Processing math: 100%
Research article

Some fixed point results on generalized metric spaces

  • In this paper, generalized metric spaces are introduced as a common generalization of tvs-cone metric spaces, partial metric spaces and b-metric spaces, and a unified approach is proposed to some fixed point results by using generalized metric spaces. Specifically, Banach's contraction principle and Kannan type fixed point theorem, as well as other types fixed point results on generalized metric spaces are given, respectively.

    Citation: Xun Ge, Songlin Yang. Some fixed point results on generalized metric spaces[J]. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106

    Related Papers:

    [1] Mehmet Ali Özarslan, Ceren Ustaoğlu . Extended incomplete Riemann-Liouville fractional integral operators and related special functions. Electronic Research Archive, 2022, 30(5): 1723-1747. doi: 10.3934/era.2022087
    [2] Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184
    [3] Xinguang Zhang, Yongsheng Jiang, Lishuang Li, Yonghong Wu, Benchawan Wiwatanapataphee . Multiple positive solutions for a singular tempered fractional equation with lower order tempered fractional derivative. Electronic Research Archive, 2024, 32(3): 1998-2015. doi: 10.3934/era.2024091
    [4] Aying Wan, Feng Qi . Power series expansion, decreasing property, and concavity related to logarithm of normalized tail of power series expansion of cosine. Electronic Research Archive, 2024, 32(5): 3130-3144. doi: 10.3934/era.2024143
    [5] Qingming Hao, Wei Chen, Zhigang Pan, Chao Zhu, Yanhua Wang . Steady-state bifurcation and regularity of nonlinear Burgers equation with mean value constraint. Electronic Research Archive, 2025, 33(5): 2972-2988. doi: 10.3934/era.2025130
    [6] Guo-Niu Han, Huan Xiong . Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29(1): 1841-1857. doi: 10.3934/era.2020094
    [7] Mufit San, Seyma Ramazan . A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141
    [8] Mohra Zayed, Gamal Hassan . Kronecker product bases and their applications in approximation theory. Electronic Research Archive, 2025, 33(2): 1070-1092. doi: 10.3934/era.2025048
    [9] Yutong Chen, Jiabao Su . Resonant problems for non-local elliptic operators with unbounded nonlinearites. Electronic Research Archive, 2023, 31(9): 5716-5731. doi: 10.3934/era.2023290
    [10] Noosheza Rani, Arran Fernandez . An operational calculus formulation of fractional calculus with general analytic kernels. Electronic Research Archive, 2022, 30(12): 4238-4255. doi: 10.3934/era.2022216
  • In this paper, generalized metric spaces are introduced as a common generalization of tvs-cone metric spaces, partial metric spaces and b-metric spaces, and a unified approach is proposed to some fixed point results by using generalized metric spaces. Specifically, Banach's contraction principle and Kannan type fixed point theorem, as well as other types fixed point results on generalized metric spaces are given, respectively.



    The Riemann zeta function and the Dirichlet beta function are important functions in number theory that are defined by (cf. [1, Chapter 25])

    ζ(λ)=k=01(k+1)λandβ(λ)=k=0(1)k(2k+1)λ,

    provided that (λ)>1 and (λ)>0 so that ζ(λ) and β(λ) are convergent. There are numerous useful formulae for these functions in the literature (cf. [2,3,4,5]). For example, we shall frequently utilize the following relation:

    k=0(1)k(k+1)λ=(121λ)ζ(λ),(λ)>0.

    In particular, there exist closed form expressions in π

    ζ(2n)=(1)n1(2π)2n2(2n)!B2nandβ(2n+1)=(1)nπ2n+14n+1(2n)!E2n,

    where Bn and En are Bernoulli and Euler numbers (cf. [6, §6.5]), whose exponential generating functions are given by

    yey1=n=0Bnn!yn,|y|<2π;2ey1+e2y=n=0Enn!yn,|y|<π/2.

    For a real number x, denote by x and x the usual floor and ceiling functions. The aim this paper is to examine, for two natural numbers m,nN, the following four variants of the Riemann zeta function:

    Um(n)=k=0(1)k+m2m(k+1)2n,Um(n)=k=0(1)k+m2m(2k+1)2n;Vm(n)=k=0(1)km(k+1)2n1,Vm(n)=k=0(1)km(2k+1)2n1.

    Several closed formulae will be established that express these alternating infinite series in terms of the Riemann zeta function and the Dirichlet beta function.

    Throughout the paper, we shall make use of the following polynomial expression for higher derivatives of cotangent function (cf. [7,8])

    dncotxdxn=Pn(cotx):Pn(x)=(2i)n(xi)nk=0k!2k{nk}(ix1)k,

    where {nk} are the Stirling numbers of the second kind (cf. [6, §6.1]). The first five polynomials read explicitly as follows:

    P1(x)=x21,P2(x)=2x3+2x,P3(x)=6x48x22,P4(x)=24x5+40x3+16x,P5(x)=120x6240x4136x216.

    By putting these in conjunction with the partial fraction decomposition (see, for example, Stromberg [9, Theorem 5.43] and Higgins [10])

    cot(πx)=limn1πnk=n1k+x=1πx+2xπk=11x2k2,

    we deduce for mN, by computing mth derivative with respect to x, the following compact expression for the bilateral series

    k=1(k+x)m+1=(1)mπm+1m!Pm(cot(πx)). (1)

    In this section, we shall examine the series Um(n) and Um(n) by dividing them into multisection series. Two general summation theorems will be proved and several explicit formulae will be presented as consequences.

    Since the series Um(n) is absolutely convergent, in order to evaluate it explicitly, we can regroup its terms. For example U1(n) and U2(n) can be expressed as follows:

    U1(n)=k=0(1)k+12(k+1)2n=1122n132n+142n+152n162n172n+182n+={1132n+152n172n+}{122n142n+162n182n+},U2(n)=k=0(1)k+24(k+1)2n=1+122n132n142n152n162n+172n+182n+192n+1102n1112n1122n1132n1142n+1152n+1162n+={1152n+192n1132n+}+{122n162n+1102n1142n+}{132n172n+1112n1152n+}{142n182n+1122n1162n+}.

    In general, by dividing the summation index k according to the residue classes modulo 4m, i.e., making the replacements k4km+j1 with 1j4m, we can express Um(n) in terms of multisection series

    Um(n)=k=0(1)k+m2m(k+1)2n=4mj=1k=0(1)4km+m+j12m(4km+j)2n=mj=1k=0{(1)m+j12m(4km+j)2n+(1)2m+j12m(4km+m+j)2n}+mj=1k=0{(1)3m+j12m(4km+2m+j)2n+(1)4m+j12m(4km+3m+j)2n}.

    For 1jm, observing that

    (1)m+j12m=(1)4m+j12m=1,(1)2m+j12m=(1)3m+j12m=1;

    and then putting the summation terms corresponding to j=m aside, we can reformulate further

    Um(n)=k=0{(1)k(2km+m)2n(1)k(2km+2m)2n}+m1j=1k=0{1(4km+j)2n1(4km+m+j)2n}+m1j=1k=0{1(4km+3m+j)2n1(4km+2m+j)2n}.

    Writing the first line directly in β(2n) and ζ(2n), then inverting simultaneously the summation indices by jmj and kk1 in the last line, we derive the following bilateral series expression

    Um(n)=β(2n)m2nζ(2n)(2m)2n{124n}+m1j=1k={1(4km+j)2n1(4km+m+j)2n}.

    By applying Eq (1), we find the simplified formula as in the following theorem.

    Theorem 1 (m,nN).

    Um(n)=k=0(1)k+m2m(k+1)2n=β(2n)m2n+ζ(2n)(2m)2n{24n1}+(1)n4nζ(2n)43nm2nB2nm1j=1{P2n1(cot(jπ4m))P2n1(cot(m+j4mπ))}.

    For small m,nN, this theorem can be utilized to compute exact values of Um(n). The following interesting formulae are exhibited as examples.

    Example 1.

    U1(1)=k=0(1)k+12(k+1)2=β(2)ζ(2)8,U1(2)=k=0(1)k+12(k+1)4=β(4)7ζ(4)128,U1(3)=k=0(1)k+12(k+1)6=β(6)31ζ(6)2048,U1(4)=k=0(1)k+12(k+1)8=β(8)127ζ(8)32768,U1(5)=k=0(1)k+12(k+1)10=β(10)511ζ(10)524288.

    Example 2.

    U2(1)=k=0(1)k+24(k+1)2=β(2)4+3ζ(2)42ζ(2)32,U2(2)=k=0(1)k+24(k+1)4=β(4)16+165ζ(4)12827ζ(4)2048,U2(3)=k=0(1)k+24(k+1)6=β(6)64+22743ζ(6)16384231ζ(6)131072,U2(4)=k=0(1)k+24(k+1)6=β(8)256+369165ζ(8)2621442127ζ(8)8388608,U2(5)=k=0(1)k+24(k+1)10=β(10)1024+94810353ζ(10)671088642511ζ(10)536870912.

    Example 3.

    U3(1)=k=0(1)k+36(k+1)2=β(2)9+ζ(2)3+7ζ(2)72,U3(2)=k=0(1)k+36(k+1)4=β(4)81+115ζ(4)723+553ζ(4)10368,U3(3)=k=0(1)k+36(k+1)6=β(6)729+11767ζ(6)69123+22537ζ(6)1492992,U3(4)=k=0(1)k+36(k+1)8=β(8)6561+1287715ζ(8)7464963+832993ζ(8)214990848,U3(5)=k=0(1)k+36(k+1)10=β(10)59049+744010091ζ(10)4299816963+30173017ζ(10)30958682112.

    Performing the replacement k4km+j1 with 1j4m, we can express Um(n) as the following multisection series

    Um(n)=k=0(1)k+m2m(2k+1)2n=k=04mj=1(1)m+j12m(8km+2j1)2n=k=0{mj=1(1)m+j12m(8km+2j1)2n+mj=1(1)2m+j12m(8km+2m+2j1)2n+mj=1(1)3m+j12m(8km+4m+2j1)2n+mj=1(1)4m+j12m(8km+6m+2j1)2n}.

    The above expression can be further reduced as follows:

    Um(n)=k=0mj=1{1(8km+2j1)2n1(8km+2m+2j1)2n}+k=0mj=1{1(8km+6m+2j1)2n1(8km+4m+2j1)2n}.

    For the two sums on the ultimate line, making the changes on summation indices by j1+mj and kk1

    1k=mj=1{1(8km+2j1)2n1(8km+2m+2j1)2n}

    and then unifying this resulting expression to the first line, we find the bilateral series expression

    Um(n)=mj=1k={1(8km+2j1)2n1(8km+2m+2j1)2n}=mj=11(8m)2nk={1(k+2j18m)2n1(k+2m+2j18m)2n}.

    By invoking Eq (1), we establish the following summation formula.

    Theorem 2 (m,nN).

    Um(n)=k=0(1)k+m2m(2k+1)2n=(1)n4nζ(2n)44nm2nB2n×mj=1{P2n1(cot(2j18mπ))P2n1(cot(2m+2j18mπ))}.

    For m=1,2,3, we record the following closed formulae as applications.

    Example 4 (m=1).

    U1(1)=k=0(1)k+12(2k+1)2=3ζ(2)42,U1(2)=k=0(1)k+12(2k+1)4=165ζ(4)1282,U1(3)=k=0(1)k+12(2k+1)6=22743ζ(6)163842,U1(4)=k=0(1)k+12(2k+1)8=369165ζ(8)2621442,U1(5)=k=0(1)k+12(2k+1)10=94810353ζ(10)671088642.

    Example 5 (m=2).

    U2(1)=k=0(1)k+24(2k+1)2=3ζ(2)1610+2,U2(2)=k=0(1)k+24(2k+1)4=15ζ(4)204815898+2412,U2(3)=k=0(1)k+24(2k+1)6=63ζ(6)1048576267655210+4948812,U2(4)=k=0(1)k+24(2k+1)8=15ζ(8)6710886419853759178298+42074743212,U2(5)=k=0(1)k+24(2k+1)10=33ζ(10)687194767364327811705145000010+1030234336540812.

    Example 6 (m=3).

    U3(1)=k=0(1)k+36(2k+1)2=ζ(2)24218+243,U3(2)=k=0(1)k+36(2k+1)4=ζ(4)69121635146+229683,U3(3)=k=0(1)k+36(2k+1)6=ζ(6)2654208138927209978+2197277043,U3(4)=k=0(1)k+36(2k+1)8=ζ(8)114661785652163307935186666+91790172008883,U3(5)=k=0(1)k+36(2k+1)10=ζ(10)264180754022457564351813037136458778+11256490240237113843.

    This section will be devoted to the two remaining series Vm(n) and Vm(n). We shall establish two general summation theorems. Several explicit formulae in terms of the Riemann zeta function and the Dirichlet beta function will be deduced as particular cases.

    Making the replacement kkm+j1 with 1jm, we can rewrite Vm(n) as

    Vm(n)=k=0(1)km(k+1)2n1=k=0mj=1(1)km+j1m(km+j)2n1=k=0(1)km+m1m(km+m)2n1+k=0m1j=1(1)km+j1m(km+j)2n1.

    We remark that the above equalities are valid for n1. When n=1, the corresponding formula in Theorem 3 can be shown analogously by examining the truncated sum below

    Vm(1)=limnnk=0(1)kmk+1.

    The first series in the last line can be evaluated directly as follows:

    k=0(1)km+m1m(km+m)2n1=1m2n1k=0(1)k(k+1)2n1={ln2m,n=1;22n12(2m)2n1ζ(2n1),n>1.

    According to the parity of k, the double series can be split into two

    k=0m1j=1(1)km+j1m(km+j)2n1=k=0m1j=1(1)k(km+j)2n1=k=0m1j=11(2km+j)2n1k=0m1j=11(2km+m+j)2n1.

    Now making the replacements on summation indices by jmj and kk1 in the latter double sum and then unifying it to the former, we can simplify the resulting expression into the following bilateral series:

    k=0m1j=1(1)km+j1m(km+j)2n1=m1j=11(2m)2n1k=1(k+j2m)2n1.

    Finally, by making use of (1), we can express the rightmost bilateral series in terms of Dirichlet beta function:

    k=1(k+j2m)2n1=π2n1(2n2)!P2n2(cot(jπ2m))=(1)n14nβ(2n1)E2n2P2n2(cot(jπ2m)).

    Summing up, we have proved the following theorem.

    Theorem 3 (m,nN).

    k=0(1)km(k+1)2n1=(1)n12β(2n1)m2n1E2n2m1j=1P2n2(cot(jπ2m))+{ln2m,n=1;22n12(2m)2n1ζ(2n1),n2.

    When m=1, it is trivial to check that

    V1(n)=k=0(1)k(k+1)2n1={ln2,n=1;(141n)ζ(2n1),n2.

    For m=2,3 and 1n5, the closed formulae are highlighted as examples.

    Example 7 (m=2).

    V2(1)=k=0(1)k2k+1=β(1)+ln22,V2(2)=k=0(1)k2(k+1)3=β(3)+332ζ(3),V2(3)=k=0(1)k2(k+1)5=β(5)+15512ζ(5),V2(4)=k=0(1)k2(k+1)7=β(7)+638192ζ(7),V2(5)=k=0(1)k2(k+1)9=β(9)+255131072ζ(7).

    Example 8 (m=3).

    V3(1)=k=0(1)k3k+1=8β(1)33+ln23,V3(2)=k=0(1)k3(k+1)3=160β(3)813+ζ(3)36,V3(3)=k=0(1)k3(k+1)5=2176β(5)12153+5ζ(5)1296,V3(4)=k=0(1)k3(k+1)7=232960β(7)1334073+7ζ(7)15552,V3(5)=k=0(1)k3(k+1)9=425805824β(9)2453485953+85ζ(9)1679616.

    Under the replacements k2km+j1 with 1j2m, for n>1, we can rewrite Vm(n) as the following multisection series

    Vm(n)=k=0(1)km(2k+1)2n1=k=02mj=1(1)j1m(4km+2j1)2n1=k=0{mj=1(1)j1m(4km+2j1)2n1+mj=1(1)m+j1m(4km+2m+2j1)2n1}=mj=1k=01(4km+2j1)2n1mj=1k=01(4km+2m+2j1)2n1.

    When n=1, the corresponding formula in Theorem 4 can be confirmed by examining the following truncated sum

    Vm(1)=limk=0(1)km2k+1.

    Now, making the replacements jm+1j and kk1 simultaneously for the latter double sums and then unifying it to the former one, we obtain the bilateral series expression below

    Vm(n)=k=0mj=11(4km+2j1)2n1+1k=mj=11(4km+2j1)2n1=mj=1k=1(4km+2j1)2n1=mj=11(4m)2n1k=1(k+2j14m)2n1.

    Keeping in mind (1) and writing the rightmost sum in terms of the Dirichlet beta function

    k=1(k+2j14m)2n1=π2n1(2n2)!P2n2(cot(2j14mπ))=(1)n14nβ(2n2)E2n2P2n2(cot(2j14mπ)),

    we arrive at the compact expression as in the following theorem.

    Theorem 4 (m,nN).

    k=0(1)km(2k+1)2n1=β(2n1)m2n1E2n2(14)n1mj=1P2n2(cot(2j14mπ)).

    When m=1, it is obvious to see that

    V1(n)=k=0(1)k(2k+1)2n1=β(2n1).

    For m=2,3, the corresponding closed formulae are displayed as follows.

    Example 9 (m=2).

    V2(1)=k=0(1)k22k+1=2β(1),V2(2)=k=0(1)k2(2k+1)3=3β(3)22,V2(3)=k=0(1)k2(2k+1)5=57β(5)402,V2(4)=k=0(1)k2(2k+1)7=2763β(7)19522,V2(5)=k=0(1)k2(2k+1)9=250737β(9)1772802.

    Example 10 (m=3).

    V3(1)=k=0(1)k32k+1=5β(1)3,V3(2)=k=0(1)k3(2k+1)3=29β(3)27,V3(3)=k=0(1)k3(2k+1)5=245β(5)243,V3(4)=k=0(1)k3(2k+1)7=2189β(7)2187,V3(5)=k=0(1)k3(2k+1)9=19685β(9)19683.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. Abdeljawad, E. Karapinar, Quasicone metric spaces and generalizations of Caristi Kirk's theorem, Fixed Point Theory Appl., 2009 (2009), 1-9.
    [2] T. Abdeljawad, E. Karapinar, K. Tas, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., 63 (2012), 716-719. doi: 10.1016/j.camwa.2011.11.035
    [3] T. Abdeljawad, S. Rezapour, Some fixed point results in TVS-cone metric spaces, Fixed Point Theory, 14 (2013), 263-268.
    [4] S. Aleksiˊc, Z. Kadelburg, Z. D. Mitroviˊc, S. Radenoviˊc, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst., 9 (2018), 1-27.
    [5] S. Aleksiˊc, L. Paunoviˊc, S. N. Radenoviˊc, F. V. Vetro, Some critical remarks on the paper "A note on the metrizability of TVS-cone metric spaces", Mil. Tech. Cour., 65 (2017), 1-8.
    [6] I. D. Arandeloviˊc, D. J. Keˇckiˊc, On nonlinear quasi-contractions on TVS-cone metric spaces, Appl. Math. Lett., 24 (2011), 1209-1213.
    [7] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234-3242. doi: 10.1016/j.topol.2012.06.012
    [8] H. Aydi, M. Bota, E. Karapinar, S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), 337-346.
    [9] M. Bukatin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces, Am. Math. Mon., 116 (2009), 708-718.
    [10] C. Chifu, G. Petrusel, Fixed point for multivalued contractions in b-metric spaces with applications to fractals, Taiwan. J. Math., 18 (2014), 1365-1375. doi: 10.11650/tjm.18.2014.4137
    [11] L. ˊCiriˊc, M. Abbas, M. Rajoviˊc, B. Ali, Suzuki type fixed point theorems for generalized multi-valued mappings on a set endowed with two b-metrics, Appl. Math. Comput., 219 (2012), 1712-1723.
    [12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5-11.
    [13] W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. Theory Methods Appl., 72 (2010), 2259-2261. doi: 10.1016/j.na.2009.10.026
    [14] W. S. Du, E. Karapinar, A note on cone b-metric and its related results: generalizations or equivalence? Fixed Point Theory Appl., 1 (2013), 1-7.
    [15] X. Ge, A fixed point theorem for correspondences on cone metric spaces, Fixed Point Theory, 15 (2014), 79-86.
    [16] X. Ge, S. Lin, Contractions of Nadler type on partial tvs-cone metric spaces, Colloq. Math., 138 (2015), 149-164. doi: 10.4064/cm138-2-1
    [17] G. Gruenhage, Generalized metric spaces, In: K. Kunen, J. E.Vaughan, eds. Handbook of Set-theoretic Topology, Amsterdam: North-Holland, 1984.
    [18] N. Hussain, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677-1684. doi: 10.1016/j.camwa.2011.06.004
    [19] D. Iliˊc, V. Pavloviˊc, V. Rakoˇceviˊc, Extensions of the Zamfirescu theorem to partial metric spaces, Math. Comput. Modell., 55 (2012), 801-809.
    [20] Z. Kadelburg, S. Radenoviˊc, V. Rakoˇceviˊc, Topological vector space-valued cone metric spaces and fixed point theorems, Fixed Point Theory Appl., 1 (2010), 1-17.
    [21] Z. Kadelburg, S. Radenoviˊc, V. Rakoˇceviˊc, A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., 24 (2011), 370-374.
    [22] E. Karapinar, Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl., 2009 (2009), 1-9.
    [23] E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., 59 (2010), 3656-3668. doi: 10.1016/j.camwa.2010.03.062
    [24] E. Karapinar, Some nonunique fixed point theorems of ˊCiriˊc type on cone metric spaces, Abstr. Appl. Anal., 2010 (2020), 123094.
    [25] E. Karapinar, D. T¨urko˘glu, Best approximations theorem for a couple in cone Banach space, Fixed Point Theory Appl., 2010 (2010), 1-9.
    [26] R. Kannan, Some results on fixed points Ⅱ, Am. Math. Mon., 76 (1969), 405-408.
    [27] S. Lin, Y. Ge, Compact-valued continuous relations on TVS-cone metric spaces, Filomat, 27 (2013), 329-335.
    [28] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183-197. doi: 10.1111/j.1749-6632.1994.tb44144.x
    [29] S. Moshokoa, On partial metric spaces and partial cone metric spaces, Hacettepe Univ. Math. Stat., 46 (2017), 1069-1075.
    [30] V. D. Nguyen, On the completion of partial metric spaces, Quaest. Math., 40 (2017), 589-597. doi: 10.2989/16073606.2017.1303004
    [31] S. Radenoviˊc, S. Simiˊc, N. Cakiˊc, Z. Goluboviˊc, A note on tvs-cone metric fixed point theory, Math. Comput. Modell., 54 (2011), 2418-2422.
    [32] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121-124. doi: 10.4153/CMB-1971-024-9
    [33] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Am. Math. Soc., 226 (1977), 257-290. doi: 10.1090/S0002-9947-1977-0433430-4
    [34] S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl., 159 (2012), 194-199. doi: 10.1016/j.topol.2011.08.026
    [35] J. R. Roshan, V. Parvaneh, I. Altun, Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Appl. Math. Comput., 226 (2014), 723-737.
    [36] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703-711. doi: 10.1007/s00009-013-0327-4
    [37] C. Zhu, W. Xu, T. Do˘senoviˊc, Z. Goluboviˊc, Common fixed point theorems for cyclic contractive mappings in partial cone b-metric spaces and applications to integral equations, Nonlinear Anal. Modell. Control, 21 (2016), 807–827.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3596) PDF downloads(718) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog