Citation: Tyler C. Smith MS PhD, Besa Smith MPH PhD. Understanding the Early Signs of Chronic Disease by Investigating the Overlap of Mental Health Needs and Adolescent Obesity[J]. AIMS Public Health, 2015, 2(3): 487-500. doi: 10.3934/publichealth.2015.3.487
[1] | Yanpeng Zheng, Xiaoyu Jiang . Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix. AIMS Mathematics, 2022, 7(7): 11647-11662. doi: 10.3934/math.2022649 |
[2] | B. Amutha, R. Perumal . Public key exchange protocols based on tropical lower circulant and anti circulant matrices. AIMS Mathematics, 2023, 8(7): 17307-17334. doi: 10.3934/math.2023885 |
[3] | Chih-Hung Chang, Ya-Chu Yang, Ferhat Şah . Reversibility of linear cellular automata with intermediate boundary condition. AIMS Mathematics, 2024, 9(3): 7645-7661. doi: 10.3934/math.2024371 |
[4] | Imrana Kousar, Saima Nazeer, Abid Mahboob, Sana Shahid, Yu-Pei Lv . Numerous graph energies of regular subdivision graph and complete graph. AIMS Mathematics, 2021, 6(8): 8466-8476. doi: 10.3934/math.2021491 |
[5] | Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu . Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317 |
[6] | Yifan Luo, Qingzhong Ji . On the sum of matrices of special linear group over finite field. AIMS Mathematics, 2025, 10(2): 3642-3651. doi: 10.3934/math.2025168 |
[7] | Lanlan Liu, Pan Han, Feng Wang . New error bound for linear complementarity problem of $ S $-$ SDDS $-$ B $ matrices. AIMS Mathematics, 2022, 7(2): 3239-3249. doi: 10.3934/math.2022179 |
[8] | Chaojun Yang . More inequalities on numerical radii of sectorial matrices. AIMS Mathematics, 2021, 6(4): 3927-3939. doi: 10.3934/math.2021233 |
[9] | Xiaofeng Guo, Jianyu Pan . Approximate inverse preconditioners for linear systems arising from spatial balanced fractional diffusion equations. AIMS Mathematics, 2023, 8(7): 17284-17306. doi: 10.3934/math.2023884 |
[10] | Qin Zhong, Ling Li . Notes on the generalized Perron complements involving inverse $ {{N}_{0}} $-matrices. AIMS Mathematics, 2024, 9(8): 22130-22145. doi: 10.3934/math.20241076 |
In 1999, Fallat and Johnson [1] introduced the concept of $ k $-subdirect sums of square matrices, which generalizes the usual sum and the direct sum of matrices [2], and has potential applications in several contexts such as matrix completion problems [3,4,5], overlapping subdomains in domain decomposition methods [6,7,8], and global stiffness matrices in finite elements [7,9], etc.
Definition 1.1. [1] Let $ A\in\mathbb{C}^{n_1\times n_1} $ and $ B\in\mathbb{C}^{n_2\times n_2} $, and $ k $ be an integer such that $ 1\leq k \leq \min\{n_1, n_2\} $. Suppose that
$ A=[A11A12A21A22]andB=[B11B12B21B22], $
|
(1.1) |
where $ A_{22} $ and $ B_{11} $ are square matrices of order $ k $. Then
$ C=[A11A120A21A22+B11B120B21B22] $
|
is called the $ k $-subdirect sum of $ A $ and $ B $ and is denoted by $ C = A\bigoplus_k B $.
For the $ k $-subdirect sums of matrices, one of the important problems is that if $ A $ and $ B $ lie in a certain subclass of $ H $-matrices must a $ k $-subdirect sum $ C $ lie in this class, since it can be used to analyze the convergence of Jacobi and Gauss-Seidel methods in solving the linearized system of nonlinear equations [10]. Here, a square matrix $ A $ is called an $ H $-matrix if there exists a positive diagonal matrix $ X $ such that $ AX $ is a strictly diagonally dominant matrix [11]. To answer this question, several results about subdirect sum problems for $ H $-matrices and some subclasses of $ H $-matrices have been obtained, such as $ S $-strictly diagonally dominant matrices [12], doubly diagonally dominant matrices [13], $ \Sigma $-strictly diagonally dominant matrices [14], $ \alpha_1 $ and $ \alpha_2 $-matrices [15], Nekrasov matrices [16], weakly chained diagonally dominant matrices [17], $ QN $-(quasi-Nekrasov) matrices [18], SDD($ p $)-matrices [10], and $ H $-matrices [19]. Besides, the subdirect sum problems for some other structure matrices, including $ B $-matrices, $ B_{\pi}^{R} $-matrices, $ P $-matrices, doubly non-negative matrices, completely positive matrices, and totally non-negative matrices, were also studied; for details, see [1,20,21,22] and references therein.
In 2009, Cvetković, Kostić, and Rauški [23] introduced a new subclass of $ H $-matrices called $ S $-Nekrasov matrices.
Definition 1.2. [23] Given any nonempty proper subset $ S $ of $ N: = \{1, 2, \ldots, n\} $ and $ \overline{S} = N \setminus S $. A matrix $ A = [a_{ij}]\in \mathbb{C}^{n\times n} $ is called an $ S $-Nekrasov matrix if $ |a_{ii}| > h_i^{S}(A) $ for all $ i\in S $, and
$ (|aii|−hSi(A))(|ajj|−h¯Sj(A))>h¯Si(A)hSj(A),foralli∈S,j∈¯S, $
|
where $ h_1^{S}(A) = \sum\limits_j\in S\setminus \{1\} |a_{1j}| $ and
$ hSi(A)=i−1∑j=1|aij||ajj|hSj(A)+n∑j=i+1,j∈S|aij|,i=2,3,…,n. $
|
(1.2) |
Specially, if $ S = N $, then Definition 1.2 coincides with the definition of Nekrasov matrices [23], that is, a matrix $ A = [a_{ij}]\in \mathbb{C}^{n\times n} $ is called a Nekrasov matrix if $ |a_{ii}| > h_i(A) $ for all $ i\in N $, where $ h_i(A): = h_i^{N}(A) $. It is worth noticing that the class of $ S $-Nekrasov matrices has many potential applications in scientific computing, such as estimating the infinity norm for the inverse of $ S $-Nekrasov matrices [24], estimating error bounds for linear complementarity problems [25,26,27], and identifying nonsingular $ H $-tensors [28], etc. However, to the best of the author's knowledge, the subdirect sum problem for $ S $-Nekrasov matrices remains unclear. In this paper, we introduce the class of $ \{i_0\} $-Nekrasov matrices and prove that it is a subclass of $ S $-Nekrasov matrices, and then we focus on the subdirect sum problem of $ \{i_0\} $-Nekrasov matrices. We provide some sufficient conditions such that the $ k $-subdirect sum of $ \{i_0\} $-Nekrasov matrices and Nekrasov matrices belongs to the class of $ \{i_0\} $-Nekrasov matrices. Numerical examples are presented to illustrate the corresponding results.
We start with some notations and definitions. For a non-zero complex number $ z $, we define $ \mathrm{arg}(z) = \{\theta: z = |z|\mathrm{exp}(i \theta), -\pi < \theta\leq \pi\} $. As is shown in [12], if we let $ C = A\bigoplus_k B = [c_{ij}] $, where $ A = [a_{ij}]\in \mathbb{C}^{n_1\times n_1} $ and $ B = [b_{ij}]\in \mathbb{C}^{n_2\times n_2} $, then
$ c_{ij} = \left\{ aij,i∈S1,j∈S1⋃S2,0,i∈S1,j∈S3,aij,i∈S2,j∈S1,aij+bi−t,j−t,i∈S2,j∈S2,bi−t,j−t,i∈S2,j∈S3,0,i∈S3,j∈S1,bi−t,j−t,i∈S3,j∈S2⋃S3, \right. $
|
where $ t = n_1-k $ and
$ S1={1,2,…,n1−k},S2={n1−k+1,…,n1},S3={n1+1,…,n}, $
|
(2.1) |
with $ n = n_1+n_2-k $. Obviously, $ S_1\bigcup S_2 \bigcup S_3 = N $.
We introduce the following subclass of $ S $-Nekrasov matrices by requiring $ S $ is a singleton.
Definition 2.1. A matrix $ A = [a_{ij}] \in \mathbb{C}^{n\times n} $ is called an $ \{i_0\} $-Nekrasov matrix if there exists $ i_0\in N $ such that $ |a_{i_0, i_0}| > \eta_{i_0}(A) $, and that for all $ j\in N\setminus \{i_0\} $,
$ (|ai0,i0|−ηi0(A))⋅(|ajj|−hj(A)+ηj(A))>(hi0(A)−ηi0(A))⋅ηj(A), $
|
where $ \eta_i(A) = 0 $ for all $ i\in N $ if $ i_0 = 1 $, otherwise, $ \eta_1(A) = |a_{i, i_0}| $ and
$ ηi(A)={i−1∑j=1|aij||ajj|ηj(A)+|ai,i0|,i=2,…,i0−1,i−1∑j=1|aij||ajj|ηj(A),i=i0,i0+1,…,n. $
|
(2.2) |
Remark 2.1. (i) If $ A $ is an $ \{i_0\} $-Nekrasov matrix, then $ A $ is an $ S $-Nekrasov matrix for $ S = \{i_0\} $. In fact, using recursive relations (1.2) and (2.2), it follows that $ h_{i_0}^{S}(A) = 0 = \eta_{i_0}(A) $ if $ i_0 = 1 $, otherwise, $ h_1^{S}(A) = \eta_1(A) $ and
$ hSi(A)=i−1∑j=1|aij||ajj|hSj(A)+n∑j=i+1,j∈S|aij|={i−1∑j=1|aij||ajj|ηj(A)+|ai,i0|,i=2,…,i0−1,i−1∑j=1|aij||ajj|ηj(A),i=i0,i0+1,…,n.=ηi(A). $
|
In addition, $ h_i^{\overline{S}}(A) = h_{i}(A)-\eta_i(A) $ follows from the fact that $ h_{i}(A) = h_i^{S}(A)+h_i^{\overline{S}}(A) $ for each $ i\in N $. These imply that an $ \{i_0\} $-Nekrasov matrix is an $ S $-Nekrasov matrix for $ S = \{i_0\} $.
(ii) Since a Nekrasov matrix is an $ S $-Nekrasov matrices for any $ S $, it follows that a Nekrasov matrix is an $ \{i_0\} $-Nekrasov matrices.
The following example shows that the $ k $-subdirect sum of two $ \{i_0\} $-Nekrasov matrices may not be an $ \{i_0\} $-Nekrasov matrix in general.
Example 2.1. Consider the $ \{i_0\} $-Nekrasov matries $ A $ and $ B $ for $ i_0 = 2 $, where
![]() |
Then, the $ 3 $-subdirect sum $ C = A\bigoplus_3 B $ gives
![]() |
It is easy to check that $ C = A\bigoplus_3 B $ is not an $ \{i_0\} $-Nekrasov matrix for neither one index $ i_0 $. This motivates us to seek some simple conditions such that $ C = A \bigoplus_k B $ for any $ k $ is an $ \{i_0\} $-Nekrasov matrix. First, we provide the following conditions such that $ A \bigoplus_1 B $ is an $ \{i_0\} $-Nekrasov matrix, where $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ B $ is a Nekrasov matrix.
Theorem 2.1. Let $ A = [a_{ij}]\in \mathbb{C}^{n_1\times n_1} $ be an $ \{i_0\} $-Nekrasov matrix with $ i_0\in S_1 $ and $ B = [b_{ij}]\in \mathbb{C}^{n_2\times n_2} $ be a Nekrasov matrix, partitioned as in (1.1), which defines the sets $ S_1 $, $ S_2 $ and $ S_3 $ as in (2.1), and let $ t = n_1-1 $. If arg($ a_{ii} $) = arg($ b_{i-t, i-t} $) for all $ i\in S_2 $ and $ B_{21} = 0 $, then the $ 1 $-subdirect sum $ C = A\bigoplus _1 B $ is an $ \{i_0\} $-Nekrasov matrix.
Proof. Since $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ i_0\in S_1 $, it follows that if $ i_0 = 1 $ then $ |c_{11}| = |a_{11}| > \eta_{1}(A) = 0 = \eta_{1}(C) $, otherwise,
$ |ci0,i0|=|ai0,i0|>ηi0(A)=i0−1∑j=1|ai0,j||ajj|ηj(A)=i0−1∑j=1|ci0,j||cjj|ηj(C)=ηi0(C). $
|
(2.3) |
Case 1: For $ i\in S_1 $, we have
$ hi(C)=i−1∑j=1|cij||cjj|hj(C)+n∑j=i+1|cij|=i−1∑j=1|aij||ajj|hj(A)+n1∑j=i+1|aij|=hi(A), $
|
and if $ i_0 = 1 $, then $ \eta_i(C) = 0 = \eta_i(A) $, and if $ i_0\neq 1 $, then $ \eta_1(C) = |c_{i, i_0}| = |a_{i, i_0}| = \eta_1(A) $ and
$ ηi(C)={i−1∑j=1|cij||cjj|ηj(C)+|ci,i0|,i=2,…,i0−1,i−1∑j=1|cij||cjj|ηj(C),i=i0,…,n1−k.={i−1∑j=1|aij||ajj|ηj(A)+|ai,i0|,i=1,2,…,i0−1,i−1∑j=1|aij||ajj|ηj(A),i=i0,…,n1−k.=ηi(A). $
|
Hence, for all $ j\in S_1\setminus\{i_0\} $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)+ηj(C))=(|ai0,i0|−ηi0(A))⋅(|ajj|−hj(A)+ηj(A))>(hi0(A)−ηi0(A))⋅ηj(A)=(hi0(C)−ηi0(C))⋅ηj(C). $
|
Case 2: For $ i\in S_2 = \{n_1\} $, we have
$ hn1(C)=n1−1∑j=1|cn1,j||cjj|hj(C)+n∑j=n1+1|cn1,j|=n1−1∑j=1|an1,j||ajj|hj(A)+n∑j=n1+1|bn1−t,j−t|=hn1(A)+hn1−t(B), $
|
and
$ ηn1(C)=n1−1∑j=1|cn1,j||cjj|ηj(C)=n1−1∑j=1|an1,j||ajj|ηj(A)=ηn1(A). $
|
So,
$ (|ci0,i0|−ηi0(C))⋅(|cn1,n1|−hn1(C)+ηn1(C))=(|ci0,i0|−ηi0(C))⋅(|an1,n1+b11|−(hn1(A)+h1(B))+ηn1(A))=(|ai0,i0|−ηi0(A))⋅(|an1,n1|−hn1(A)+|b11|−h1(B)+ηn1(A))>(|ai0,i0|−ηi0(A))⋅(|an1,n1|−hn1(A)+ηn1(A))>(hi0(A)−ηi0(A))⋅ηn1(A)=(hi0(C)−ηi0(C))⋅ηn1(C). $
|
Case 3: For $ i\in S_3 = \{n_1+1, \ldots, n\} $, we have
$ hi(C)=i−1∑j=1|cij||cjj|hj(C)+n∑j=i+1|cij|=n1−1∑j=1|cij||cjj|hj(C)+|ci,n1||cn1,n1|hn1(C)+i−1∑j=n1+1|cij||cjj|hj(C)+n∑j=i+1|cij|=|bi−t,n1−t||an1,n1+bn1−t,n1−t|(hn1(A)+hn1−t(B))+i−1∑j=n1+1|bi−t,j−t||bj−t,j−t|hj−t(B)+n∑j=i+1|bi−t,j−t|=|bi−t,n1−t||bn1−t,n1−t|⋅hn1−t(B)+i−1∑j=n1+1|bi−t,j−t||bj−t,j−t|hj−t(B)+n∑j=i+1|bi−t,j−t|(byB21=0)=hi−t(B). $
|
It follows from $ B_{21} = 0 $ that
$ ηn1+1(C)=n1∑j=1|cn1+1,j||cjj|ηj(C)=n1−1∑j=1|cn1+1,j||cjj|ηj(C)+|cn1+1,n1||cn1,n1|ηn1(C)=|bn1+1−t,n1−t||bn1−t,n1−t|ηn1(C)=0, $
|
and for each $ i = n_1+2, \ldots, n $,
$ ηi(C)=i−1∑j=1|cij||cjj|ηj(C)=|ci,n1||cn1,n1|ηn1(C)+i−1∑j=n1+1|bi−t,j−t||bj−t,j−t|ηj(C)=0. $
|
So, for all $ j\in S_3 $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)+ηj(C))≥(|ai0,i0|−ηi0(A))⋅(|bj−t,j−t|−hj−t(B))>0=(hi0(C)−ηi0(C))⋅ηj(C). $
|
The conclusion follows from (2.3), Case 1–3.
Next, we give some conditions such that $ C = A \bigoplus_k B $ for any $ k $ is an $ \{i_0\} $-Nekrasov matrix, where $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ B $ is a Nekrasov matrix. First, a lemma is given which will be used in the sequel.
