Loading [MathJax]/extensions/TeX/mathchoice.js
Research article

Fault-tolerant edge metric dimension of certain families of graphs

  • Received: 23 July 2020 Accepted: 16 October 2020 Published: 11 November 2020
  • MSC : 68R01, 68R05, 68R10

  • Let WE={w1,w2,,wk} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x,e) denotes distance between edge e and vertex x of G, defined as d(e,x)=d(x,e)=min{d(x,a),d(x,b)}, where e=ab. A vertex x distinguishes two edges e1 and e2, if d(e1,x)d(e2,x). The representation r(eWE) of e with respect to WE is the k-tuple (d(e,w1),d(e,w2),,d(e,wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by (G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let ˊWE be edge metric generator of graph G, then ˊWE is called fault-tolerant edge metric generator of G if ˊWE{v} is also an edge metric generator of graph G for every vˊWE. A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.

    Citation: Xiaogang Liu, Muhammad Ahsan, Zohaib Zahid, Shuili Ren. Fault-tolerant edge metric dimension of certain families of graphs[J]. AIMS Mathematics, 2021, 6(2): 1140-1152. doi: 10.3934/math.2021069

    Related Papers:

    [1] Yuriĭ G. Nikonorov, Irina A. Zubareva . On the behavior of geodesics of left-invariant sub-Riemannian metrics on the group Aff0(R)×Aff0(R). Electronic Research Archive, 2025, 33(1): 181-209. doi: 10.3934/era.2025010
    [2] Xiaoyan Xu, Xiaohua Xu, Jin Chen, Shixun Lin . On forbidden subgraphs of main supergraphs of groups. Electronic Research Archive, 2024, 32(8): 4845-4857. doi: 10.3934/era.2024222
    [3] Huani Li, Xuanlong Ma . Finite groups whose coprime graphs are AT-free. Electronic Research Archive, 2024, 32(11): 6443-6449. doi: 10.3934/era.2024300
    [4] Yijun Chen, Yaning Xie . A kernel-free boundary integral method for reaction-diffusion equations. Electronic Research Archive, 2025, 33(2): 556-581. doi: 10.3934/era.2025026
    [5] A. A. Heliel, A. Ballester-Bolinches, M. M. Al-Shomrani, R. A. Al-Obidy . On σ-subnormal subgroups and products of finite groups. Electronic Research Archive, 2023, 31(2): 770-775. doi: 10.3934/era.2023038
    [6] Donghyeon Kim, Jinsung Kim . Optimization of designing multiple genes encoding the same protein based on NSGA-II for efficient execution on GPUs. Electronic Research Archive, 2023, 31(9): 5313-5339. doi: 10.3934/era.2023270
    [7] Vanessa Barros, Carlos Nonato, Carlos Raposo . Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28(1): 205-220. doi: 10.3934/era.2020014
    [8] Sang-Eon Han . Digitally topological groups. Electronic Research Archive, 2022, 30(6): 2356-2384. doi: 10.3934/era.2022120
    [9] Yahui Liu, Jianbo Dai, Liang Hu, Guangxu Zhao . Large-scale content-based image retrieval system with metric learning and discrete binary encoding. Electronic Research Archive, 2025, 33(7): 4151-4164. doi: 10.3934/era.2025186
    [10] Bing Sun, Liangyun Chen, Yan Cao . On the universal α-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, 2021, 29(4): 2619-2636. doi: 10.3934/era.2021004
  • Let WE={w1,w2,,wk} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x,e) denotes distance between edge e and vertex x of G, defined as d(e,x)=d(x,e)=min{d(x,a),d(x,b)}, where e=ab. A vertex x distinguishes two edges e1 and e2, if d(e1,x)d(e2,x). The representation r(eWE) of e with respect to WE is the k-tuple (d(e,w1),d(e,w2),,d(e,wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by (G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let ˊWE be edge metric generator of graph G, then ˊWE is called fault-tolerant edge metric generator of G if ˊWE{v} is also an edge metric generator of graph G for every vˊWE. A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.


    Let G=(V,E) be a finite undirected simple graph and G=(V(G),E(G)) be a finite directed graph. If x,yV(G) and there exists an arrow from x into y, then x is called a head of y and y is called a tail of x. Let N+(x) and N(x) denote the set of the head and the tail of x, respectively. The neighborhood N(x) of a vertex xV(G) consists of the vertices adjacent to x.

    Let G1,G2 be two graphs, and let G1,G2 be two directed graphs. The Cartesian product G1G2 is the graph with vertex set V(G1)×V(G2), and two vertices (g1,h1) and (g2,h2) are adjacent in G1G2 if and only if g1=g2 and h1 is adjacent to h2 in G2, or h1=h2 and g1 is adjacent to g2 in G1. Similarly, the Cartesian product G1G2 is the directed graph with vertex set V(G1)×V(G2) and there is a directed arrow from (g1,h1) to (g2,h2) in G1G2 if and only if g1=g2 and h1h2E(G2), or h1=h2 and g1g2E(G1). Let Cn and Cn denote the cycle of length n and directed cycle of length n3, respectively.

    The concept of group distance magic labeling of undirected graphs was introduced by Froncek in [1]. Let Γ be an abelian group and let φ:VΓ be a mapping. We call w(v):=xN(v)φ(x) the weight of v with respect to φ for any vV. Then, φ is called a Γ-distance magic labeling if and only if φ is bijective and the weight is independent of the choice of v. The unique weight is called the magic constant of the magic labeling. A graph G is called Γ-distance magic if there exists a Γ-distance magic labeling of G.

    Froncek [1] showed that CmCn is Zmn-distance magic if and only if 2mn for any integers m,n3, and he asked for the full characterization full characterization of abelian groups Γ such that CmCn is Γ-distance magic. Cichacz et al. [2] answered the above question for the case that m=n. Recently, we generalized the idea and determined all abelian groups Γ such that CmCn admits a Γ-distance magic labeling for any m,n3 in [3]. The result is stated as follows.

    Theorem 1.1 ([3]). Let m,n>2 be integers and let Γ be an abelian group of order mn. Then, CmCn admits a Γ-distance magic labeling if and only if 2mn and l2d1exp(Γ), where l=lcm[m,n], d=gcd(m,n) and

    d1={d,2dd2,2d,4dd4,4d.

    This type of labeling was generalized to the directed graph G=(V(G),E(G)) in [4]. Suppose φ:V(G)Γ is a map. For any vV(G), we call w(v):=yN+(v)φ(y)yN(v)φ(y) the weight of v with respect to φ. Then, φ is called a Γ-distance magic labeling of G if and only if φ is bijective and there exists cΓ such that w(v)=c for any vV(G). The constant c is called the magic constant of the labeling φ. It was shown that CmCn is Zmn-distance magic in [4].

    Many people study the group magic labeling of directed graph, which included the directed antiprism, lexicographic product of graphs, Cartesian product of graphs, and complete multipartite graphs, see [5,6,7]. In this paper, we focus on the group distance magic labeling on the Cartesian product of two directed cycles CmCn. We give a necessary and sufficient condition for that CmCn admits a group distance magic labeling. This is another version of Theorem 1.1.

    The present paper is organized as follows. In Section 2, we obtain some necessary conditions for a group magic labeling of CmCn to be Γ-distance magic. We present and prove the main result in Section 3.

    In the remainder of this paper, we fix two integers m,n3 and let l=lcm[m,n] and d=gcd(m,n). Let Γ denote an abelian group of order mn. For convenience, we identity the vertices set of CmCn as the set of the equivalent classes on Z×Z defined by

    (x_1, y_1)\mathcal{R}(x_2, y_2)\Leftrightarrow x_1\equiv y_1\pmod{m}, \; x_2\equiv y_2\pmod{n}.

    There is a directed edge from (i, j)_{\mathcal{R}} to (i^{\prime}, j^{\prime})_{\mathcal{R}} if and only if either i\equiv i'\pmod{m} and j'-j \equiv 1 \pmod{n} , or j\equiv j'\pmod{m} and i'-i \equiv 1 \pmod{m} . Let D^s = \{(i, j)_{\mathcal{R}}\in V(\overrightarrow{C_m}\square \overrightarrow {C_n}):j-i\equiv s\pmod{d}\} for s = 0, 1, \ldots, d-1. We have a partition of V(\overrightarrow{C_m}\square \overrightarrow {C_n}) = \cup_{s = 0}^{d-1}D^s , and we call D^0, D^1, \ldots, D^{d-1} the diagonals of \overrightarrow{C_m}\square \overrightarrow {C_n} .

    We need the following basic fact, see [8].

    Lemma 2.1. Let n_i, a_i be integers, i = 1, 2 . The following system of congruence equations

    \left\{\begin{array}{rl} x\equiv a_1\pmod{n_1} \\ x\equiv a_2\pmod{n_2} \end{array}, \right.

    is solvable if and only if \gcd(n_1, n_2)\mid a_1-a_2.

    Lemma 2.2. Let k be the minimal positive integer such that the following congruence equation

    \left\{\begin{array}{rl} t\equiv &-2k\pmod{m} \\ t\equiv &2k\pmod{n} \end{array} \right.

    has a solution t_0 . Then,

    \gcd(t_0, l) = \left\{\begin{array}{rl} d\cdot\gcd(2, l), &2\nmid d \\ d, &2\mid d, 4\nmid d \\ \frac{d}{2}, &4\mid d \end{array} \right..

    Proof. If 2\nmid d , then k = d and

    \left\{\begin{array}{rl} t_0\equiv &-2d\pmod{m} \\ t_0\equiv &2d\pmod{n}. \end{array} \right.

    Without loss of generality, we may assume that 2\nmid n . So, \gcd(\frac{t_0}{d}, \frac{m}{d}) = \gcd(-2, \frac{m}{d}) = \gcd(2, l) and \gcd(\frac{t_0}{d}, \frac{n}{d}) = \gcd(2, \frac{n}{d}) = 1 . Hence,

    \gcd({t_0}, l) = d\gcd(\frac{t_0}{d}, \frac{mn}{d^2}) = d\gcd(2, l).

    If d\equiv 2\pmod{4} , then k = \frac{d}{2} . So, \gcd(t_0, l) = d\gcd(\frac{t_0}{d}, \frac{mn}{d^2}) = d .

    If 4\mid d , then k = \frac{d}{4} and \gcd(t_0, l) = \frac{d}{2}\gcd(\frac{2t_0}{d}, \frac{2mn}{d^2}) = \frac{d}{2} . This finishes the proof.

    Suppose m = \prod_{i = 1}^rp_i^{t_i} and n = \prod_{i = 1}^rp_i^{s_i} are the prime factorizations of m and n . Define f(m, n): = \prod_{i = 1}^rp_i^{u_i} , where

    u_i = \left\{\begin{array}{rl} \max\{t_i, s_i\}, &s_i\neq t_i \\ 0, &s_i = t_i \end{array} \right..

    The following lemma gives many information about the labeling of the diagonals and the magic constant for a group magic labeling of \overrightarrow{C_m}\square \overrightarrow{C_n} . Recall that the order of an element x of a finite abelian group, which is denoted by o(x) , is equal to the minimal positive integer k such that kx = 0.

    Lemma 2.3. Suppose that \varphi:V(\overrightarrow{C_m}\square \overrightarrow{C_n})\longrightarrow\Gamma is a \Gamma -distance magic labeling with magic constant c . Let x_{ij} = \varphi((i, j)_{\mathcal{R}}) and a_{ij} = x_{ij}-x_{i+1, j+1} for any integer i, j . Let

    d^{\prime} = \left\{\begin{array}{rl} d\cdot\gcd(2, l), &2\nmid d\\ d, &2\mid d, 4\nmid d \\ \frac{d}{2}, &4\mid d \end{array} \right..

    Then,

    (1) d^{\prime} is a period of the sequence \{a_{i+k, j+k}\}_{k = 0}^{\infty} ;

    (2) \{x_{i+kd^{\prime}, j+kd^{\prime}}\}_{k = 0}^{\infty} is an arithmetic sequence of common difference h_{ij} , whose order is equal to \frac{l}{d^{\prime}} ;

    (3) If (i, j)_{\mathcal{R}} and (i^{\prime}, j^{\prime})_{\mathcal{R}} are in the same diagonal of \overrightarrow{C_m}\square \overrightarrow{C_n} , then h_{ij} = h_{i^{\prime}, j^{\prime}} ;

    (4) The set of the labeling on the diagonal which contained (i, j)_{\mathcal{R}} is a union of d^{\prime} cosets of the cyclic group generated by h_{ij} ;

    (5) If 2\nmid l , then o(c) = l ;

    (6) If 2\mid l and 4\nmid d , then f(\frac{l}{2}, \frac{d^{\prime}}{2})\mid o(c)\mid\frac{l}{2} .

    Proof. (1) By hypothesis, we have

    w((i, j)_{\mathcal{R}}) = x_{i-1, j}-x_{i, j+1}+x_{i, j-1}-x_{i+1, j} = a_{i-1, j}+a_{i, j-1} = c,

    for any i, j. Replacing i, j by i+1, j-1 respectively in the above equation, we obtain a_{i-2, j+1}+a_{i-1, j} = c , and thus a_{i-1, j} = a_{i+1, j-2} . It follows that a_{ij} = a_{i-2k, j+2k} for any integers i, j, k . By Lemma 2.2, there exist integers k and t_0 such that

    \left\{\begin{array}{rl} t_0\equiv &-2k\pmod{m} \\ t_0\equiv &2k\pmod{n} \end{array} \right.,

    and \gcd(t_0, l) = d^{\prime} . We obtain a_{ij} = a_{i-2k, j+2k} = a_{i+t_0, j+t_0} . Since both l and t_0 are periods of \{a_{i+k, j+k}\}_{k = 0}^{\infty} , it follows that d^{\prime} = \gcd(t_0, l) is also a period of \{a_{i+k, j+k}\}_{k = 0}^{\infty} .

    (2) Now, for any i, j, k , we have

    \begin{eqnarray*} x_{i+kd^{\prime}, j+kd^{\prime}}-x_{i+(k+1)d^{\prime}, j+(k+1)d^{\prime}} & = & \sum\limits_{r = 0}^{d^{\prime}-1}(x_{i+kd^{\prime}+r, j+kd^{\prime}+r}-x_{i+kd^{\prime}+r+1, j+kd^{\prime}+r+1}) \\ & = & \sum\limits_{r = 0}^{d^{\prime}-1}a_{i+kd^{\prime}+r, j+kd^{\prime}+r} \\ & = & \sum\limits_{r = 0}^{d^{\prime}-1}a_{i+r, j+r}\\ & = & x_{ij}-x_{i+d^{\prime}, j+d^{\prime}}. \end{eqnarray*}

    Thus, \{x_{i+kd^{\prime}, j+kd^{\prime}}\}_{k = 0}^{\frac{l}{d^{\prime}}-1} is an arithmetic sequence of common difference h_{ij} = -\sum_{r = 0}^{d^{\prime}-1}a_{i+r, j+r} . Since \varphi is a bijection, x_{i+kd^{\prime}, j+kd^{\prime}} = x_{ij}+kh_{ij} = x_{ij} if and only if l\mid kd^{\prime} . It follows that \frac{l}{d^{\prime}}h_{ij} = 0 and rh_{ij}\neq 0 for any positive integer r < \frac{l}{d^{\prime}} . So, o(h_{ij}) = \frac{l}{d^{\prime}} .

    (3) Assume that i^{\prime}\equiv i+t\pmod{m} and j^{\prime}\equiv j+t\pmod{n} for some integers t . By (1), the sum of any consecutive d^{\prime} terms in the sequence \{a_{i+k, j+k}\}_{k = 0}^{\infty} are equal. Combining this with the discussion in (2), we have

    h_{i^{\prime}, j^{\prime}} = -\sum\limits_{r = 0}^{d^{\prime}-1}a_{i+t+r, j+t+r} = -\sum\limits_{r = 0}^{d^{\prime}-1}a_{i+r, j+r} = h_{ij}.

    (4) By (1) and (2), we have

    \begin{eqnarray*} \{x_{i+t, j+t}:0\leq t\leq l-1\}& = &\bigcup\limits_{r = 0}^{d^{\prime}-1}\{x_{i+r+kd^{\prime}, j+r+kd^{\prime}}:0\leq k < \frac{l}{d^{\prime}}\} \\ & = &\bigcup\limits_{r = 0}^{d^{\prime}-1}\{x_{i+r, j+r}+kh_{ij}:0\leq k < \frac{l}{d^{\prime}}\} \\ & = & \bigcup\limits_{r = 0}^{d^{\prime}-1}(x_{i+r, j+r}+ < h_{ij} > ). \end{eqnarray*}

    This proves (4).

    (5) Since 2\nmid l , we have d^{\prime} = d . Recall that a_{i-1, j+1} = a_{i-1-2k, j+1+2k} for any i, j, k . Setting k = \frac{d-1}{2} , one has

    a_{i-1, j+1} = a_{i-d, j+d}.

    Let t satisfy that

    \left\{\begin{array}{rl} t\equiv &-d\pmod{m} \\ t\equiv &d\pmod{n}. \end{array} \right.

    Then, d divides t , and we obtain that a_{i-1, j+1} = a_{i-d, j+d} = a_{i+t, j+t} = a_{ij} by (1). It follows that 2a_{ij} = a_{i-1, j+1}+a_{ij} = c. Therefore, we deduce that 2a_{ij} = 2a_{i^{\prime}j^{\prime}} = c for any i, j, i^{\prime}, j^{\prime} . Since 2\nmid mn = |\Gamma| , one has a_{ij} = a_{i^{\prime}, j^{\prime}} = a . Thus, the sequence \{x_{i+k, j+k}\}_{k = 0}^{l-1} is an arithmetic sequence of common difference -a with pairwise distinct terms. So, the order of -a is exactly l , and o(c) = o(2a) = \frac{o(a)}{\gcd(2, o(a))} = o(a) = l.

    (6) We have d^{\prime}\equiv2\pmod{4} in this case. So,

    a_{i-1, j+1} = a_{i-1-2\cdot\frac{d^{\prime}-2}{4}, j+1+2\cdot\frac{d^{\prime}-2}{4}} = a_{i-\frac{d^{\prime}}{2}, j+\frac{d^{\prime}}{2}}.

    Let t satisfy that

    \left\{\begin{array}{rl} t\equiv &-\frac{d^{\prime}}{2}\pmod{m} \\ t\equiv &\frac{d^{\prime}}{2}\pmod{n}. \end{array} \right.

    Since 2\mid l and \frac{d^{\prime}}{2} is odd, at least one of m, n is even and t is odd. There exists r\in\mathbb{Z} such that t = \frac{d^{\prime}}{2}(2r+1) . So, we have a_{i-1, j+1} = a_{i+t, j+t} = a_{i+\frac{d^{\prime}}{2}, j+\frac{d^{\prime}}{2}} by (1). Hence,

    a_{ij}+a_{i+\frac{d^{\prime}}{2}, j+\frac{d^{\prime}}{2}} = a_{ij}+a_{i-1, j+1} = w(i, j+1) = c.

    Hence,

    \begin{eqnarray*} x_{ij}-x_{i+d^{\prime}, j+d^{\prime}} & = & \sum\limits_{k = 0}^{d^{\prime}-1}(x_{i+k, j+k}-x_{i+k+1, j+k+1}) \\ & = & \sum\limits_{k = 0}^{d^{\prime}-1}a_{i+k, j+k} \\ & = & \sum\limits_{k = 0}^{\frac{d^{\prime}}{2}-1}(a_{i+k, j+k}+a_{i+k+\frac{d^{\prime}}{2}, j+k+\frac{d^{\prime}}{2}})\\ & = & \frac{d^{\prime}}{2}c. \end{eqnarray*}

    Combining with (2), we obtain \frac{l}{2}c = \frac{l}{d^{\prime}}\cdot \frac{d^{\prime}}{2}c = \frac{l}{d^{\prime}}(-h_{ij}) = 0 , and thus o(c)\mid\frac{l}{2} . Suppose \frac{l}{2} = \prod_{i = 1}^rp_i^{t_i} , \frac{d^{\prime}}{2} = \prod_{i = 1}^rp_i^{s_i} , and o(c) = \prod_{i = 1}^rp_i^{u_i} are the prime factorizations of \frac{l}{2} , \frac{d^{\prime}}{2} , and o(c) . Since o(\frac{d^{\prime}}{2}c) = \frac{o(c)}{\gcd(o(c), \frac{d^{\prime}}{2})} = \frac{l}{d^{\prime}} = \prod_{i = 1}^rp_i^{t_i-s_i} , we obtain u_i-\min\{s_i, u_i\} = t_i-s_i . It implies that u_i = t_i if t_i > s_i. Therefore, f(\frac{l}{2}, \frac{d^{\prime}}{2})\mid o(c) .

    In this section, we present and prove the main result of this paper. We begin with two useful lemmas.

    Lemma 3.1 ([3]). Let B be a subgroup of an abelian group \Gamma such that \frac{|\Gamma|}{|B|} = 2k. Then, there exist x_i, y_i, c\in \Gamma , i = 0, 1, \ldots, k-1 such that x_i+y_i = c and

    \Gamma = (\bigcup\limits_{i = 0}^{k-1}(x_i+B))\bigcup(\bigcup\limits_{i = 0}^{k-1}(y_i+B)).

    We need the following lemma in the construction of magic labeling in our main result.

    Lemma 3.2. Let H be an abelian group. Suppose |H| = l is even and d is an odd divisor of l . Suppose c\in H and f(\frac{l}{2}, d)\mid o(c)\mid \frac{l}{2} . Then we can arrange the elements in H as a sequence z_0, z_1, \ldots, z_{l-1} such that

    z_i-z_{i+1}+z_{i+d}-z_{i+d+1} = c

    for all i , where the subscripts are calculated modulo l .

    Proof. Let C = < c > and B = < dc > = < d_1c > be the cyclic group generated by c and dc , where d_1 = \gcd(o(c), d) . We first compute |B| = o(dc) . Let l = 2^{m_0}\cdot\prod_{i = 1}^kp_i^{m_i} and d = \prod_{i = 1}^kp_i^{n_i} be the prime factorization of l and d , where p_i\geq 3 , m_i > n_i for i\in\{1, 2, \ldots, t\} , and m_i = n_i for i\in\{t+1, t+2, \ldots, k\} . Then, f(\frac{l}{2}, d) = 2^{m_0-1}\prod_{i = 1}^tp_i^{m_i} . Since f(\frac{l}{2}, d)\mid o(c)\mid \frac{l}{2} , we may assume that o(c) = 2^{m_0-1}\prod_{i = 1}^kp_i^{s_i} , where s_i = m_i for i\in\{1, 2, \ldots, t\} and s_i\leq m_i for i > t . It follows that

    \begin{eqnarray*} o(dc)& = & \frac{o(c)}{\gcd(o(c), d)} \\ & = & \frac{2^{m_0-1}\prod\nolimits_{i = 1}^kp_i^{s_i}}{\prod\nolimits_{i = 1}^kp_i^{\min\{s_i, n_i\}}} \\ & = & 2^{m_0-1}\prod\limits_{i = 1}^kp_i^{s_i-\min\{s_i, n_i\}}\\ & = & 2^{m_0-1}\prod\limits_{i = 1}^tp_i^{m_i-n_i} = \frac{l}{2d}. \end{eqnarray*}

    We obtain \frac{|H|}{|C|} = \frac{2d}{d_1} . By Lemma 3.1, there exists x_0, x_1, \ldots, x_{\frac{2d}{d_1}-1}, b\in H such that H = \cup_{i = 0}^{\frac{2d}{d_1}-1}(x_i+C) , and x_i+x_{i+\frac{d}{d_1}} = b for each i calculated modulo \frac{2d}{d_1} . Combining this with that C = \cup_{j = 0}^{d_1-1}(jc+B) , we have

    H = \bigcup\limits_{i = 0}^{\frac{2d}{d_1}-1}(x_i+C) = \bigcup\limits_{i = 0}^{\frac{2d}{d_1}-1}\bigcup\limits_{j = 0}^{d_1-1}(x_i+jc+B).

    We first claim that there exist integers t_0, t_1 such that such that t_0+t_1 = \frac{d}{d_1} and \gcd(t_0, d_1) = \gcd(t_1, d_1) = 1.

    Let d_1 = \prod_{i = 1}^rp_i^{e_i} be the prime factorization of d_1 . Suppose \frac{d}{d_1}\equiv y_i\pmod{p_i^{e_i}} where 0\leq y_i\leq p_i^{e_i}-1 . Let

    (u_i, v_i) = \left\{\begin{array}{c} (1, y_i-1), \; \; p_i\nmid y_i-1 \\ (2, y_i-2), \; \; p_i\mid y_i-1. \end{array}\right.

    By the Chinese Remainder Theorem, there exist t_0, q such that t_0\equiv u_i\pmod{p_i} and q\equiv v_i\pmod{p_i} . Since t_0+q\equiv y_i\equiv \frac{d}{d_1}\pmod{p_i^{e_i}} , we have d_1\mid \frac{d}{d_1}-t_0-q , and there exists an integer k such that kd_1 = \frac{d}{d_1}-t_0-q . Let t_1 = q+kd_1 . Then, \frac{d}{d_1} = t_0+t_1 and \gcd(t_0, p_i) = \gcd(t_1, p_i) = 1 .

    Now we define a sequence z_i for any integer i as follows. Write

    \begin{equation} i = 2qd+k\frac{d}{d_1}+s, \; 0\leq k < 2d_1, 0\leq s < \frac{d}{d_1}. \end{equation} (3.1)

    Then, by the division algorithm, we set

    \begin{equation} \; z_i: = \left\{\begin{array}{rl} x_i+(qd+s+kt_0)c, &2\mid k, 0\leq k < d_1 \\ x_i+(qd+s+(k-d_1)t_0)c, &2\mid k, d_1\leq k < 2d_1\\ x_i+(qd+kt_1)c, &2\nmid k, 0\leq k < d_1 \\ x_i+(qd+(k-d_1)t_1)c, &2\nmid k, d_1\leq k < 2d_1 \end{array} \right.. \end{equation} (3.2)

    Recall that the subscript of x_i^{\prime} is calculated modulo \frac{2d}{d_1} . We see that i\mapsto z_i is well-defined and l is a period of \{z_i\}_{i\in\mathbb{Z}} . For i given in the form (3.1), we have

    i+d = \left\{\begin{array}{rl} 2qd+(k+d_1)\frac{d}{d_1}+s, &0\leq k < d_1 \\ 2(q+1)d+(k-d_1)\frac{d}{d_1}+s, &d_1\leq k < 2d_1 \end{array} \right..

    Hence,

    \begin{equation} \; z_{i+d} = \left\{\begin{array}{rl} x_{i+d}+(qd+kt_1)c, &2\mid k, 0\leq k < d_1 \\ x_{i+d}+((q+1)d+(k-d_1)t_1)c, &2\mid k, d_1\leq k < 2d_1\\ x_{i+d}+(qd+s+kt_0)c, \; \; 2\nmid k, &0\leq k < d_1 \\ x_{i+d}+((q+1)d+s+(k-d_1)t_0)c, &2\nmid k, d_1\leq k < 2d_1 \end{array} \right.. \end{equation} (3.3)

    Combining (3.2) and (3.3), we obtain that

    z_i+z_{i+d} = b+(2qd+k\frac{d}{d_1}+s)c = b+ic,

    for any i. Therefore,

    z_i-z_{i+1}+z_{i+d}-z_{i+d+1} = -c.

    Replacing z_i by -z_i , we may assume that z_i-z_{i+1}+z_{i+d}-z_{i+d+1} = c.

    It remains to show that H = \{z_i:0\leq i < l\} .

    We claim that:

    (i) \{z_{i+2jd}:0\leq j < \frac{l}{2d}\} = z_i+B is a coset of B for i = 0, 1, \ldots, 2d-1 ;

    (ii) X_i = \{z_{i+j\frac{2d}{d_1}}:0\leq j < \frac{ld_1}{2d}\} = x_i+C is a coset of C for i = 0, 1, \ldots, \frac{2d}{d_1}-1 .

    Indeed, we have z_{i+2jd}-z_i = jdc by (3.2) for any j . It follows that \{z_{i+2jd}:0\leq j < \frac{l}{2d}\} = \{z_i+jdc:0\leq j < \frac{l}{2d}\} = z_i+B. This proves (i).

    For j_1\in\{0, 1, \ldots, \frac{ld_1}{2d}-1\} , write j_1 = rd_1+j, where 0\leq r < \frac{l}{2d} , 0\leq j < d_1 . By (i) of the claim, we have

    \begin{eqnarray*} \{z_{i+j_1\frac{2d}{d_1}}:0\leq j_1 < \frac{ld_1}{2d}\} & = & \{z_{i+(rd_1+j)\frac{2d}{d_1}}:0\leq r < \frac{l}{2d}, 0\leq j < d_1\} \\ & = & \bigcup\limits_{j = 0}^{d_1-1}\{z_{i+j\frac{2d}{d_1}+2dr}:0\leq r < \frac{l}{2d}\} \\ & = & \bigcup\limits_{j = 0}^{d_1-1}(z_{i+j\frac{2d}{d_1}}+B). \end{eqnarray*}

    The proof of (ii) is divided into two cases.

    If 0\leq i < \frac{d}{d_1} , by (3.2), we obtain that

    z_{i+j\frac{2d}{d_1}} = \left\{\begin{array}{rl} x_i+(i+2jt_0)c, &0\leq j < \frac{d_1+1}{2} \\ x_i+(i+(2j-d_1)t_0)c, &\frac{d_1+1}{2}\leq j < d_1 \end{array} \right..

    Hence, \{z_{i+j\frac{2d}{d_1}}:0\leq j < d_1\} = \{x_i+(i+jt_0)c:0\leq j < d_1\} and

    \begin{equation} X_i = \bigcup\limits_{j = 0}^{d_1-1}(z_{i+j\frac{2d}{d_1}}+B) = \bigcup\limits_{j = 0}^{d_1-1}(x_i+(i+jt_0)c+B). \end{equation} (3.4)

    If \frac{d}{d_1}\leq i < \frac{2d}{d_1} , then i+j\frac{2d}{d_1} = (2j+1)\frac{d}{d_1}+(i-\frac{d}{d_1}) . By (3.2) again, we deduce that

    z_{i+j\frac{2d}{d_1}} = \left\{\begin{array}{rl} x_i+(2j+1)t_1c, &0\leq j < \frac{d_1-1}{2} \\ x_i+(2j+1-d_1)t_1c, &\frac{d_1-1}{2}\leq j < d_1 \end{array} \right..

    In this case, we have \{z_{i+j\frac{2d}{d_1}}:0\leq j < d_1\} = \{x_i+jt_1c:0\leq j < d_1\} and

    \begin{equation} X_i = \bigcup\limits_{j = 0}^{d_1-1}(z_{i+j\frac{2d}{d_1}}+B) = \bigcup\limits_{j = 0}^{d_1-1}(x_i+jt_1c+B). \end{equation} (3.5)

    Note that both \{i+jt_0:0\leq j < d_1-1\} and \{jt_1:0\leq j < d_1\} are complete systems of residues modulo d_1 since \gcd(t_0, d_1) = \gcd(t_1, d_1) = 1 . Recall that C = < c > and B = < d_1c > . So,

    \begin{equation} C = \bigcup\limits_{j = 0}^{d_1-1}(jc+B) = \bigcup\limits_{j = 0}^{d_1-1}((i+jt_0)c+B) = \bigcup\limits_{j = 0}^{d_1-1}(jt_1c+B). \end{equation} (3.6)

    Coming with (3.4), (3.5), and (3.6), we obtain that

    X_i = \bigcup\limits_{j = 0}^{d_1-1}(x_i+jc+B) = x_i+C

    for i = 0, 1, \ldots, \frac{2d}{d_1}-1. Finally, \{z_i:0\leq i < l\} = \cup_{i = 0}^{\frac{2d}{d_1}-1}X_i = \cup_{i = 0}^{\frac{2d}{d_1}-1}(x_i+C) = H. The proof is finished.

    Theorem 3.3. \overrightarrow{C_m}\square \overrightarrow {C_n} is \Gamma -distance magic if and only if l_1\mid \exp(\Gamma) , where

    l_1 = \left\{\begin{array}{rl} \frac{2l}{d}, &4\mid d\\ \frac{1}{2}f(l, d), &2\mid l, \; 4\nmid d, 2\mid \frac{l}{d} \\ f(l, d), &l\equiv d\equiv2\pmod{4} \\ l, &2\nmid l \end{array}\right..

    Proof. Let

    d^{\prime} = \left\{\begin{array}{rl} d\cdot\gcd(2, l), &2\nmid d\\ d, &d\equiv2\pmod{4} \\ \frac{d}{2}, &4\mid d \end{array} \right..

    It is straightforward to verify that

    f(\frac{l}{2}, \frac{d^{\prime}}{2}) = \left\{\begin{array}{rl} \frac{1}{2}f(l, d), &2\mid l, \; 4\nmid d, 2\mid \frac{l}{d} \\ f(l, d), &l\equiv d\equiv2\pmod{4}. \end{array}\right.

    So, the necessity follows from (2), (5) , and (6) of Lemma 2.3.

    Let H be a subgroup of \Gamma with order l , and let V = V(\overrightarrow{C_m}\square \overrightarrow {C_n}) . We have the following claim.

    Claim 1: Suppose there exists a labeling \psi:V\longrightarrow H with the following properties.

    (i) The restriction \psi|_{D^s} is a bijection for s = 0, 1, \ldots, d-1 ;

    (ii) There exists c\in H such that the weight of any vertex with respect to \psi is c .

    Then, there exists a \Gamma -distance magic labeling of \overrightarrow{C_m}\square \overrightarrow {C_n} with magic constant c.

    Proof of the Claim 1: Since \frac{|\Gamma|}{|H|} = d , there exist b_0, b_1, \ldots, b_{d-1}\in \Gamma such that \Gamma = \cup_{i = 0}^{d-1}(b_i+H) . We define \varphi:V\longrightarrow \Gamma by

    \varphi((i, j)_{\mathcal{R}}): = \psi((i, j)_{\mathcal{R}})+b_s, \; \; (i, j)_{\mathcal{R}}\in D^s.

    Then, \varphi is a bijection by (i), and

    \begin{eqnarray*} \varphi((i-1, j)_{\mathcal{R}})-\varphi((i, j+1)_{\mathcal{R}})&+&\varphi((i, j-1)_{\mathcal{R}})-\varphi((i+1, j)_{\mathcal{R}}) \\ = \psi((i-1, j)_{\mathcal{R}})-\psi((i, j+1)_{\mathcal{R}})&+&\psi((i, j-1)_{\mathcal{R}})-\psi((i+1, j)_{\mathcal{R}}) = c. \end{eqnarray*}

    Claim 2: We have D^s = \{(i, i+s)_{\mathcal{R}}:0\leq i < l\} . Let v = (i, i+s)_{\mathcal{R}}\in D^s . Then,

    (1) If 1\leq s\leq d-2 , then N^+(v) = \{(i-1, i+s)_{\mathcal{R}}, (i, i+s-1)_{\mathcal{R}}\} ;

    (2) If s = 0 , then N^+(v) = \{(i-1, i)_{\mathcal{R}}, (i+k_0, i+k_0+d-1)_{\mathcal{R}}\} ;

    (3) If s = d-1 , then N^+(v) = \{(i-k_0-1, i-k_0-1)_{\mathcal{R}}, (i, i+d-2)_{\mathcal{R}}\} ;

    where m\mid k_0 and k_0\equiv -d\pmod{n} .

    Proof of the Claim 2: (1) is obvious. If s = 0 , then N^+(v) = \{(i-1, i)_{\mathcal{R}}, (i, i-1)_{\mathcal{R}}\} . By the choice of k_0 , we see that

    \left\{\begin{array}{c} i\equiv i+k_0\pmod{m} \\ i-1\equiv i+k_0+d-1\equiv -d\pmod{n} \end{array}\right..

    So, (i, i-1)_{\mathcal{R}} = (i+k_0, i+k_0+d-1)_{\mathcal{R}} . The proof of (3) is similar.

    We divide the proof into three cases.

    Case 1: If 2\nmid l , then l\mid\exp(\Gamma) . Let h\in \Gamma with order l , and let H be the cyclic subgroup of \Gamma generated by h . We label the (i, i+s)_{\mathcal{R}}\mapsto x_{i, i+s}: = ih for (i, i+s)_{\mathcal{R}}\in D^s . It is straightforward to check that this labeling satisfies the conditions in Claim 1.

    Case 2: 4\mid d . Since \frac{2l}{d}\mid \exp(\Gamma) , there exists an element h\in\Gamma with order \frac{2l}{d} . Let H be a subgroup of \Gamma such that |H| = l and h\in H . Suppose H = \cup_{j = 0}^{\frac{d}{2}-1}(z_j+ < h > ) . We first label D^{2s} by

    (i, i+2s)_{\mathcal{R}}\mapsto x_{i, i+2s}: = (-1)^s(z_r+qh),

    where 0\leq s < \frac{d}{2} , i+s = q\frac{d}{2}+r, 0\leq r < \frac{d}{2}.

    For (i, j)_{\mathcal{R}}\in D^{2s+1} , we label (i, j)_{\mathcal{R}} by x_{ij}: = x_{i, j-1}, which is a translation of the labeling on D^{2s} .

    It is straightforward to verify that

    x_{i, i+2s}-x_{i+1, i+2s+1} = \left\{\begin{array}{rl} (-1)^s(z_r-z_{r+1}), &0\leq r < \frac{d}{2}-1 \\ (-1)^s(z_{\frac{d}{2}-1}-z_0-h), &r = \frac{d}{2}-1 \end{array} \right..

    Now we compute the weight of v = (i, i+2s+1)\in D^{2s+1} with respect to the labeling. Suppose i+s = q\frac{d}{2}+r, 0\leq r < \frac{d}{2}.

    If s < \frac{d-2}{2} , then (i-1, i+2s+1)_{\mathcal{R}}, (i, i+2s+2)_{\mathcal{R}}\in D^{2s+2} and (i, i+2s)_{\mathcal{R}}, (i+1, i+2s+1)_{\mathcal{R}}\in D^{2s} . Then,

    \begin{array}{c} w(v) = x_{i-1, i+2s+1}-x_{i, i+2s+2}+x_{i, i+2s}-x_{i+1, i+2s+1}\\ = \left\{\begin{array}{rl} (-1)^{s+1}(z_r-z_{r+1})+(-1)^{s}(z_r-z_{r+1}), &0\leq r < \frac{d}{2}-1 \\ (-1)^{s+1}(z_{\frac{d}{2}-1}-z_0-h)+(-1)^{s}(z_{\frac{d}{2}-1}-z_0-h), &r = \frac{d}{2}-1 \end{array} \right. = 0. \end{array}

    If s = \frac{d-2}{2} , then N^+(v) = \{(i-k_0-1, i-k_0-1)_{\mathcal{R}}, (i, i+d-2)_{\mathcal{R}}\} by (3) of Claim 2, where m\mid k_0 and k_0\equiv -d\pmod{n} . So, N^-(v) = \{(i-k_0, i-k_0)_{\mathcal{R}}, (i+1, i+d-1)_{\mathcal{R}}\} . In this case, we have

    x_{i-k_0-1, i-k_0-1}-x_{i-k_0, i-k_0} = \left\{\begin{array}{rl} z_r-z_{r+1}, &0\leq r < \frac{d}{2}-1 \\ z_{\frac{d}{2}-1}-z_0-h, &r = \frac{d}{2}-1 \end{array} \right..

    Hence,

    w(v) = x_{i-k_0-1, i-k_0-1}-x_{i-k_0, i-k_0}+x_{i, i+d-2}-x_{i+1, i+d-1} = 0.

    Case 3: 2\mid l and 4\nmid d. Note that l_1 = f(\frac{l}{2}, \frac{d^{\prime}}{2})\mid \exp(\Gamma) and \frac{d^{\prime}}{2} is odd. Fix an element c\in \Gamma such that f(\frac{l}{2}, \frac{d^{\prime}}{2})\mid o(c)\mid \frac{l}{2} . There exists a subgroup H of \Gamma with order l containing c . By Lemma 3.2, we can order the elements in H as a sequences z_0, z_1, \ldots, z_{l-1} such that

    \begin{equation} z_i-z_{i+1}+z_{i+\frac{d^{\prime}}{2}}-z_{i+\frac{d^{\prime}}{2}+1} = c, \end{equation} (3.7)

    where the subscript is calculated modulo l .

    It is easy to deduce that

    \begin{equation} z_i-z_{i+1}+z_{i+(2k+1)\frac{d^{\prime}}{2}}-z_{i+(2k+1)\frac{d^{\prime}}{2}+1} = c \end{equation} (3.8)

    from (3.7).

    We divide the remains of the proof of Case 3 into two subcases. Without loss of generality we may assume that 2\mid m.

    Subcase 3.1: 2\mid d and d = d^{\prime} . We label D^{s} by

    (i, i+s)_{\mathcal{R}}\mapsto\left\{\begin{array}{rl} z_{i+\frac{s}{2}(d+1)}, &2\mid s\\ z_{i+(\frac{s+d}{2})(d+1)}, &2\nmid s \end{array}\right., \; 0\leq i\leq l-1.

    It is clear that the labeling satisfies (i) of Claim 1. Note that the labeling on D^{s} for odd s is a translation of the labeling of D^s for even s . So, we only need to compute the weight of the vertices on D^{2s+1} .

    Let v = (i, i+2s+1)_{\mathcal{R}}\in D^{2s+1}. If s\leq \frac{d-3}{2} , then

    w(v) = z_{i+s(\frac{d^{\prime}}{2}+1)}-z_{i+s(\frac{d^{\prime}}{2}+1)+1}+z_{i+(s+1)\frac{d^{\prime}}{2}+s}-z_{i+(s+1)\frac{d^{\prime}}{2}+s+1} = c

    by Eq (3.7) and the definition of the labeling.

    If s = \frac{d-3}{2} and v = (i, i+d-1)_{\mathcal{R}} , then N^+(v) = \{(i-k_0-1, i-k_0-1)_{\mathcal{R}}, (i, i+d-2)_{\mathcal{R}}\} by (3) of Claim 2.

    Note that (i, i+d-2)_{\mathcal{R}}\mapsto z_{i+\frac{d-2}{2}(\frac{d}{2}+1)} and (i-k_0-1, i-k_0-1)_{\mathcal{R}}\mapsto z_{i-k_0-1} . Recalling that 2\mid m and m\mid k_0 , we obtain

    \frac{d-2}{2}(\frac{d}{2}+1)+k_0+1\equiv \frac{d^2}{2}\pmod{m},

    and thus \frac{d-2}{2}(\frac{d}{2}+1)+k_0+1 is an odd multiple of \frac{d}{2} . By Eq (3.8), we have

    w(v) = z_{i+\frac{d-2}{2}(\frac{d}{2}+1)}-z_{i+\frac{d-2}{2}(\frac{d}{2}+1)+1}+z_{i-k_0-1}-z_{i-k_0} = c.

    Subcase 3.2: 2\nmid d and d^{\prime} = 2d . We label D^{s} in the following way. Set

    (i, i+s)_{\mathcal{R}}\mapsto\left\{\begin{array}{rl} z_{i+\frac{s}{2}(d+1)}, &2\mid s\\ z_{i+(\frac{s+d}{2})(d+1)}, &2\nmid s \end{array}\right., \; 0\leq i\leq l-1.

    By the same discussion as in subcase 3.1, the weight of each vertex with respect to the labeling in D^{j} is also c , for j = 1, 2, \ldots, d-2 . We only write the details for j = 0, d-1.

    Let v_0 = (i, i)\in D^{0} and v_1 = (i, i+d-1)\in D^{d-1} . By Claim 2, N^+(v) = \{(i-1, i)_{\mathcal{R}}, (i+k_0, i+k_0+d-1)_{\mathcal{R}}\} and N^+(v) = \{(i-k_0-1, i-k_0-1)_{\mathcal{R}}, (i, i+d-2)_{\mathcal{R}}\} , where m\mid k_0 and k_0\equiv -d\pmod{n} . By the construction of the labeling, we have

    w(v_0) = z_{i-1+\frac{(d+1)^2}{2}}-z_{i+\frac{(d+1)^2}{2}}+z_{i+k_0+\frac{(d-1)(d+1)}{2}}-z_{i+k_0+1+\frac{(d-1)(d+1)}{2}},

    and

    w(v_1) = z_{i-k_0-1}-z_{i-k_0}+z_{i+(d-1)(d+1)}-z_{i+1+(d-1)(d+1)}.

    By a simple computation, we see that

    n_0 = \frac{(d+1)^2}{2}-1-k_0-\frac{(d-1)(d+1)}{2}\equiv d\pmod{m},

    and

    n_1 = (d-1)(d+1)+k_0+1\equiv d^2\pmod{m}.

    Since 2\mid m and 2\mid d , both n_0 and n_1 are odd multiples of d = \frac{d^{\prime}}{2} . We get

    w(v_0) = w(v_1) = c

    from (3.8).

    For v = (i, i)\in D^{0} , we have (i-1, i)\mapsto z_{i-1+\frac{d+1}{2}(d+1)} and (i, i-1) = (i-k_0-1, i-k_0+d-2)\mapsto z_{i-k_0-1+\frac{d-1}{2}(d+1)} . Again, we observe that

    (i-1+\frac{d+1}{2}(d+1))-(i-k_0-1+\frac{d-1}{2}(d+1)) = k_0+d+1

    is an odd multiple of d . Hence, the weight of v is also c by Claim 2.

    Finally, we construct the labeling satisfied Claim 1 in Cases 1–3. So, \overrightarrow{C_m}\square \overrightarrow {C_n} is \Gamma -distance magic. The proof is complete.

    It is natural to study the same problem on the Cartesian product of several cycles. But, it seems hard to obtain a full characterization for the existence of the group distance magic labeling product on Cartesian product of several cycles. However, we can prove an analogous result to Theorem 2.1 in [2], which describes a relation between the labeling of two graphs G_1, G_2 and the labeling of their Cartesian product G_1\square G_2 . This is a sufficient condition.

    We say the a directed graph \overrightarrow{G} is locally regular if |N^+(x)| = |N^-(x)| for any x\in V(\overrightarrow{G}) .

    Theorem 4.1. Let \overrightarrow{G_i} be directed graphs and let \Gamma_i be abelian groups, i = 1, 2 . Suppose both \overrightarrow{G_1} and \overrightarrow{G_2} are locally regular and G_i is \Gamma_i -distance magic. Then, \overrightarrow{G_1}\square \overrightarrow{G_2} is \Gamma_1\oplus \Gamma_2 -distance magic.

    Proof. Let \varphi_i:V(\overrightarrow{G_i})\longrightarrow \Gamma_i be the \Gamma_i -distance magic labeling with magic constant c_i , i = 1, 2 . For convenience, we identity \Gamma_1 as the subgroup \{(x, 0):x\in \Gamma_1\} and identity \Gamma_2 as the subgroup \{(0, y):y\in \Gamma_2\} of \Gamma_1\oplus \Gamma_2 . Define the labeling \varphi:V(\overrightarrow{G_1}\square \overrightarrow{G_2})\longrightarrow\Gamma_1\oplus\Gamma_2 , as:

    \varphi((x, y)) = \varphi_1(x)+\varphi_2(y).

    It is clear that \varphi is bijective. For any v = (x, y)\in V(\overrightarrow{G_1}\square \overrightarrow{G_2}) , we have

    \begin{eqnarray*} w(v) & = & \sum\limits_{w\in N+(v)}\varphi(w)-\sum\limits_{w\in N^-(v)}\varphi(w) \\ & = & [\sum\limits_{z\in N^+(x)}(\varphi_1(z)+\varphi_2(y))+\sum\limits_{z\in N^+(y)}(\varphi_1(x)+\varphi_2(z))]\\ &-& [\sum\limits_{z\in N^-(x)}(\varphi_1(z)+\varphi_2(y))+\sum\limits_{z\in N^-(y)}(\varphi_1(x)+\varphi_2(z))]\\ & = & [\sum\limits_{z\in N^+(x)}\varphi_1(z)-\sum\limits_{z\in N^-(x)}\varphi_1(z)]+[\sum\limits_{z\in N^+(y)}\varphi_1(z)-\sum\limits_{z\in N^-(y)}\varphi_1(z)] \\ &+& (|N^+(y)|-|N^-(y)|)\varphi_1(x)+(|N^+(x)|-|N^-(x)|)\varphi_2(y) \\ & = & c_1+c_2. \end{eqnarray*}

    Hence, \overrightarrow{G_1}\square \overrightarrow{G_2} admits a \Gamma_1\oplus \Gamma_2 -distance magic labeling.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Guangxi Natural Science Foundation (2025GXNSFAA069810) and the National Natural Science Foundation of China (12161059).

    The authors declare there is no conflicts of interest.



    [1] P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549-559.
    [2] M. C. Hernando, M. Mora, P. J. Slater, D. R. Wood, Fault-tolerant metric dimension of graphs, Convexity Discrete Struct., 5 (2008), 81-85.
    [3] A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discrete Appl. Math., 251 (2018), 204-220. doi: 10.1016/j.dam.2018.05.052
    [4] A. Tabassum, M. A. Umar, M. Perveen, A. Raheem, Antimagicness of subdivided fans, Open J. Math. Sci., 4 (2020), 18-22. doi: 10.30538/oms2020.0089
    [5] J. B. Liu, Z. Zahid, Z. Nasir, W. Nazeer, Edge version of metric dimension and doubly resolving sets of the necklace graph, Mathematics, 6 (2018), 243. doi: 10.3390/math6110243
    [6] H. F. M. Salih, S. M. Mershkhan, Generalized the Liouville's and Mobius functions of graph, Open J. Math. Sci., 4 (2020), 186-194. doi: 10.30538/oms2020.0109
    [7] W. Gao, B. Muzaffar, W. Nazeer, K-Banhatti and K-hyper Banhatti indices of dominating David derived network, Open J. Math. Anal., 1 (2017), 13-24.
    [8] N. Zubrilina, On the edge dimension of a graph, Discrete Math., 341 (2018), 2083-2088. doi: 10.1016/j.disc.2018.04.010
    [9] F. Haray, R. A. Melter, On the metric dimension of a graph, Ars Comb., 2 (1976), 191-195.
    [10] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oeller-mann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99-113.
    [11] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl., 39 (2000), 19-28.
    [12] M. Imran, A. Q. Baig, A. Ahmad, Families of plane graphs with constant metric dimension, Utilitas Math., 88 (2012), 43-57.
    [13] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203-236. doi: 10.1080/10543409308835060
    [14] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217-229. doi: 10.1016/0166-218X(95)00106-2
    [15] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vision, Graphics, Image Process., 28 (1984), 113-121.
    [16] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, et al., On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math., 21 (2008), 423-441.
    [17] J. Kratica, V. Filipovii, A. Kartelj, Edge metric dimension of some generalized Petersen graphs, 2018. Available from: http://arXiv.org/abs/1807.00580v1.
    [18] M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M. S. Sindhu, M. Umar, Computing the edge metric dimension of convex polytopes related graphs, J. Math. Computer Sci., 22 (2021), 174-188.
    [19] U. Ali, Y. Ahmad, M. S. Sardar, On 3-total edge product cordial labeling of tadpole, book and flower graphs, Open J. Math. Sci., 4 (2020), 48-55. doi: 10.30538/oms2020.0093
    [20] S. M. Kang, M. A. Zahid, W. Nazeer, W. Gao, Calculating the degree-based topological indices of dendrimers, Open Chem., 16 (2018), 681-688. doi: 10.1515/chem-2018-0071
    [21] Y. C. Kwun, A. U. R. Virk, W. Nazeer, M. A. Rehman, S. M. Kang, On the multiplicative degreebased topological indices of silicon-carbon Si2C3-I [p, q] and Si2C3-II [p, q], Symmetry, 10 (2018), 320. doi: 10.3390/sym10080320
    [22] R. V. Voronov, The fault-tolerant metric dimension of the king's graph, Vestnik Saint Petersburg Univ. Appl. Math., Comput. Sci. Control Processes, 13 (2017), 241-249. doi: 10.21638/11701/spbu10.2017.302
    [23] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172-185.
    [24] J. B. Liu, M. Munir, I. Ali, Z. Hussain, A. Ahmed, Fault-Tolerant metric dimension of Wheel related graphs, 2019. Available from: https://hal.archives-ouvertes.fr/hal-01857316v2.
    [25] M. Basak, L. Saha, G. K. Das, K. Tiwary, Fault-tolerant metric dimension of circulant graphs Cn(1, 2, 3), Theor. Comput. Sci., 2019. DOI: 10.1016/j.tcs.2019.01.011.
    [26] A. Shabbir, T. Zamfirescu, Fault-tolerant designs in triangular lattice networks, Appl. Anal., 10 (2016), 447-456.
    [27] W. Nazeer, A. Farooq, M. Younas, M. Munir, S. M. Kang, On molecular descriptors of carbon nanocones, Biomolecules, 8 (2018), 92. doi: 10.3390/biom8030092
    [28] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, S. M. Kang, Computational analysis of topological indices of two Boron Nanotubes, Sci. Rep., 8 (2018), 1-14. doi: 10.1038/s41598-017-17765-5
    [29] M. Ahsan, S. Zafar, Edge metric dimension of certain families of graphs, Utilitas Math., In Press.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4880) PDF downloads(217) Cited by(22)

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog