Loading [MathJax]/jax/output/SVG/jax.js
Review

Bone remodeling and biological effects of mechanical stimulus

  • This review describes the physiology of normal bone tissue as an introduction to the subsequent discussion on bone remodeling and biomechanical stimulus. As a complex architecture with heterogeneous and anisotropic hierarchy, the skeletal bone has been anatomically analysed with different levelling principles, extending from nano- to the whole bone scale. With the interpretation of basic bone histomorphology, the main compositions in bone are summarized, including various organic proteins in the bone matrix and inorganic minerals as the reinforcement. The cell populations that actively participate in the bone remodeling—osteoclasts, osteoblasts and osteocytes—have also been discussed since they are the main operators in bone resorption and formation. A variety of factors affect the bone remodeling, such as hormones, cytokines, mechanical stimulus and electromagnetic stimulus. As a particularly potent stimulus for bone cells, mechanical forces play a crucial role in enhancing bone strength and preventing bone loss with aging. By combing all these aspects together, the information lays the groundwork for systematically understanding the link between bone physiology and orchestrated process of mechanically mediated bone homoestasis.

    Citation: Chao Hu, Qing-Hua Qin. Bone remodeling and biological effects of mechanical stimulus[J]. AIMS Bioengineering, 2020, 7(1): 12-28. doi: 10.3934/bioeng.2020002

    Related Papers:

    [1] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [2] M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
    [3] Volkan ALA, Ulviye DEMİRBİLEK, Khanlar R. MAMEDOV . An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation. AIMS Mathematics, 2020, 5(4): 3751-3761. doi: 10.3934/math.2020243
    [4] Mahmoud A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, D. M. Alsaleh . Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Mathematics, 2021, 6(6): 6555-6568. doi: 10.3934/math.2021386
    [5] Tingting Guan, Guotao Wang, Haiyong Xu . Initial boundary value problems for space-time fractional conformable differential equation. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312
    [6] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [7] Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan . Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039
    [8] M. Mossa Al-Sawalha, Saima Noor, Saleh Alshammari, Abdul Hamid Ganie, Ahmad Shafee . Analytical insights into solitary wave solutions of the fractional Estevez-Mansfield-Clarkson equation. AIMS Mathematics, 2024, 9(6): 13589-13606. doi: 10.3934/math.2024663
    [9] Yousef Jawarneh, Humaira Yasmin, Ali M. Mahnashi . A new solitary wave solution of the fractional phenomena Bogoyavlenskii equation via Bäcklund transformation. AIMS Mathematics, 2024, 9(12): 35308-35325. doi: 10.3934/math.20241678
    [10] Khudhayr A. Rashedi, Musawa Yahya Almusawa, Hassan Almusawa, Tariq S. Alshammari, Adel Almarashi . Lump-type kink wave phenomena of the space-time fractional phi-four equation. AIMS Mathematics, 2024, 9(12): 34372-34386. doi: 10.3934/math.20241637
  • This review describes the physiology of normal bone tissue as an introduction to the subsequent discussion on bone remodeling and biomechanical stimulus. As a complex architecture with heterogeneous and anisotropic hierarchy, the skeletal bone has been anatomically analysed with different levelling principles, extending from nano- to the whole bone scale. With the interpretation of basic bone histomorphology, the main compositions in bone are summarized, including various organic proteins in the bone matrix and inorganic minerals as the reinforcement. The cell populations that actively participate in the bone remodeling—osteoclasts, osteoblasts and osteocytes—have also been discussed since they are the main operators in bone resorption and formation. A variety of factors affect the bone remodeling, such as hormones, cytokines, mechanical stimulus and electromagnetic stimulus. As a particularly potent stimulus for bone cells, mechanical forces play a crucial role in enhancing bone strength and preventing bone loss with aging. By combing all these aspects together, the information lays the groundwork for systematically understanding the link between bone physiology and orchestrated process of mechanically mediated bone homoestasis.


    The investigation of exact solutions to nonlinear fractional differential equations (NLFDEs) plays an active role in nonlinear sciences in the perspective of the physical phenomena of real world can effectively be modeled by the making use of the theory of derivatives and integrals of fractional order. NLFDEs have recently proved to be valuable tools to the modeling of many physical phenomena and have expanded the attention of many studies due to their frequent entrance in various applications, such as optical fibers, plasma physics, solid state physics, control theory, chemical kinematics, signal processing, fractional dynamics, fluid flow and other areas. The NLFDEs are also used in modeling of many chemical progressions, mathematical biology and many other problems in physics and engineering. In the last two decades, numerous techniques have been suggested to examine the exact solution to NLFDEs. As a consequence, a variety of methods have been established to get the exact solution to NLFDEs such as the variational iteration method [1,2,3,4,5], the Adomian's decomposition method [6,7,8], the differential transformation method [9,10], the Laplace perturbation method [11], the homotopy perturbation method [12,13,14] the finite element method [15], the (G/G)-expansion method [16,17,18,19], the improve Bernoulli sub-equation method [20,21,22], the Hirota bilinear method [23], the extended sinh-Gordon expansion method [24], the exp-function method [25,26,27], the fractional sub-equation method [28,29,30], the first integral method [31,32], the two variable (G/G,1/G)-expansion method [33,34,35] and so forth [36,37,38].

    Alzaidy [39] derived the exact and analytical solution to space-time fractional mBBM and space-time fractional ZKBBM equation by using fractional sub-equation method. Ege et al. [40] established the analytical and approximate solution to the space time fractional mBBm and space time fractional potential Kadomtsev-Petviashvili equation by the modified Kudryashov method. Recently, Bekir et al. [41] studied the exact solution to the space time fractional mKdV and space time fractional mBBM equation by the first integral method. On the other hand, Song et al. [42] investigated the exact traveling wave solution to the space time fractional ZKBBM equation by Bifurcation method. Aksoy et al. [43] derived the analytical solution to the time fractional Fokas equation, fractional ZKBBM equation, and fractional couple Burgers equation by means of the exponential rational function method. In addition, Ekici et al. [44] studied the solitary wave solution and periodic wave solution to the space-time fractional ZKBBM by a fractional sub-equation method. To our comprehension, the space-time fractional mBBM and fractional ZKBBM equation have not been studied by means of recently established two variables (G/G,1/G)-expansion method. So, the goal of this study is to establish new solutions to the above-mentioned equation by means of the proposed method. It is noteworthy to observe that, the two variable (G/G,1/G)-expansion method is the generalization of (G/G)-expansion method. The main idea of this method is that the solutions to NLFDEs are represented as a polynomial in two variables (G/G) and (1/G), wherein G=G(ξ) satisfies the second order ODE G(ξ)+λG(ξ)=μ, where G(ξ)+λG(ξ)=μ and μ are constants. The objective of this article is to establish further general and some fresh close form solitary wave solution to the space-time fractional mBBM equation and the space-time fractional ZKBBM equation by means of the two variable (G/G,1/G)-expansion method. The results obtained in this article have been associated with those existing in the literature and shown that the achieved solutions are new and further general. We have to end with determined that the solution might bring up their prominence throughout the contribution and be recorded in the literature.

    The rest of this article is organized as follows: In section 2, we have introduced preliminaries and fundamental tools, in section 3, we have described the two variable (G/G,1/G)-expansion method, in section 4, we have established the exact solution to the space-time fractional mBBM equation and the space time fractional ZKBBM equation by the proposed method. In section 5, we investigate results and discussion and in the last section, the conclusions are drawn.

    Let f:[0,)R, be a function. The α-order "conformable derivative" of f is defined by [45]:

    Tα(f)(t)=limε0f(t+εt1α)f(t)ε, (1)

    for all t > 0, α∈(0, 1). If f is α-differentiable in some (0, a), a > 0, and limt0+f(α)(t) exists, then define f(α)(0)=limt0+f(α)(t). The following theorems point out some properties which are satisfied with the conformable derivative.

    Theorem 1. Let α(0,1] and suppose f,g be α-differentiable at a point t>0. Then

    Tα(cf+dg)=cTα(f)+dTα(g), for all c,dR.

    Tα(tp)=ptpα, for all pR.

    Tα(c)=0, for all constant function f(t)=c.

    Tα(fg)=fTα(g)+gTα(f).

    Tα(fg)=gTα(f)fTα(g)g2.

    • In addition, if f is differentiable, then Tα(f)(t)=t1αdfdt.

    Some more properties involving the chain rule, Gronwall's inequality, some integration techniques, Laplace transform, Tailor series expansion and exponential function with respect to the conformable fractional derivative are explained in the study [46].

    Theorem 2. Let f be an α-differentiable function in conformable differentiable and suppose that g is also differentiable and defined in the range of f. Then

    Tα(fg)(t)=t1αv(t)u(v(t)). (2.2)

    Suppose the second order differential equation

    G(ξ)+λG(ξ)=μ, (3.1)

    and let us consider the following relations

    ϕ=G/G,ψ=1/G. (3.2)

    Thus, it is obtained

    ϕ=ϕ2+μψλ,ψ=ϕψ. (3.3)

    The solution to the mentioned equation in (3.1) depends on λ for which its values as λ<0,λ>0 and λ=0.

    Remark 1: If λ<0, the general solution to equation (3.1) is:

    G(ξ)=A1sinh(λξ)+A2cosh(λξ)+μλ, (3.4)

    where A1 and A2 are arbitrary constants. Accordingly, it yields

    ψ2=λλ2σ+μ2(ϕ22μψ+λ), (3.5)

    where σ=A21A22.

    Remark 2: If λ>0, the general solution to equation (3.1) is:

    G(ξ)=A1sin(λξ)+A2cos(λξ)+μλ, (3.6)

    where A1 and A2 are arbitrary constants. Consequently, it provides

    ψ2=λλ2σμ2(ϕ22μψ+λ), (3.7)

    where σ=A21+A22.

    Remark 3: If λ=0, the general solution to equation (3.1) is:

    G(ξ)=μ2ξ2+A1ξ+A2, (3.8)

    where A1 and A2 are arbitrary constants. As a result, it delivers

    ψ2=1A212μA2(ϕ22μψ). (3.9)

    Let us suppose the general nonlinear fractional differential equation (NLFDE) of the form

    P(u,Dαtu,Dβxu,DαtDαtu,DαtDβxu,DβxDβx,)=0,0<α1,0<β1, (3.10)

    where u is an unidentified function of spatial derivative x and temporal derivative t and p is a polynomial of u and its partial fractional derivatives wherein the maximum number of derivatives and the nonlinear terms are involved.

    Step 1: We suppose the traveling wave transformation in the subsequent

    ξ=kxββ+ctαα,u(x,t)=u(ξ) (3.11)

    where c and k are nonzero arbitrary constants.

    Using this wave transformation, we can rewrite the equation (3.10) as:

    R(u,u,u,u,)=0, (3.12)

    where prime stands for the derivative of u with respect to ξ.

    Step 2: Assume that the solution of (3.12) can be revealed as a polynomial in two variables ϕ and ψ as the following form:

    u(ξ)=Ni=0aiϕi+Ni=1biϕi1ψ (3.13)

    where in ai(i=0,1,2,) and bi(i=0,1,2,) are constants to be evaluated afterword.

    Step 3: The homogeneous balancing between the highest order derivatives and the nonlinear terms appearing in equation (3.12) determined the positive integer N.

    Step 4: Setting (3.13) into (3.12) together with (3.3) and (3.5), the equation (3.12) can be reduced into a polynomial in ϕ and ψ, where the degree of ψ is not greater than one. Equating the coefficients of this polynomial of like power to zero give a system of algebraic equations which can be solved by using the computer algebra, like Maple or Mathematica yields the values of ai,bi,μ,A1,A2 and λ where λ<0, which provide hyperbolic function solutions.

    Step 5: Similarly, we examine the values of ai,bi,μ,A1,A2 and λ when λ>0 and λ=0, yield the trigonometric and rational function solutions respectively.

    In this subsection, we investigate more general and new closed form wave solutions to the space time fractional mBBM equation by means of the two variables (G/G,1/G)-expansion method. We introduce the space time fractional mBBM equation [39] as follows:

    Dαtu+Dαxuvu2Dαxu+D3αxu=0, (4.1)

    where v is a nonzero constant. If spatial derivative term Dαxu is removed then the equation (4.1) transformed into mKdV equation. This equation was first derived to designate an approximation for surface long waves in nonlinear dispersive media. It is also describe the acoustic waves in inharmonic crystals, the hydro-magnetic waves in cold plasma and acoustic gravity waves in compressible fluids.

    For the mBBM equation (4.1), we present the following transformation:

    ξ=kxαα+ctαα,u(x,t)=u(ξ), (4.2)

    where c is the speed of the traveling wave. Using the transformation (4.2), the equation (4.1) reduces to the following integer order ordinary differential equation (ODE):

    (c+k)uvku2u+k3u=0. (4.3)

    Integrating equation (4.3) with zero constant (see [47] for details), we attain

    (c+k)uvku33+k3u=0. (4.4)

    Balancing the highest order derivative u and the nonlinear term u3, yields N=1. So, the solution to (4.3) converted to the following form:

    u(ξ)=a0+a1ϕ(ξ)+b1ψ(ξ), (4.5)

    where a0,a1 and b1 are constants to be determined.

    Case 1: For λ<0, setting equation (4.5) into (4.4) along with (3.3) and (3.5) yields a set of algebraic equations and solving these equations by using symbolic computation software Maple, we obtained the following results:

    a1=±b1λμ2+λ2σ,k=±b12vλ3μ2+3λ2σ,a0=0andc=132vλ3μ2+3λ2σ×b1(3μ2vb21λ2+3λ2σ)μ2+λ2σ.

    Substituting these values into (4.5), we find the solution to the mBBM equation as the form:

    u11(x,t)=±b1λμ2+λ2σ×λ(A1cosh(λξ)+A2sinh(λξ))A1sinh(λξ)+A2cosh(λξ)+μλ+b1A1sinh(λξ)+A2cosh(λξ)+μλ, (4.6)

    where ξ=±b12vλ3μ2+3λ2σxαα132vλ3μ2+3λ2σ×b1(3μ2vb21λ2+3λ2σ)μ2+λ2σtαα and σ=A21A22.