Lemma 2.1. Let $ A = [a_{ij}]\in \mathbb{C}^{n_1\times n_1} $ be an $ \{i_0\} $-Nekrasov matrix with $ i_0\in S_1\cup S_2 $ and $ B = [b_{ij}]\in \mathbb{C}^{n_2\times n_2} $ be a Nekrasov matrix, partitioned as in (1.1), $ k $ be an integer such that $ 1\leq k \leq {min}\{n_1, n_2\} $, which defines the sets $ S_1 $, $ S_2 $ and $ S_3 $ as in (2.1), let $ t = n_1-k $ and $ C = A\bigoplus _k B $. If arg($ a_{ii} $) = arg($ b_{i-t, i-t} $) for all $ i\in S_2 $, $ B_{12} = 0 $, and $ |a_{ij}+b_{i-t, j-t}|\leq|a_{ij}| $ for $ i\neq j, \; i, j\in S_2 $, then
$ h_{i_0}(C)-\eta_{i_0}(C)\leq h_{i_0}(A)-\eta_{i_0}(A). $ |
Proof. If $ i_0\in S_1 $, then it follows from the proof of Case I in Theorem 2.1 that $ h_{i}(C)-\eta_{i}(C) = h_{i}(A)-\eta_{i}(A) $ for all $ i\in S_1 $, and thus $ h_{i_0}(C)-\eta_{i_0}(C) = h_{i_0}(A)-\eta_{i_0}(A) $.
If $ i_0\in S_2 = \{n_1-k+1, \ldots, n_1\} $, then from the assumptions and $ t = n_1-k $ we have
$ ht+1(C)−ηt+1(C)={t∑j=1|ct+1,j||cjj|(hj(C)−ηj(C))+n∑j=t+2|ct+1,j|−|ct+1,i0|ift+1<i0,t∑j=1|ct+1,j||cjj|(hj(C)−ηj(C))+n∑j=t+2|ct+1,j|ift+1=i0,≤{t∑j=1|at+1,j||ajj|(hj(A)−ηj(A))+n1∑j=t+2|at+1,j|−|at+1,i0|ift+1<i0,t∑j=1|at+1,j||ajj|(hj(A)−ηj(A))+n1∑j=t+2|at+1,j|ift+1=i0,=ht+1(A)−ηt+1(A). $
|
Suppose that $ h_{i}(C)-\eta_{i}(C)\leq h_{i}(A)-\eta_{i}(A) $ for all $ i < t+m $, where $ m $ is a positive integer and $ 1 < m\leq k $. We next prove that $ h_{t+m}(C)-\eta_{t+m}(C)\leq h_{t+m}(A)-\eta_{t+m}(A) $. Since
$ ht+m(C)−ηt+m(C)={∑j<t+m|ct+m,j||cjj|(hj(C)−ηj(C))+n∑j>t+m|ct+m,j|−|ct+m,i0|,t+m<i0,∑j<t+m|ct+m,j||cjj|(hj(C)−ηj(C))+n∑j>t+m|ct+m,j|,t+m≥i0,≤{∑j<t+m|at+m,j||ajj|(hj(A)−ηj(A))+n∑j>t+m|at+m,j|−|at+m,i0|,t+m<i0,∑j<t+m|at+m,j||ajj|(hj(A)−ηj(A))+n∑j>t+m|at+m,j|,t+m≥i0,=ht+m(A)−ηt+m(A), $
|
it follows that $ h_{i}(C)-\eta_{i}(C)\leq h_{i}(A)-\eta_{i}(A) $ for all $ i\in S_2 $. Hence, $ h_{i_0}(C)-\eta_{i_0}(C)\leq h_{i_0}(A)-\eta_{i_0}(A) $. The proof is complete.
Theorem 2.2. Let $ A = [a_{ij}]\in \mathbb{C}^{n_1\times n_1} $ be an $ \{i_0\} $-Nekrasov matrix with $ i_0\in S_1 $ and $ B = [b_{ij}]\in \mathbb{C}^{n_2\times n_2} $ be a Nekrasov matrix, partitioned as in (1.1), $ k $ be an integer such that $ 1\leq k \leq {min}\{n_1, n_2\} $, which defines the sets $ S_1 $, $ S_2 $ and $ S_3 $ as in (2.1), and let $ t = n_1-k $. If arg($ a_{ii} $) = arg($ b_{i-t, i-t} $) for all $ i\in S_2 $, $ A_{21} = 0 $, and $ |a_{ij}+b_{i-t, j-t}|\leq|b_{i-t, j-t}| $ for $ i\neq j, \; i, j\in S_2 $, then the $ k $-subdirect sum $ C = A\bigoplus _k B $ is an $ \{i_0\} $-Nekrasov matrix.
Proof. Since $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ i_0\in S_1 $, it is obvious that $ |c_{i_0, i_0}| > \eta_{i_0}(C) $.
Case 1: For $ i\in S_1 $, since $ h_i(C) = h_i(A) $ and $ \eta_i(C) = \eta_i(A) $, it holds that for all $ j\in S_1\setminus \{i_0\} $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)+ηj(C))>(hi0(C)−ηi0(C))⋅ηj(C). $
|
Case 2: For $ i\in S_2 $, by the assumptions, we have
$ hn1−k+1(C)=n1−k∑j=1|cn1−k+1,j||cjj|hj(C)+n∑j=n1−k+2|cn1−k+1,j|≤n∑j=n1−k+2|bn1−k+1−t,j−t|=h1(B). $
|
Similarly, for $ i = n_1-k+2, \ldots, n_1 $,
$ hi(C)=n1−k∑j=1|cij||cjj|hj(C)+i−1∑j=n1−k+1|cij||cjj|hj(C)+n∑j=i+1|cij|≤i−1∑j=n1−k+1|bi−t,j−t||bj−t,j−t|hj−t(B)+n∑j=i+1|bi−t,j−t|=hi−t(B). $
|
And for $ i = n_1-k+1 $, by $ A_{21} = 0 $,
$ ηn1−k+1(C)=n1−k∑j=1|cn1−k+1,j||cjj|ηj(C)=0, $
|
implying that for all $ i\in S_2 $,
$ ηi(C)=n1−k∑j=1|cij||cjj|ηj(C)+i−1∑j=n1−k+1|cij||cjj|ηj(C)=0. $
|
So, for all $ j\in S_2 $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)+ηj(C))>(|ai0,i0|−ηi0(A))⋅(|bj−t,j−t|−hj−t(B))>0=(hi0(C)−ηi0(C))⋅ηj(C). $
|
(2.4) |
Analogously to the proof of Case 2, we can easily obtain that $ (2.4) $ holds for all $ j\in S_3 $. Combining with Case 1 and Case 2, the conclusion follows.
Example 2.2. Consider the following matrices:
![]() |
It is easy to verify that $ A $ is an $ \{i_0\} $-Nekrasov matrix for $ i_0\in S_1 = \{1, 2\} $ and $ B $ is a Nekrasov matrix, which satisfy the hypotheses of Theorem 2.2. So, by Theorem 2.2, $ A\bigoplus _2 B $ is an $ \{i_0\} $-Nekrasov matrix for $ i_0\in S_1 = \{1, 2\} $. In fact, let $ C = A\bigoplus_2 B $. Then,
![]() |
and from Definition 2.1, one can verify that $ C $ is an $ \{i_0\} $-Nekrasov matrix for $ i_0\in S_1 = \{1, 2\} $.
Theorem 2.3. Let $ A = [a_{ij}]\in \mathbb{C}^{n_1\times n_1} $ be an $ \{i_0\} $-Nekrasov matrix with $ i_0\in S_1\cup S_2 $ and $ B = [b_{ij}]\in \mathbb{C}^{n_2\times n_2} $ be a Nekrasov matrix, partitioned as in (1.1), $ k $ be an integer such that $ 1\leq k \leq {min} \{n_1, n_2\} $, which defines the sets $ S_1 $, $ S_2 $ and $ S_3 $ as in (2.1), and let $ t = n_1-k $. If arg($ a_{ii} $) = arg($ b_{i-t, i-t} $) for all $ i\in S_2 $, $ B_{12} = B_{21} = 0 $, and $ |a_{ij}+b_{i-t, j-t}|\leq|a_{ij}| $ for $ i\neq j, \; i, j\in S_2 $, then the $ k $-subdirect sum $ C = A\bigoplus _k B $ is an $ \{i_0\} $-Nekrasov matrix.
Proof. Since $ A $ is an $ \{i_0\} $-Nekrasov matrix, it follows that if $ i_0\in S_1 $, then $ |c_{i_0, i_0}| > \eta_{i_0}(C) $, and if $ i_0\in S_2 $, then
$ ηn1−k+1(C)={n1−k∑j=1|cn1−k+1,j||cjj|ηj(C)+|cn1−k+1,i0|,n1−k+1≠i0,n1−k∑j=1|cn1−k+1,j||cjj|ηj(C),n1−k+1=i0.≤{n1−k∑j=1|an1−k+1,j||ajj|ηj(A)+|an1−k+1,i0|,n1−k+1≠i0,n1−k∑j=1|an1−k+1,j||ajj|ηj(A),n1−k+1=i0.=ηn1−k+1(A). $
|
Similarly, we can obtain that $ \eta_{j}(C)\leq \eta_{j}(A) $ for all $ j\in \{n_1-k+2, \ldots, n_1\} $. Therefore,
$ ηi0(C)=i0−1∑j=1|ci0,j||cjj|ηj(C)=n1−k∑j=1|ci0,j||cjj|ηj(C)+i0−1∑j=n1−k+1|ci0,j||cjj|ηj(C)≤n1−k∑j=1|ai0,j||ajj|ηj(A)+i0−1∑j=n1−k+1|ai0,j||ajj|ηj(A)=ηi0(A), $
|
and
$ |ci0,i0|=|ai0,i0|+|bi0−t,i0−t|>|ai0,i0|>ηi0(A)≥ηi0(C). $
|
Case 1: For $ i\in S_1 $, proceeding as in the proof of Case 1 in Theorem 2.1, we have $ h_i(C) = h_i(A) $ and $ \eta_i(C) = \eta_i(A) $, which implies that for all $ j\in S_1\setminus \{i_0\} $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)+ηj(C))>(hi0(C)−ηi0(C))⋅ηj(C). $
|
Case 2: For $ i\in S_2 $, by the assumptions, we have
$ hi(C)=n1−k∑j=1|cij||cjj|hj(C)+i−1∑j=n1−k+1|cij||cjj|hj(C)+n1∑j=i+1|cij|≤n1−k∑j=1|aij||ajj|hj(A)+i−1∑j=n1−k+1|aij||ajj|hj(A)+n1∑j=i+1|aij|=hi(A), $
|
and
$ ηi(C)={i−1∑j=1|cij||cjj|ηj(C)+|ci,i0|,i=n1−k+1,…,i0−1,i−1∑j=1|cij||cjj|ηj(C),i=i0,…,n1.≤{i−1∑j=1|aij||ajj|ηj(A)+|ai,i0|,i=n1−k+1,…,i0−1,i−1∑j=1|aij||ajj|ηj(A),i=i0,…,n1.=ηi(A). $
|
Hence, by Lemma 2.1, it follows that for all $ j\in S_2\setminus \{i_0\} $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)ηj(C)+1)>(|ai0,i0|−ηi0(A))⋅(|ajj|−hj(A)ηj(A)+1)>(hi0(A)−ηi0(A))≥(hi0(C)−ηi0(C)). $
|
Case 3: For $ i\in S_3 $, similarly to the proof of Case 3 in Theorem 2.1, we show that for all $ i\in S_3 $,
$ hi(C)=hi−t(B),andηi(C)=0, $
|
which implies that for all $ j\in S_3 $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)+ηj(C))>(|ai0,i0|−ηi0(A))⋅(|bj−t,j−t|−hj−t(B))>0=(hi0(C)−ηi0(C))ηj(C). $
|
From the above three cases, the conclusion follows.
Example 2.3. Consider the following matrices:
![]() |
where $ A $ is an $ \{i_0\} $-Nekrasov matrix for $ i_0\in S_1\cup S_2 = \{1, 2, 3, 4\} $ and $ B $ is a Nekrasov matrix, and they satisfy the hypotheses of Theorem 2.3. Then, from Theorem 2.3, we get that the 3-subdirect sum $ C = A\bigoplus_3 B $ is also an $ \{i_0\} $-Nekrasov matrix for $ i_0\in S_1\cup S_2 = \{1, 2, 3, 4\} $. Actually, by Definition 2.1, one can check that
![]() |
is an $ \{i_0\} $-Nekrasov matrix for $ i_0\in S_1\cup S_2 = \{1, 2, 3, 4\} $.
Theorem 2.4. Let $ A = [a_{ij}]\in \mathbb{C}^{n_1\times n_1} $ be an $ \{i_0\} $-Nekrasov matrix for some $ i_0\in S_2 $ and $ B = [b_{ij}]\in \mathbb{C}^{n_2\times n_2} $ be a Nekrasov matrix, partitioned as in (1.1), $ k $ be an integer such that $ 1\leq k \leq {min}\{n_1, n_2\} $, which defines the sets $ S_1 $, $ S_2 $ and $ S_3 $ as in (2.1), and let $ t = n_1-k $. If
(i) arg($ a_{ii} $) = arg($ b_{i-t, i-t} $) for all $ i\in S_2 $,
(ii) $ B_{12} = 0 $, $ h_i(A)\leq h_{i-t}(B) $, $ \eta_i(A)\leq \eta_{i-t}(B) $, and $ |a_{ij}+b_{i-t, j-t}|\leq|a_{ij}| $ for $ i\neq j, \; i, j\in S_2 $,
(iii) $ (h_{i_{0}-t}(B)-\eta_{i_0-t}(B))(|a_{i_0, i_0}|-\eta_{i_0}(A))\geq (|b_{i_0-t, i_0-t}|-\eta_{i_0-t}(B))(h_{i_0}(A)-\eta_{i_0}(A)) $,
then the $ k $-subdirect sum $ C = A\bigoplus _k B $ is an $ \{i_0\} $-Nekrasov matrix.
Proof. Due to $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ i_0\in S_2 $, it follows from the proof of Case 2 in Theorem 2.3 that $ \eta_{i}(C)\leq\eta_{i}(A) $ for all $ i\in S_2 $, which leads to
$ |c_{i_0,i_0}| > |a_{i_0,i_0}| > \eta_{i_0}(A)\geq\eta_{i_0}(C). $ |
Case 1: For $ i\in S_1 $, it is obvious that $ h_i(C) = h_i(A) $ and $ \eta_i(C) = \eta_i(A) $. Hence, for all $ j\in S_1 $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)+ηj(C))>(|ai0,i0|−ηi0(A))⋅(|ajj|−hj(A)+ηj(A))>(hi0(A)−ηi0(A))⋅ηj(A)≥(hi0(C)−ηi0(C))⋅ηj(C). $
|
(2.5) |
Case 2: For $ i\in S_2 $, it follows from $ B_{12} = 0 $ and $ |a_{ij}+b_{i-t, j-t}|\leq|a_{ij}| $ for $ i\neq j, \; i, j\in S_2 $ that $ h_i(C)\leq h_i(A) $, and thus for all $ j\in S_2\setminus\{i_0\} $, (2.5) also holds.
Case 3: For $ i = n_1+1\in S_3 $, by the assumption, it follows that
$ hn1+1(C)=n1−k∑j=1|cn1+1,j||cjj|hj(C)+n1∑j=n1−k+1|cn1+1,j||cjj|hj(C)+n∑j=n1+2|cn1+1,j|≤n1∑j=n1−k+1|bn1+1−t,j−t||cj−t,j−t|hj(A)+n∑j=n1+2|bn1+1−t,j−t|≤n1∑j=n1−k+1|bn1+1−t,j−t||cj−t,j−t|hj−t(B)+n∑j=n1+2|bn1+1−t,j−t|,=hn1+1−t(B), $
|
which recursively yields that for $ i = n_1+2, \ldots, n $,
$ hi(C)=i−1∑j=1|cij||cjj|hj(C)+n∑j=i+1|cij|=n1−k∑j=1|cij||cjj|hj(C)+n1∑j=n1−k+1|cij||cjj|hj(C)+i−1∑j=n1+1|cij||cjj|hj(C)+n∑j=i+1|cij|≤n1∑j=n1−k+1|bi−t,j−t||bj−t,j−t|hj(A)+i−1∑j=n1+1|bi−t,j−t||bj−t,j−t|hj−t(B)+n∑j=i+1|bi−t,j−t|≤i−1∑j=n1−k+1|bi−t,j−t||bj−t,j−t|hj−t(B)+n∑j=i+1|bi−t,j−t|=hi−t(B). $
|
Similarly, we have
$ ηn1+1(C)=n1−k∑j=1|cn1+1,j||cjj|ηj(C)+n1∑j=n1−k+1|cn1+1,j||cjj|ηj(C)=n1∑j=n1−k+1|bn1+1−t,j−t||ajj+bj−t,j−t|ηj(A)≤n1∑j=n1−k+1|bn1+1−t,j−t||bj−t,j−t|ηj−t(B)=ηn1+1−t(B), $
|
and for all $ i = n_1+2, \ldots, n $,
$ ηi(C)=i−1∑j=1|cij||cjj|ηj(C)=n1−k∑j=1|cij||cjj|ηj(C)+n1∑j=n1−k+1|cij||cjj|ηj(C)+i−1∑j=n1+1|cij||cjj|ηj(C)≤n1∑j=n1−k+1|bi−t,j−t||ajj+bj−t,j−t|ηj(A)+i−1∑j=n1+1|bi−t,j−t||bj−t,j−t|ηj−t(B)≤n1∑j=n1−k+1|bi−t,j−t||ajj+bj−t,j−t|ηj−t(B)+i−1∑j=n1+1|bi−t,j−t||bj−t,j−t|ηj−t(B)=ηi−t(B). $
|
Hence, for all $ j\in S_3 $,
$ (|ci0,i0|−ηi0(C))⋅(|cjj|−hj(C)ηj(C)+1)>(|ai0,i0|−ηi0(A))⋅(|bj−t,j−t|−hj−t(B)ηj(C)+1)≥(|ai0,i0|−ηi0(A))⋅(|bj−t,j−t|−hj−t(B)ηj−t(B)+1)>(|ai0,i0|−ηi0(A))⋅hi0−t(B)−ηi0−t(B)|bi0−t,i0−t|−ηi0−t(B)≥(|ai0,i0|−ηi0(A))⋅hi0(A)−ηi0(A)|ai0,i0|−ηi0(A)=hi0(C)−ηi0(C). $
|
From Case 1, Case 2 and Case 3, we can conclude that $ C = A \bigoplus_k B $ is an $ \{i_0\} $-Nekrasov matrix.
Example 2.4. Consider the following matrices:
![]() |
where $ A $ is an $ \{i_0\} $-Nekrasov matrix for $ i_0 = 2 $ and $ B $ is a Nekrasov matrix. By computation, we have $ h_1(A) = 3, h_2(A) = 5 $, $ h_3(A) = 1.25, h_4(A) = 0.75 $, $ h_1(B) = 5, h_2(B) = 1.5556, h_3(B) = 0.8667, h_4(B) = 0 $, $ \eta_1(A) = 1, \eta_2(A) = 0.3333, \eta_3(A) = 0.0167, \; \eta_4(A) = 0.1767 $, $ \eta_1(B) = 4, \eta_2(B) = 0.4444, \eta_3(B) = 0.5333 $, and $ \eta_4(B) = 0 $, which satisfy the hypotheses of Theorem 2.4. Hence, from Theorem 2.4, we have that $ A\bigoplus _3 B $ is also an $ \{i_0\} $-Nekrasov matrix for $ i_0 = 2 $. In fact, let $ C = A\bigoplus_3 B $. Then
![]() |
and one can verify that $ C $ is an $ \{i_0\} $-Nekrasov matrix for $ i_0 = 2 $ from Definition 2.1.
In this paper, for an $ \{i_0\} $-Nekrasov matrix $ A $ as a subclass of $ S $-Nekrasov matrices and a Nekrasov matrix $ B $, we provide some sufficient conditions such that the $ k $-subdirect sum $ A\bigoplus_k B $ lies in the class of $ \{i_0\} $-Nekrasov matrices. Numerical examples are included to illustrate the advantages of the given conditions. {The results obtained here have potential applications in some scientific computing problems such as matrix completion problem and the convergence of iterative methods for large sparse linear systems. For instance, consider large scale linear systems
$ Cx=b. $
|
(3.1) |
Note that if the coefficient matrix $ C $ in (3.1) is an $ H $-matrix, then the iterative methods of Jacobi and Gauss-Seidel associated with (3.1) are both convergent [29], but it is not easy to determine $ C $ as an $ H $-matrix in general. However, if $ C $ is exactly the subdirect sum of matrices $ A $ and $ B $, i.e., $ C = A\bigoplus_k B $, where $ A $ and $ B $ satisfy the sufficient conditions given here, then it is easy to see that $ C $ is an $ \{i_0\} $-Nekrasov matrix, and thus an $ H $-matrix.
The author wishes to thank the three anonymous referees for their valuable suggestions to improve the paper. The research was supported by the National Natural Science Foundation of China (31600299), the Natural Science Foundations of Shaanxi province, China (2020JM-622), and the Projects of Baoji University of Arts and Sciences (ZK2017095, ZK2017021).
The author declares no conflict of interest.
[1] | Institute of Medicine Committee on Prevention of Obesity in Children and Youth. Prev chi obes, healt bal. Washington DC.2005. |
[2] | Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. Jan 2007;150(1):12-17 e12. |
[3] | Stark O, Atkins E, Wolff OH, Douglas JW. Longitudinal study of obesity in the National Survey of Health and Development. Bri Med J. Jul 4 1981;283(6283):13-17. |
[4] | Kim Y, Lee S. Physical activity and abdominal obesity in youth. Applied physiology, nutrition, and metabolism = Physiol Appli, Nutr et Metabol. Aug 2009;34(4):571-581. |
[5] | Steinbeck K. Obesity and nutrition in adolescents. Adoles Med: state of the art rev. Dec 2009;20(3):900-914, ix. |
[6] | Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA. Feb 1 2012;307(5):483-490. |
[7] | Puder JJ, Munsch S. Psychological correlates of childhood obesity. Int J Obes Dec 2010;34 Suppl 2:S37-43. |
[8] | Goodman E, Whitaker RC. A prospective study of the role of depression in the development and persistence of adolescent obesity. Pediatr. Sep 2002;110(3):497-504. |
[9] | Merikangas AK, Mendola P, Pastor PN, Reuben CA, Cleary SD. The association between major depressive disorder and obesity in US adolescents: results from the 2001-2004 National Health and Nutrition Examination Survey. J Behav Med. Apr 2012;35(2):149-154. |
[10] | California Health Interview Survey. UCLA Center for Health Policy Research. Los Angeles, CA 2009. |
[11] | Lee S, Brown ER, Grant D, Belin TR, Brick JM. Exploring nonresponse bias in a health survey using neighborhood characteristics. Am J Public Healt. Oct 2009;99(10):1811-1817. |
[12] | Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Ame J Clin Nutr. Jun 2002;75(6):978-985. |
[13] | Krebs NF, Himes JH, Jacobson D, Nicklas TA, Guilday P, Styne D. Assessment of child and adolescent overweight and obesity. Pediatr. Dec 2007;120 Suppl 4:S193-228. |
[14] | CDC. Body Mass Index; About Body Mass Index for Children and Teens. 2013; http://m.cdc.gov/en/HealthSafetyTopics/HealthyLiving/HealthyWeight/AssessingYourWeight/BodyMassIndex/BMIChildrenTeens. Accessed 15Feb2013. |
[15] | Nolen-Hoeksema S, Girgus JS. The emergence of gender differences in depression during adolescence. Psychol Bulle. May 1994;115(3):424-443. |
[16] | Wang Y, Beydoun MA. The obesity epidemic in the United States--gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29:6-28. |
[17] | Twenge JM, Nolen-Hoeksema S. Age, gender, race, socioeconomic status, and birth cohort differences on the children's depression inventory: a meta-analysis. J Abnor Psych. Nov 2002;111(4):578-588. |
[18] | Ledoux TA, Hingle MD, Baranowski T. Relationship of fruit and vegetable intake with adiposity: a systematic review. Obesity reviews : J Int Associ Obes. May 2011;12(5):e143-150. |
[19] | Akbaraly TN, Brunner EJ, Ferrie JE, Marmot MG, Kivimaki M, Singh-Manoux A. Dietary pattern and depressive symptoms in middle age. Br J Psychiatr. Nov 2009;195(5):408-413. |
[20] | Ittermann T, Thamm M, Schipf S, John U, Rettig R, Volzke H. Relationship of Smoking and/or Passive Exposure to Tobacco Smoke on the Association Between Serum Thyrotropin and Body Mass Index in Large Groups of Adolescents and Children. Thyroid :J Am Thyroid Associ Mar 2013;23(3):262-268. |
[21] | Poole-Di Salvo E, Liu YH, Brenner S, Weitzman M. Adult household smoking is associated with increased child emotional and behavioral problems. J Develop Behavi Pediatri : JDBP. Feb-Mar 2010;31(2):107-115. |
[22] | Bickham DS, Blood EA, Walls CE, Shrier LA, Rich M. Characteristics of Screen Media Use Associated With Higher BMI in Young Adolescents. Pediatri. Apr 8 2013. |
[23] | Gentile DA, Choo H, Liau A, et al. Pathological video game use among youths: a two-year longitudinal study. Pediatri. Feb 2011;127(2):e319-329. |
[24] | Penedo FJ, Dahn JR. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Psychiatr. Mar 2005;18(2):189-193. |
[25] | Pahkala K, Hernelahti M, Heinonen OJ, et al. Body mass index, fitness and physical activity from childhood through adolescence. Briti J Sports Med. Jan 2013;47(2):71-77. |
[26] | California Health Interview Survey. CHIS 2009 Adult Survey. Los Angeles, CA.April 2011. |
[27] | Herbert A, Gerry NP, McQueen MB, et al. A common genetic variant is associated with adult and childhood obesity. Sci. Apr 14 2006;312(5771):279-283. |
[28] | Silventoinen K, Rokholm B, Kaprio J, Sorensen TI. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J obes. Jan 2010;34(1):29-40. |
[29] | Shelton RC, Miller AH. Eating ourselves to death (and despair): the contribution of adiposity and inflammation to depression. Pro Neurobiol. Aug 2010;91(4):275-299. |
[30] | Paffenbarger RS, Jr., Lee IM, Leung R. Physical activity and personal characteristics associated with depression and suicide in American college men. Acta psychiatr Scan Suppl. 1994;377:16-22. |
[31] | Katon W, Richardson L, Russo J, et al. Depressive symptoms in adolescence: the association with multiple health risk behaviors. Gene Hospti Psychiatr. May-Jun 2010;32(3):233-239. |
[32] | Hooshmand S, Willoughby T, Good M. Does the direction of effects in the association between depressive symptoms and health-risk behaviors differ by behavior? A longitudinal study across the high school years. J Adoles Healt : official publication of the Soci for Adoles Med. Feb 2012;50(2):140-147. |
[33] | Alegria M, Chatterji P, Wells K, et al. Disparity in depression treatment among racial and ethnic minority populations in the United States. Psychiatr Serv. Nov 2008;59(11):1264-1272. |
[34] | Williams DR, Mohammed SA. Discrimination and racial disparities in health: evidence and needed research. J Behavi Med. Feb 2009;32(1):20-47. |
[35] | Livingston G, Minushkin S. Hispanics and Health Care in the United States: Access, Information, and Knowledge. Joint Pew Hispanic Center and Robert Wood Johnson Foundation Research Report;2008. |
[36] | Sharp LK, Lipsky MS. Screening for depression across the lifespan: a review of measures for use in primary care settings. Am Fami Physi. Sep 15 2002;66(6):1001-1008. |
1. | Jiaqi Qi, Yaqiang Wang, Subdirect Sums of $ GSD{D_1} $ matrices, 2024, 32, 2688-1594, 3989, 10.3934/era.2024179 | |
2. |
Jiaqi Qi, Keru Wen, Yaqiang Wang,
On k-subdirect sums of SDD1 matrices,
2025,
0916-7005,
10.1007/s13160-025-00693-7
|