] |
A. Kiliçman, W. Saleh, Generalized preinvex functions and their applications, Symmetry, 10 (2018), 493. doi: 10.3390/sym10100493
![]() |
[52] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. |
[53] | M. U. Awan, G. Cristescu, M. A. Noor, L. Riahi, Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions, UPB Sci. Bull. Ser. A., 79 (2017), 33–44. |
[54] | M. U. Awan, M. A. Noor, K. I. Noor, Some integral inequalities using quantum calculus approach, Int. J. Anal. Appl., 15 (2017), 125–137. |
[55] | M. A. Noor, G. Cristescu, M. U. Awan, Bounds having Riemann type quantum integrals via strongly convex functions, Studia Sci. Math. Hung., 54 (2017), 221–240. |
[56] |
M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Some new q-integral Inequalities using generalized quantum montgomery identity via preinvex functions, Symmetry, 12 (2020), 553. doi: 10.3390/sym12040553
![]() |
[57] | T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. |
[58] |
M. A. Noor, K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697–706. doi: 10.1016/j.jmaa.2005.05.014
![]() |
[59] |
Y. Deng, M. U. Awan, S. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics, 7 (2019), 751. doi: 10.3390/math7080751
![]() |
[60] | L. Akin, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 535–555. |
[61] |
S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized K-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593–602. doi: 10.2478/amns.2020.2.00064
![]() |
[62] |
D. Kaur, P. Agarwal, M. Rakshit, M. Chand, Fractional calculus involving (p,q)-Mathieu type series, Appl. Math. Nonlinear Sci., 5 (2020), 15–34. doi: 10.2478/amns.2020.2.00011
![]() |
[63] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009). |
[64] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859–5883. doi: 10.3934/math.2020375
![]() |
[65] |
M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033
![]() |
[66] | J. Park, Hermite and Simpson-like type inequalities for functions whose second derivatives in absolute values at certain power are s-convex, Int. J. Pure Appl. Math., 78 (2012), 587–604. |
[67] | A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh, Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications, Math. Probl. Eng., 2020 (2020), 1–12. |
[68] | M. Z. Sarıkaya, S. Bardak, Generalized Simpson type integral inequalities, Konuralp J. Math., 7 (2019), 186–191. |
[69] |
Y. Li, T. Du, Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions, J. Egyptian Math. Soc., 24 (2016), 175–180. doi: 10.1016/j.joems.2015.05.009
![]() |
[70] | M. A. Ali, H. Budak, Z. Zhang, H. Yildirim, Some new Simpson's type inequalities for coordinated convex functions in quantum calculus, Math. Math. Appl. Sci., 44 (2020), 4515–4540. |
[71] | M. A. Ali, M. Abbas, H. Buda, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions. Adv. Differ. Equations, 2021 (2021), 64. |
[72] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. |
[73] |
M. Adil Khan, M. Hanif, Z. A. Khan, K. Ahmad, Y. M. Chu, Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162. doi: 10.1186/s13660-019-2112-9
![]() |
[74] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. doi: 10.1186/s13660-019-2242-0
![]() |
[75] | W. Liu, H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. |
[76] | M. A. Noor, K. I. Noor, S. Iftikhar, Newton's inequalities for p-harmonic convex functions, Honam Math. J., 40 (2018), 239–250. |
[77] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. |
[78] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. |
[79] |
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. doi: 10.1186/1029-242X-2014-121
![]() |
[80] |
Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via α,m-convexity, J. Inequal. Appl., 2018 (2018), 264. doi: 10.1186/s13660-018-1860-2
![]() |
[81] |
M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649–664. doi: 10.18514/MMN.2018.1661
![]() |
1. | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar, Estimation of generalized fractional integral operators with nonsingular function as a kernel, 2021, 6, 2473-6988, 4492, 10.3934/math.2021266 | |
2. | Virginia Kiryakova, Unified Approach to Fractional Calculus Images of Special Functions—A Survey, 2020, 8, 2227-7390, 2260, 10.3390/math8122260 | |
3. | Mohamed Abdalla, On Hankel transforms of generalized Bessel matrix polynomials, 2021, 6, 2473-6988, 6122, 10.3934/math.2021359 | |
4. | Maged G. Bin-Saad, Mohannad J. S. Shahwan, Jihad A. Younis, Hassen Aydi, Mohamed A. Abd El Salam, Barbara Martinucci, On Gaussian Hypergeometric Functions of Three Variables: Some New Integral Representations, 2022, 2022, 2314-4785, 1, 10.1155/2022/1914498 | |
5. | Rana Safdar Ali, Aiman Mukheimer, Thabet Abdeljawad, Shahid Mubeen, Sabila Ali, Gauhar Rahman, Kottakkaran Sooppy Nisar, Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities, 2021, 5, 2504-3110, 54, 10.3390/fractalfract5020054 | |
6. | Mohamed Abdalla, Salah Boulaaras, Mohamed Akel, On Fourier–Bessel matrix transforms and applications, 2021, 44, 0170-4214, 11293, 10.1002/mma.7489 | |
7. | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya, Dynamical significance of generalized fractional integral inequalities via convexity, 2021, 6, 2473-6988, 9705, 10.3934/math.2021565 | |
8. | Rana Safdar Ali, Shahid Mubeen, Sabila Ali, Gauhar Rahman, Jihad Younis, Asad Ali, Umair Ali, Generalized Hermite–Hadamard-Type Integral Inequalities forh-Godunova–Levin Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9113745 | |
9. | Yaqun Niu, Rana Safdar Ali, Naila Talib, Shahid Mubeen, Gauhar Rahman, Çetin Yildiz, Fuad A. Awwad, Emad A. A. Ismail, Wilfredo Urbina, Exploring Advanced Versions of Hermite‐Hadamard and Trapezoid‐Type Inequalities by Implementation of Fuzzy Interval‐Valued Functions, 2024, 2024, 2314-8896, 10.1155/2024/1988187 | |
10. | Miguel Vivas-Cortez, Rana Safdar Ali, Humira Saif, Mdi Begum Jeelani, Gauhar Rahman, Yasser Elmasry, Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions, 2023, 7, 2504-3110, 580, 10.3390/fractalfract7080580 | |
11. | Rana Safdar Ali, Humira Sif, Gauhar Rehman, Ahmad Aloqaily, Nabil Mlaiki, Significant Study of Fuzzy Fractional Inequalities with Generalized Operators and Applications, 2024, 8, 2504-3110, 690, 10.3390/fractalfract8120690 |