    Since A1 and A2 are integral constants, one may choose arbitrarily their values. Therefore, if we choose A1=0, A20 and μ=0 in (4.6), we obtain the following solitary wave solution

    u12(x,t)=±b1σ×tanh(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ2+3λ2σ)λ2σtαα))+b1×sech(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ2+3λ2σ)λ2σtαα)). (4.7)

    Again if A10, A2=0 and μ=0 in (4.6), we obtain the solitary wave solution.

    u13(x,t)=±b1σ×coth(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ2+3λ2σ)λ2σtαα))+b1×cosech(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ2+3λ2σ)λ2σtαα)). (4.8)

    Case 2: In a similar manner, substituting (4.5) into (4.4) along side with (3.3) and (3.7) yield a set of algebraic equations for a0,a1, c and k and solving these equations, we obtain the following solutions:

    a0=0,a1=±b1λλ2σμ2,b1=b1,k=±b12vλ3λ2σ3μ2,c=±132vλ3λ2σ3μ2×b1(3μ2vb21λ23λ2σ)μ2λ2σ.

    When we substituted these values into equation (4.5), we found the following solution to mBBM equation:

    u14(x,t)=±b1λμ2λ2σ×λ(A1cos(λξ)A2sin(λξ))A1sin(λξ)+A2cos(λξ)+μλ+b1A1sin(λξ)+A2cos(λξ)+μλ, (4.9)

    where ξ=b12vλ3λ2σ3μ2xαα±132vλ3λ2σ3μ2×b1(3μ2vb21λ23λ2σ)μ2λ2σtαα and σ=A21+A22.

    If we set A1=0, A20 (or A10, A2=0) and μ=0 in (4.9), we obtain the solitary wave solution

    u15(x,t)=±b1σ×tan(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ23λ2σ)λ2σtαα))+b1×sec(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ23λ2σ)λ2σtαα)), (4.10)
    u16(x,t)=±b1σ×cot(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ23λ2σ)λ2σtαα))+b1×cosec(±λ(b12vλ3λ2σxαα+132vλ3λ2σ×b1(vb21λ23λ2σ)λ2σtαα)). (4.11)

    Case 3: In the similar fashion when λ=0, using(4.5) and (4.4) along with(3.3) and (3.9), we will find a group of algebraic equations, whose solutions are as follows:

    a0=0,a1=±b11A212μA2,b1=b1,c=b12v3A216μA2,andk=±b12v3A216μA2k=±b12v3A216μA2.

    Substituting these values into equation (4.5), we attained the solution to equation (4.3)

    u17(x,t)=±b11A212μA2×μ(b12v3A216μA2xααb12v3A216μA2tαα)+A1+μ2(b12v3A216μA2xααb12v3A216μA2tαα)2+A1×(b12v3A216μA2xααb12v3A216μA2tαα)+A2+b1×1μ2(b12v3A216μA2xααb12v3A216μA2tαα)2+A1×(b12v3A216μA2xααb12v3A216μA2tαα)+A2. (4.12)

    It is remarkable to see that the traveling wave solution u11u17 of the space-time fractional mBBM equation are new and further general and have not been investigated in the previous study. These solutions forces are convenient to characterize the hydromagnetic waves in cold plasma, acoustic waves in inharmonic crystals and acoustic-gravity waves incompressible fluids.

    In this subsection, we establish the general and some fresh solutions to the space-time fractional ZKBBM equation over the two variable (G/G,1/G)-expansion method. This equation is significant in many physical phenomena and it arises as an explanation of gravity water waves in the long-wave regime. We consider the space-time fractional ZKBBM equation [39] as follows:

    Dαtu+Dαxu2auDαxubDαt(D2αxu)=0.t>0,0<α1, (4.13)

    where a and b are arbitrary constants. If we removed the spatial derivative term Dαxu, the equation (4.13) converted to BBM equation.

    For the space-time fractional ZKBBM equation, we present the following transformation:

    ξ=kxαα+ctαα,u(x,t)=u(ξ), (4.14)

    where c is the velocity of the traveling wave. Using traveling wave variable (4.14) equation (4.13) reduces to the following ODE for u=u(ξ):

    (c+k)u2akuubck2u=0 (4.15)

    Integrating (4.15) once with respect to ξ with zero constant, we obtain

    (c+k)uaku2bck2u=0 (4.16)

    Balancing the highest order derivatives and nonlinear terms, we obtained N=2. Therefore, the solution to equation (4.16) is of the following form:

    u(ξ)=a0+a1ϕ(ξ)+a2ϕ2(ξ)+b1ψ(ξ)+b2ϕ(ξ)ψ(ξ). (4.17)

    Case 1: For λ<0, inserting equation (4.17) into (4.16) along with (3.3) and (3.5) yields a set of algebraic equations whose solutions from the symbolic computation software Maple are as follows:

    Set1:a0=3bk2λ(bk2λ+1)a,a1=0,a2=3k2b(bk2λ+1)a,b1=3k2bμ(bk2λ+1)a,b2=±9μ29λ2σλ×bk2(bk2λ+1)aandc=kbk2λ+1,
    Set2:a0=2bk2λ(bk2λ1)a,a1=0,a2=3k2b(bk2λ1)a,b1=3k2bμ(bk2λ1)a,b2=±9μ29λ2σλ×bk2(bk2λ1)aandc=kbk2λ1.

    where k is an arbitrary constant.

    For Set 1, we obtain the following general solution to the space time fractional ZKBBM equation:

    u21(x,t)=3bk2λ(bk2λ+1)a+3k2b(bk2λ+1)a×(A1.λcosh(λξ)+A2.λsinh(λξ)A1sinh(λξ)+A2cosh(λξ)+μλ)23k2bμ(bk2λ+1)a×1A1sinh(λξ)+A2cosh(λξ)+μλ±9μ29λ2σλ×bk2(bk2λ+1)a×A1.λcosh(λξ)+A2.λsinh(λξ)A1sinh(λξ)+A2cosh(λξ)+μλ×1A1sinh(λξ)+A2cosh(λξ)+μλ, (4.18)

    where ξ=kxααkbk2λ+1tαα and σ=A21A22.

    Here A1 and A2 are constants of integration. Therefore, one can freely select their values. If we choose A1=0, A20 and μ=0 in (4.18), we attain the solitary wave solution

    u22(x,t)=3bk2λ(bk2λ+1)a3k2bλ(bk2λ+1)a×tanh2(λ(kxααkbk2λ+1tαα))±3λbk2σ(bk2λ+1)a×tanh(λ(kxααkbk2λ+1tαα))×sech(λ(kxααkbk2λ+1tαα)). (4.19)

    Again if we set A10,A2=0 and μ=0 in (4.18), we obtain the solitary wave solution

    u23(x,t)=3bk2λ(bk2λ+1)a3k2bλ(bk2λ+1)a×coth2(λ(kxααkbk2λ+1tαα))±3λbk2σ(bk2λ+1)a×coth(λ(kxααkbk2λ+1tαα))×cosech(λ(kxααkbk2λ+1tαα)). (4.20)

    Again for Set 2, we obtain the following general solution to the space time fractional ZKBBM equation:

    u24(x,t)=2bk2λ(bk2λ1)a3k2b(bk2λ1)a×(A1.λcosh(λξ)+A2.λsinh(λξ)A1sinh(λξ)+A2cosh(λξ)+μλ)2+3k2bμ(bk2λ1)a×1A1sinh(λξ)+A2cosh(λξ)+μλ±9μ29λ2σλ×bk2(bk2λ1)a×A1.λcosh(λξ)+A2.λsinh(λξ)A1sinh(λξ)+A2cosh(λξ)+μλ×1A1sinh(λξ)+A2cosh(λξ)+μλ, (4.21)

    where ξ=kxαα+kbk2λ+1tαα and σ=A21A22.

    If we choose A1=0, A20 (or A10, A10) and μ=0 in (4.21), we obtain the solitary wave solution

    u25(x,t)=2bk2λ(bk2λ1)a+3k2bλ(bk2λ1)a×tanh2(λ(kxαα+kbk2λ+1tαα))±3λbk2σ(bk2λ1)a×tanh(λ(kxαα+kbk2λ+1tαα))×sech(λ(kxαα+kbk2λ+1tαα)). (4.22)
    u26(x,t)=2bk2λ(bk2λ1)a+3k2bλ(bk2λ1)a×coth2(λ(kxαα+kbk2λ+1tαα))±3λbk2σ(bk2λ+1)a×coth(λ(kxαα+kbk2λ+1tαα))×cosech(λ(kxαα+kbk2λ+1tαα)). (4.23)

    Case 2: In the similar manner, when λ>0 inserting (4.17) into (4.16) along with (3.3) and (3.7) yields a set of algebraic equation for a0,a1,b1,a2,b2,c,k and solving these equations we have achieved the following results:

    Set1:a0=2bk2λ(bk2λ1)a,a1=0,a2=3k2b(bk2λ1)a,b1=3k2bμ(bk2λ1)a,b2=±9μ2+9λ2σλ×bk2(bk2λ1)a,c=kbk2λ+1andk=k.
    Set2:a0=3bk2λ(bk2λ+1)a,a1=0,a2=3k2b(bk2λ+1)a,b1=3k2bμ(bk2λ+1)a,b2=±9μ2+9λ2σλ×bk2(bk2λ+1)a,c=kbk2λ+1andk=k.

    Now, we find the following exact solution to the space time fractional ZKBBM equation (4.13) for Set 1:

    u27(x,t)=2bk2λ(bk2λ1)a3k2b(bk2λ1)a×(A1.λcos(λξ)A2.λsin(λξ)A1sin(λξ)+A2cos(λξ)+μλ)2+3k2bμ(bk2λ1)a×1A1sin(λξ)+A2cos(λξ)+μλ±9μ2+9λ2σλ×bk2(bk2λ1)a×A1.λcos(λξ)A2.λsin(λξ)A1sin(λξ)+A2cos(λξ)+μλ×1A1sin(λξ)+A2cos(λξ)+μλ. (4.24)

    where ξ=kxαα+kbk2λ+1tαα and σ=A21+A22.

    As A1 and A2 are integral constants, if we select A1=0, A20(or A10, A2=0) and μ=0 into (4.24), we attain the solitary wave solution

    u28(x,t)=2bk2λ(bk2λ1)a3k2bλ(bk2λ1)a×tan2(λ(kxαα+kbk2λ+1tαα))±3λbk2σ(bk2λ1)a×tan(λ(kxαα+kbk2λ+1tαα))×sec(λ(kxαα+kbk2λ+1tαα)), (4.25)
    u29(x,t)=2bk2λ(bk2λ1)a3k2bλ(bk2λ1)a×cot2(λ(kxαα+kbk2λ+1tαα))±3λbk2σ(bk2λ1)a×cot(λ(kxαα+kbk2λ+1tαα))×cosec(λ(kxαα+kbk2λ+1tαα)). (4.26)

    Again, we find the following exact solution to the space time fractional ZKBBM equation for Set 2:

    u210(x,t)=3bk2λ(bk2λ+1)a3k2b(bk2λ+1)a×(A1.λcos(λξ)A2.λsin(λξ)A1sin(λξ)+A2cos(λξ)+μλ)2+3k2bμ(bk2λ+1)a×1A1sin(λξ)+A2cos(λξ)+μλ±9μ2+9λ2σλ×bk2(bk2λ+1)a×A1.λcos(λξ)A2.λsin(λξ)A1sin(λξ)+A2cos(λξ)+μλ×1A1sin(λξ)+A2cos(λξ)+μλ, (4.27)

    where ξ=kxααkbk2λ+1tαα and σ=A21+A22.

    If we set A1=0, A20 (or A10, A2=0) and μ=0 into (4.27), we find the solitary wave solution:

    u211(x,t)=3bk2λ(bk2λ+1)a3k2bλ(bk2λ+1)a×tan2(λ(kxααkbk2λ+1tαα))±3λbk2σ(bk2λ+1)a×tan(λ(kxααkbk2λ+1tαα×sec(λ(kxααkbk2λ+1tαα)). (4.28)
    u212(x,t)=3bk2λ(bk2λ+1)a3k2bλ(bk2λ+1)a×cot2(λ(kxααkbk2λ+1tαα))±3λbk2σ(bk2λ+1)a×cot(λ(kxααkbk2λ+1tαα×cosec(λ(kxααkbk2λ+1tαα)). (4.29)

    Case 3: Finally when λ=0, substituting equation (4.17) into (4.16) along with (3.3) and (3.9) yields a set of algebraic equations for a0,a1,b1,a2,b2,c,k and whose solution are as follows:

    a0=0,a1=0,a2=3bk2a,b1=3bk2μa,b2=±9A21+18μA2×bk2a,c=kandk=k.

    Inserting these values into equation (4.16), we attain the rational function solution to the space time fractional ZKBBM equation (4.13) as follows:

    u213(x,t)=3bk2a×(μ×(kxααktαα)+A1μ2×(kxααktαα)2+A1×(kxααktαα)+A2)23bk2μa×1μ2×(kxααktαα)2+A1×(kxααktαα)+A2±9A21+18μA2×bk2a×μξ+A1μ2×(kxααktαα)2+A1×(kxααktαα)+A2×1μ2×(kxααktαα)2+A1×(kxααktαα)+A2. (4.30)

    It is remarkable to observe that some of the obtained solutions demonstrate good similarity with earlier established solutions. A comparison between Mohyud-Din et al. [48] solutions and our obtained solutions is presented in the following Table 1:

    Table 1. Comparison between Mohyud-Din et al. [48] solutions and the obtained solutions.

    Table 1.  Comparison between Mohyud-Din et al. [48] solutions and the obtained solutions.
    Mohyud-Din et al. solutions [48] Obtained solutions
    If μ=D=1 and C=0 the solution U31(ξ) becomes:
    U31(ξ)=2bk2λ(4bk2λ1)a6k2bλ(4bk2λ1)a×tan2(λξ)
    If A1=μ=σ=0 and A2=1 then our solution u28(x,t) becomes:
    u28(x,t)=2bk2λ(bk2λ1)a3k2bλ(bk2λ1)a×tan2(λ(kxαα+kbk2λ+1tαα
    If μ=C=1 and D=0 the solution U31(ξ) becomes:
    U31(ξ)=2bk2λ(4bk2λ1)a+6k2bλ(4bk2λ1)a×cot2(λξ)
    If A2=μ=σ=0 and A1=1 then our solution u29(x,t) becomes:
    u29(x,t)=2bk2λ(bk2λ1)a3k2bλ(bk2λ1)a×cot2(λ(kxαα+kbk2λ+1tαα
    If μ=D=1 and C=0 then the solution U41(ξ) becomes:
    U41(ξ)=6bk2λ(4bk2λ+1)a6k2bλ(4bk2λ+1)atan2(λξ)
    If A1=μ=σ=0 and A2=1 then obtain solution u211(x,t) becomes:
    u211(x,t)=3bk2λ(bk2λ+1)a3k2bλ(bk2λ+1)a×tan2(λ(kxααkbk2λ+1tαα
    If μ=C=1 and D=0 then the solution U41(ξ) becomes:
    6bk2λ(4bk2λ+1)a6k2bλ(4bk2λ+1)acot2(λξ)
    If A2=μ=σ=0 and A1=1 then obtain solution u212(x,t) becomes:
    u212(x,t)=3bk2λ(bk2λ+1)a3k2bλ(bk2λ+1)a×cot2(λ(kxααkbk2λ+1tαα

     | Show Table
    DownLoad: CSV

    The trigonometric function solutions referred to the above table is similar and if we set definite values of the arbitrary constants they are identical. It is substantial to understand that the traveling wave solutions u22(x,t), u23(x,t), u25(x,t), u26(x,t), and u22(x,t) of the fractional ZKBBM equation are all new and very much important which were not originate in the previous work. This diffusion equation is significant in various physical phenomena. Itarises as an explanation of gravity water waves in the long-wave regime that creates outstanding model in physics and engineering.

    In this study, we have obtained some new and further general solitary wave solutions to two nonlinear space time fractional differential equation, namely, the time fractional mBBM equation and the fractional ZKBBM equation in terms of hyperbolic, trigonometric and rational function solution involving parameters. It is remarkable to see that our achieve solutions through the suggested method are more new and further general compared to the existing literature. The obtained solutions to these equations are capable to investigate the mathematical model of gravity water waves in the long-wave regime, the acoustic waves in inharmonic crystals, hydromagnetic waves in cold plasma and acoustic-gravity waves incompressible fluids. The competence of the two variables (G/G,1/G)-expansion method is consistent, reliable and very much attractive. Since each nonlinear equation has its own inconsistent characteristic, the future research might be how to recommend method is compatible for revealing the solutions to other NLFDEs.

    The authors would like to express their deepest appreciation to the reviewers for their valuable suggestions and comments to improve the article.

    The authors declare no conflict of interest.


    Acknowledgments



    The authors would like to acknowledge the financial support from Australian Research Council (Grant No. DP160102491).

    Conflict of interest



    The authors declare no conflict of interests.

    [1] Hu C, Ashok D, Nisbet DR, et al. (2019) Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 119366. doi: 10.1016/j.biomaterials.2019.119366
    [2] Karsenty G, Olson EN (2016) Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164: 1248-1256. doi: 10.1016/j.cell.2016.02.043
    [3] Rossi M, Battafarano G, Pepe J, et al. (2019) The endocrine function of osteocalcin regulated by bone resorption: A lesson from reduced and increased bone mass diseases. Int J Mol Sci 20: 4502. doi: 10.3390/ijms20184502
    [4] Loebel C, Burdick JA (2018) Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell 22: 325-339. doi: 10.1016/j.stem.2018.01.014
    [5] Dimitriou R, Jones E, McGonagle D, et al. (2011) Bone regeneration: current concepts and future directions. BMC Med 9: 66. doi: 10.1186/1741-7015-9-66
    [6] Nordin M, Frankel VH (2001)  Basic Biomechanics of the Musculoskeletal System, 3 Eds USA: Lippincott Williams & Wilkins.
    [7] Kobayashi S, Takahashi HE, Ito A, et al. (2003) Trabecular minimodeling in human iliac bone. Bone 32: 163-169. doi: 10.1016/S8756-3282(02)00947-X
    [8] Bartl R, Bartl C (2019) Control and regulation of bone remodelling. The Osteoporosis Manual Cham: Springer, 31-39. doi: 10.1007/978-3-030-00731-7_4
    [9] Kenkre JS, Bassett JHD (2018) The bone remodelling cycle. Ann Clin Biochem 55: 308-327. doi: 10.1177/0004563218759371
    [10] Prendergast PJ, Huiskes R (1995) The biomechanics of Wolff's law: recent advances. Irish J Med Sci 164: 152-154. doi: 10.1007/BF02973285
    [11] Wegst UGK, Bai H, Saiz E, et al. (2015) Bioinspired structural materials. Nat Mater 14: 23-36. doi: 10.1038/nmat4089
    [12] Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10: 3815-3826. doi: 10.1016/j.actbio.2014.05.024
    [13] Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28: 271-298. doi: 10.1146/annurev.matsci.28.1.271
    [14] Recker RR, Kimmel DB, Dempster D, et al. (2011) Issues in modern bone histomorphometry. Bone 49: 955-964. doi: 10.1016/j.bone.2011.07.017
    [15] Eriksen EF, Vesterby A, Kassem M, et al. (1993) Bone remodeling and bone structure. Physiology and Pharmacology of Bone Heidelberg: Springer, 67-109. doi: 10.1007/978-3-642-77991-6_2
    [16] Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35: ii27-ii31. doi: 10.1093/ageing/afl081
    [17] Kozielski M, Buchwald T, Szybowicz M, et al. (2011) Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping. J Mater Sci: Mater Med 22: 1653-1661. doi: 10.1007/s10856-011-4353-0
    [18] Cross LM, Thakur A, Jalili NA, et al. (2016) Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces. Acta Biomater 42: 2-17. doi: 10.1016/j.actbio.2016.06.023
    [19] Zebaze R, Seeman E (2015) Cortical bone: a challenging geography. J Bone Miner Res 30: 24-29. doi: 10.1002/jbmr.2419
    [20] Liu Y, Luo D, Wang T (2016) Hierarchical structures of bone and bioinspired bone tissue engineering. Small 12: 4611-4632. doi: 10.1002/smll.201600626
    [21] Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70: 301-339. doi: 10.1016/S0065-3233(05)70009-7
    [22] Cui FZ, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R Rep 57: 1-27. doi: 10.1016/j.mser.2007.04.001
    [23] Wang Y, Azaïs T, Robin M, et al. (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11: 724-733. doi: 10.1038/nmat3362
    [24] Bentmann A, Kawelke N, Moss D, et al. (2010) Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res 25: 706-715.
    [25] Szweras M, Liu D, Partridge EA, et al. (2002) α2-HS glycoprotein/fetuin, a transforming growth factor-β/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J Biol Chem 277: 19991-19997. doi: 10.1074/jbc.M112234200
    [26] Boskey AL, Robey PG (2013) The regulatory role of matrix proteins in mineralization of bone. Osteoporosis, 4 Eds Academic Press, 235-255. doi: 10.1016/B978-0-12-415853-5.00011-X
    [27] Boskey AL (2013) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 2: 447. doi: 10.1038/bonekey.2013.181
    [28] Stock SR (2015) The mineral–collagen interface in bone. Calcified Tissue Int 97: 262-280. doi: 10.1007/s00223-015-9984-6
    [29] Nikel O, Laurencin D, McCallum SA, et al. (2013) NMR investigation of the role of osteocalcin and osteopontin at the organic–inorganic interface in bone. Langmuir 29: 13873-13882. doi: 10.1021/la403203w
    [30] He G, Dahl T, Veis A, et al. (2003) Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater 2: 552-558. doi: 10.1038/nmat945
    [31] Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephro 3: S131-S139. doi: 10.2215/CJN.04151206
    [32] Olszta MJ, Cheng X, Jee SS, et al. (2007) Bone structure and formation: A new perspective. Mater Sci Eng R Rep 58: 77-116. doi: 10.1016/j.mser.2007.05.001
    [33] Nair AK, Gautieri A, Chang SW, et al. (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nature Commun 4: 1724. doi: 10.1038/ncomms2720
    [34] Landis WJ (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16: 533-544. doi: 10.1016/8756-3282(95)00076-P
    [35] Hunter GK, Hauschka PV, POOLE RA, et al. (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317: 59-64. doi: 10.1042/bj3170059
    [36] Oikeh I, Sakkas P, Blake D P, et al. (2019) Interactions between dietary calcium and phosphorus level, and vitamin D source on bone mineralization, performance, and intestinal morphology of coccidia-infected broilers. Poult Sci 11: 5679-5690. doi: 10.3382/ps/pez350
    [37] Boyce BF, Rosenberg E, de Papp AE, et al. (2012) The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur J Clin Invest 42: 1332-1341. doi: 10.1111/j.1365-2362.2012.02717.x
    [38] Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289: 1504-1508. doi: 10.1126/science.289.5484.1504
    [39] Yoshida H, Hayashi SI, Kunisada T, et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345: 442-444. doi: 10.1038/345442a0
    [40] Roodman GD (2006) Regulation of osteoclast differentiation. Ann NY Acad Sci 1068: 100-109. doi: 10.1196/annals.1346.013
    [41] Martin TJ (2013) Historically significant events in the discovery of RANK/RANKL/OPG. World J Orthop 4: 186-197. doi: 10.5312/wjo.v4.i4.186
    [42] Coetzee M, Haag M, Kruger MC (2007) Effects of arachidonic acid, docosahexaenoic acid, prostaglandin E2 and parathyroid hormone on osteoprotegerin and RANKL secretion by MC3T3-E1 osteoblast-like cells. J Nutr Biochem 18: 54-63. doi: 10.1016/j.jnutbio.2006.03.002
    [43] Steeve KT, Marc P, Sandrine T, et al. (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth F R 15: 49-60. doi: 10.1016/j.cytogfr.2003.10.005
    [44] Mellis DJ, Itzstein C, Helfrich M, et al. (2011) The skeleton: a multi-functional complex organ. The role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 211: 131-143. doi: 10.1530/JOE-11-0212
    [45] Silva I, Branco J (2011) Rank/Rankl/opg: literature review. Acta Reumatol Port 36: 209-218.
    [46] Martin TJ, Sims NA (2015) RANKL/OPG; Critical role in bone physiology. Rev Endocr Metab Dis 16: 131-139. doi: 10.1007/s11154-014-9308-6
    [47] Wang Y, Qin QH (2012) A theoretical study of bone remodelling under PEMF at cellular level. Comput Method Biomec 15: 885-897. doi: 10.1080/10255842.2011.565752
    [48] Weitzmann MN, Pacifici R (2007) T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann NY Acad Sci 1116: 360-375. doi: 10.1196/annals.1402.068
    [49] Duong LT, Lakkakorpi P, Nakamura I, et al. (2000) Integrins and signaling in osteoclast function. Matrix Biol 19: 97-105. doi: 10.1016/S0945-053X(00)00051-2
    [50] Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13: 285-292. doi: 10.1016/S1084952102000587
    [51] Jurdic P, Saltel F, Chabadel A, et al. (2006) Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85: 195-202. doi: 10.1016/j.ejcb.2005.09.008
    [52] Väänänen HK, Laitala-Leinonen T (2008) Osteoclast lineage and function. Arch Biochem Biophys 473: 132-138. doi: 10.1016/j.abb.2008.03.037
    [53] Vaananen HK, Zhao H, Mulari M, et al. (2000) The cell biology of osteoclast function. J cell Sci 113: 377-381.
    [54] Sabolová V, Brinek A, Sládek V (2018) The effect of hydrochloric acid on microstructure of porcine (Sus scrofa domesticus) cortical bone tissue. Forensic Sci Int 291: 260-271. doi: 10.1016/j.forsciint.2018.08.030
    [55] Delaissé JM, Engsig MT, Everts V, et al. (2000) Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta 291: 223-234. doi: 10.1016/S0009-8981(99)00230-2
    [56] Logar DB, Komadina R, Preželj J, et al. (2007) Expression of bone resorption genes in osteoarthritis and in osteoporosis. J Bone Miner Metab 25: 219-225. doi: 10.1007/s00774-007-0753-0
    [57] Lorget F, Kamel S, Mentaverri R, et al. (2000) High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Bioph Res Co 268: 899-903. doi: 10.1006/bbrc.2000.2229
    [58] Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276: 266-269. doi: 10.1126/science.276.5310.266
    [59] Xing L, Boyce BF (2005) Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Bioph Res Co 328: 709-720. doi: 10.1016/j.bbrc.2004.11.072
    [60] Hughes DE, Wright KR, Uy HL, et al. (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10: 1478-1487. doi: 10.1002/jbmr.5650101008
    [61] Choi Y, Arron JR, Townsend MJ (2009) Promising bone-related therapeutic targets for rheumatoid arthritis. Nat Rev Rheumatol 5: 543-548. doi: 10.1038/nrrheum.2009.175
    [62] Harvey NC, McCloskey E, Kanis JA, et al. (2017) Bisphosphonates in osteoporosis: NICE and easy? Lancet 390: 2243-2244. doi: 10.1016/S0140-6736(17)32850-7
    [63] Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289: 1501-1504. doi: 10.1126/science.289.5484.1501
    [64] Katagiri T, Takahashi N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral dis 8: 147-159. doi: 10.1034/j.1601-0825.2002.01829.x
    [65] Kretzschmar M, Liu F, Hata A, et al. (1997) The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Gene Dev 11: 984-995. doi: 10.1101/gad.11.8.984
    [66] Bennett CN, Longo KA, Wright WS, et al. (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. P Natl A Sci 102: 3324-3329. doi: 10.1073/pnas.0408742102
    [67] Wang Y, Qin QH, Kalyanasundaram S (2009) A theoretical model for simulating effect of parathyroid hormone on bone metabolism at cellular level. Mol Cell Biomech 6: 101-112.
    [68] Elefteriou F, Ahn JD, Takeda S, et al. (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434: 514-520. doi: 10.1038/nature03398
    [69] Proff P, Römer P (2009) The molecular mechanism behind bone remodelling: a review. Clin Oral Invest 13: 355-362. doi: 10.1007/s00784-009-0268-2
    [70] Katsimbri P (2017) The biology of normal bone remodelling. Eur J Cancer Care 26: e12740. doi: 10.1111/ecc.12740
    [71] Fratzl P, Weinkamer R (2007) Nature's hierarchical materials. Prog Mater Sci 52: 1263-1334. doi: 10.1016/j.pmatsci.2007.06.001
    [72] Athanasiou KA, Zhu CF, Lanctot DR, et al. (2000) Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 6: 361-381. doi: 10.1089/107632700418083
    [73] Takahashi N, Udagawa N, Suda T (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biocheml Bioph Res Co 256: 449-455. doi: 10.1006/bbrc.1999.0252
    [74] Nakashima T, Hayashi M, Fukunaga T, et al. (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17: 1231-1234. doi: 10.1038/nm.2452
    [75] Prideaux M, Findlay DM, Atkins GJ (2016) Osteocytes: the master cells in bone remodelling. Curr Opin Pharmacol 28: 24-30. doi: 10.1016/j.coph.2016.02.003
    [76] Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell… and more. Endocr Rev 34: 658-690. doi: 10.1210/er.2012-1026
    [77] Rochefort GY, Pallu S, Benhamou CL (2010) Osteocyte: the unrecognized side of bone tissue. Osteoporosis Int 21: 1457-1469. doi: 10.1007/s00198-010-1194-5
    [78] Rowe PSN (2012) Regulation of bone–renal mineral and energy metabolism: The PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 22: 61-86. doi: 10.1615/CritRevEukarGeneExpr.v22.i1.50
    [79] Pajevic PD, Krause DS (2019) Osteocyte regulation of bone and blood. Bone 119: 13-18. doi: 10.1016/j.bone.2018.02.012
    [80] Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2: 73-85.
    [81] Tate MLK, Adamson JR, Tami AE, et al. (2004) The osteocyte. Int J Biochem Cell Biol 36: 1-8. doi: 10.1016/S1357-2725(03)00241-3
    [82] Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42: 606-615. doi: 10.1016/j.bone.2007.12.224
    [83] Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21: 369-374. doi: 10.1016/j.tem.2010.01.010
    [84] Wang Y, Qin QH (2010) Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus. Acta Mech Sinica 26: 37-44. doi: 10.1007/s10409-009-0313-z
    [85] Qu C, Qin QH, Kang Y (2006) A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads. Biomaterials 27: 4050-4057. doi: 10.1016/j.biomaterials.2006.03.015
    [86] Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 1: 5-7. doi: 10.1016/S8756-3282(01)00642-1
    [87] Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann NYAcad Sci 1092: 385-396. doi: 10.1196/annals.1365.035
    [88] Vaananen HK, Zhao H, Mulari M, et al. (2000) The cell biology of osteoclast function. J cell Sci 113: 377-381.
    [89] Goldring SR (2015) The osteocyte: key player in regulating bone turnover. RMD Open 1: e000049. doi: 10.1136/rmdopen-2015-000049
    [90] Silver IA, Murrills RJ, Etherington DJ (1988) Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175: 266-276. doi: 10.1016/0014-4827(88)90191-7
    [91] Delaissé JM, Andersen TL, Engsig MT, et al. (2003) Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Techniq 61: 504-513. doi: 10.1002/jemt.10374
    [92] Delaisse JM (2014) The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep 3: 561. doi: 10.1038/bonekey.2014.56
    [93] Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat R 250: 261-276.
    [94] Locklin RM, Oreffo ROC, Triffitt JT (1999) Effects of TGFβ and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int 23: 185-194. doi: 10.1006/cbir.1998.0338
    [95] Lee B, Oh Y, Jo S, et al. (2019) A dual role of TGF-β in human osteoclast differentiation mediated by Smad1 versus Smad3 signaling. Immunol Lett 206: 33-40. doi: 10.1016/j.imlet.2018.12.003
    [96] Koseki T, Gao Y, Okahashi N, et al. (2002) Role of TGF-β family in osteoclastogenesis induced by RANKL. Cell Signal 14: 31-36. doi: 10.1016/S0898-6568(01)00221-2
    [97] Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5: 222-226. doi: 10.1007/s11926-003-0071-z
    [98] Bellido T, Plotkin LI, Bruzzaniti A (2019) Bone cells. Basic and Applied Bone Biology, 2 Eds Elsevier, 37-55. doi: 10.1016/B978-0-12-813259-3.00003-8
    [99] Weinstein RS, Jilka RL, Parfitt AM, et al. (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102: 274-282. doi: 10.1172/JCI2799
    [100] Vezeridis PS, Semeins CM, Chen Q, et al. (2006) Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Bioph Res Co 348: 1082-1088. doi: 10.1016/j.bbrc.2006.07.146
    [101] Lind M, Deleuran B, Thestrup-Pedersen K, et al. (1995) Chemotaxis of human osteoblasts: Effects of osteotropic growth factors. Apmis 103: 140-146. doi: 10.1111/j.1699-0463.1995.tb01089.x
    [102] Russo CR, Lauretani F, Seeman E, et al. (2006) Structural adaptations to bone loss in aging men and women. Bone 38: 112-118. doi: 10.1016/j.bone.2005.07.025
    [103] Ozcivici E, Luu YK, Adler B, et al. (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6: 50-59. doi: 10.1038/nrrheum.2009.239
    [104] Rosa N, Simoes R, Magalhães FD, et al. (2015) From mechanical stimulus to bone formation: a review. Med Eng Phys 37: 719-728. doi: 10.1016/j.medengphy.2015.05.015
    [105] Noble BS, Peet N, Stevens HY, et al. (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol-Cell Ph 284: C934-C943. doi: 10.1152/ajpcell.00234.2002
    [106] Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8: 455-498. doi: 10.1146/annurev.bioeng.8.061505.095721
    [107] Qin QH, Mai YW (1999) A closed crack tip model for interface cracks inthermopiezoelectric materials. Int J Solids Struct 36: 2463-2479. doi: 10.1016/S0020-7683(98)00115-2
    [108] Yu SW, Qin QH (1996) Damage analysis of thermopiezoelectric properties: Part I—crack tip singularities. Theor Appl Fract Mec 25: 263-277. doi: 10.1016/S0167-8442(96)00026-2
    [109] Qin QH, Mai YW, Yu SW (1998) Effective moduli for thermopiezoelectric materials with microcracks. Int J Fracture 91: 359-371. doi: 10.1023/A:1007423508650
    [110] Jirousek J, Qin QH (1996) Application of hybrid-Trefftz element approach to transient heat conduction analysis. Comput Struct 58: 195-201. doi: 10.1016/0045-7949(95)00115-W
    [111] Qin QH (1995) Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation. Comput Method Appl M 122: 379-392. doi: 10.1016/0045-7825(94)00730-B
    [112] Qin QH (1994) Hybrid Trefftz finite-element approach for plate bending on an elastic foundation. Appl Math Model 18: 334-339. doi: 10.1016/0307-904X(94)90357-3
    [113] Qin QH (2013)  Mechanics of Cellular Bone Remodeling: Coupled Thermal, Electrical, and Mechanical Field Effects CRC Press. doi: 10.1201/b13728
    [114] Wang H, Qin QH (2010) FE approach with Green's function as internal trial function for simulating bioheat transfer in the human eye. Arch Mech 62: 493-510.
    [115] Qin QH (2003) Fracture analysis of cracked thermopiezoelectric materials by BEM. Electronic J Boundary Elem 1: 283-301.
    [116] Qin QH, Ye JQ (2004) Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads. Int J Solids Struct 41: 2447-2460. doi: 10.1016/j.ijsolstr.2003.12.026
    [117] Qin QH, Qu C, Ye J (2005) Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads. Biomaterials 26: 6798-6810. doi: 10.1016/j.biomaterials.2005.03.042
    [118] Ducher G, Jaffré C, Arlettaz A, et al. (2005) Effects of long-term tennis playing on the muscle-bone relationship in the dominant and nondominant forearms. Can J Appl Physiol 30: 3-17. doi: 10.1139/h05-101
    [119] Robling AG, Hinant FM, Burr DB, et al. (2002) Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17: 1545-1554. doi: 10.1359/jbmr.2002.17.8.1545
    [120] Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367: 1-16. doi: 10.1016/j.gene.2005.10.028
    [121] Tatsumi S, Ishii K, Amizuka N, et al. (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5: 464-475. doi: 10.1016/j.cmet.2007.05.001
    [122] Robling AG, Turner CH (2009) Mechanical signaling for bone modeling and remodeling. Crit Rev Eukar Gene 19: 319-338. doi: 10.1615/CritRevEukarGeneExpr.v19.i4.50
    [123] Galli C, Passeri G, Macaluso GM (2010) Osteocytes and WNT: the mechanical control of bone formation. J Dent Res 89: 331-343. doi: 10.1177/0022034510363963
    [124] Robling AG, Duijvelaar KM, Geevers JV, et al. (2001) Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 29: 105-113. doi: 10.1016/S8756-3282(01)00488-4
    [125] Burr DB, Milgrom C, Fyhrie D, et al. (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18: 405-410. doi: 10.1016/8756-3282(96)00028-2
    [126] Sun W, Chi S, Li Y, et al. (2019) The mechanosensitive Piezo1 channel is required for bone formation. Elife 8: e47454. doi: 10.7554/eLife.47454
    [127] Goda I, Ganghoffer JF, Czarnecki S, et al. (2019) Topology optimization of bone using cubic material design and evolutionary methods based on internal remodeling. Mech Res Commun 95: 52-60. doi: 10.1016/j.mechrescom.2018.12.003
    [128] Goda I, Ganghoffer JF (2018) Modeling of anisotropic remodeling of trabecular bone coupled to fracture. Arch Appl Mech 88: 2101-2121. doi: 10.1007/s00419-018-1438-y
    [129] Louna Z, Goda I, Ganghoffer JF, et al. (2017) Formulation of an effective growth response of trabecular bone based on micromechanical analyses at the trabecular level. Arch Appl Mech 87: 457-477. doi: 10.1007/s00419-016-1204-y
    [130] Goda I, Ganghoffer JF (2017) Construction of the effective plastic yield surfaces of vertebral trabecular bone under twisting and bending moments stresses using a 3D microstructural model. ZAMM Z Angew Math Mech 97: 254-272. doi: 10.1002/zamm.201600141
    [131] Qin QH, Wang YN (2012) A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus. Acta Mech Sinica-Prc 28: 1678-1692. doi: 10.1007/s10409-012-0154-z
  • This article has been cited by:

    1. Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar, Silvestre Paredes, New results on complex conformable integral, 2020, 5, 2473-6988, 7695, 10.3934/math.2020492
    2. F. Martínez, I. Martínez, Mohammed K.A. Kaabar, S. Paredes, Solving systems of conformable linear differential equations via the conformable exponential matrix, 2021, 20904479, 10.1016/j.asej.2021.02.035
    3. M. Ayesha Khatun, Mohammad Asif Arefin, M. Hafiz Uddin, Dumitru Baleanu, M. Ali Akbar, Mustafa Inc, Explicit wave phenomena to the couple type fractional order nonlinear evolution equations, 2021, 28, 22113797, 104597, 10.1016/j.rinp.2021.104597
    4. U.H.M. Zaman, Mohammad Asif Arefin, M. Ali Akbar, M. Hafiz Uddin, Analytical behavior of soliton solutions to the couple type fractional-order nonlinear evolution equations utilizing a novel technique, 2022, 61, 11100168, 11947, 10.1016/j.aej.2022.05.046
    5. Mohammed Shaaf Alharthi, H. M. Shahadat Ali, M.A. Habib, M. Mamun Miah, Abdulrahman F. Aljohani, M. Ali Akbar, W. Mahmoud, M.S. Osman, Assorted soliton wave solutions of time-fractional BBM-Burger and Sharma-Tasso-Olver equations in nonlinear analysis, 2022, 24680133, 10.1016/j.joes.2022.06.022
    6. M. Ayesha Khatun, Mohammad Asif Arefin, M. Hafiz Uddin, Mustafa Inc, Luigi Rodino, Abundant Explicit Solutions to Fractional Order Nonlinear Evolution Equations, 2021, 2021, 1563-5147, 1, 10.1155/2021/5529443
    7. Mohammad Asif Arefin, M. Ayesha Khatun, M. Hafiz Uddin, Mustafa Inc, Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations, 2022, 7, 24680133, 292, 10.1016/j.joes.2021.08.011
    8. Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar, Silvestre Paredes, Novel results on conformable Bessel functions, 2022, 11, 2192-8029, 6, 10.1515/nleng-2022-0002
    9. Zeliha Korpinar, Dumitru Baleanu, Mustafa Inc, Bandar Almohsen, Some applications of the least squares-residual power series method for fractional generalized long wave equations, 2021, 24680133, 10.1016/j.joes.2021.09.001
    10. M. Hafiz Uddin, M. Ayesha Khatun, Mohammad Asif Arefin, M. Ali Akbar, Abundant new exact solutions to the fractional nonlinear evolution equation via Riemann-Liouville derivative, 2021, 60, 11100168, 5183, 10.1016/j.aej.2021.04.060
    11. M. Hafiz Uddin, U.H.M. Zaman, Mohammad Asif Arefin, M. Ali Akbar, Nonlinear dispersive wave propagation pattern in optical fiber system, 2022, 164, 09600779, 112596, 10.1016/j.chaos.2022.112596
    12. Mohammad Asif Arefin, Md. Abu Saeed, M. Ali Akbar, M. Hafiz Uddin, Analytical behavior of weakly dispersive surface and internal waves in the ocean, 2022, 7, 24680133, 305, 10.1016/j.joes.2021.08.012
    13. Erdogan Mehmet Ozkan, New Exact Solutions of Some Important Nonlinear Fractional Partial Differential Equations with Beta Derivative, 2022, 6, 2504-3110, 173, 10.3390/fractalfract6030173
    14. U.H.M. Zaman, Mohammad Asif Arefin, M. Ali Akbar, M. Hafiz Uddin, Stable and effective travelling wave solutions to the non-linear fractional Gardner and Zakharov–Kuznetsov–Benjamin–Bona–Mahony equations, 2023, 26668181, 100509, 10.1016/j.padiff.2023.100509
    15. U. H. M. Zaman, Mohammad Asif Arefin, M. Ali Akbar, M. Hafiz Uddin, Shou-Fu Tian, Study of the soliton propagation of the fractional nonlinear type evolution equation through a novel technique, 2023, 18, 1932-6203, e0285178, 10.1371/journal.pone.0285178
    16. U.H.M. Zaman, Mohammad Asif Arefin, M. Ali Akbar, M. Hafiz Uddin, Solitary wave solution to the space–time fractional modified Equal Width equation in plasma and optical fiber systems, 2023, 52, 22113797, 106903, 10.1016/j.rinp.2023.106903
    17. Nauman Ahmed, Jorge E. Macías-Díaz, Shazia Umer, Muhammad Z. Baber, Muhammad Jawaz, Héctor Vargas-Rodríguez, On some solitary wave solutions of the Estevez--Mansfield--Clarkson equation with conformable fractional derivatives in time, 2024, 22, 2391-5471, 10.1515/phys-2024-0109
    18. A. Hassan, A. A. M. Arafa, S. Z. Rida, M. A. Dagher, H. M. El Sherbiny, Least squares residual power series solutions for Kawahara and Rosenau-Hyman nonlinear wave interactions with applications in fluid dynamics, 2025, 15, 2045-2322, 10.1038/s41598-025-97639-3
    19. Aly R. Seadawy, Asghar Ali, Ahmet Bekir, Adem C. Cevikel, Murat Alp, Novel exact solutions to the fractional PKP equation via mathematical methods, 2025, 0217-7323, 10.1142/S0217732325500993
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11605) PDF downloads(1267) Cited by(18)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog