Citation: Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin. Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment[J]. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068
[1] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
[2] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[3] | Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331 |
[4] | Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282 |
[5] | Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070 |
[6] | Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818 |
[7] | Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157 |
[8] | Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116 |
[9] | Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108 |
[10] | Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121 |
[1] | [ L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. |
[2] | [ P. Álvarez-Caudevilla and J. López-Gómez, Asymptotic behaviour of principal eigenvalues for a class of cooperative systems, J. Differential Equations, 244 (2008), 1093-1113. |
[3] | [ D. S. Asnis, R. Conetta, A. A. Teixeira, G. Waldman and B. A. Sampson, The West Nile virus outbreak of 1999 in New York: The flushing hospital experience, Clinical Infect Dis., 30 (2000), 413-418. |
[4] | [ K. W. Blaynech, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. Math. Biol., 72 (2010), 1006-1028. |
[5] | [ E. Braverman and Md. Kamrujjaman, Competitive-cooperative models with various diffusion strategies, Comput. Math. Appl., 72 (2016), 653-662. |
[6] | [ B. Chen and R. Peng, Coexistence states of a strongly coupled prey-predator model, J. Partial Diff. Eqs., 18 (2005), 154-166. |
[7] | [ V. Chevalier, A. Tran and B. Durand, Predictive modeling of west nile virus transmission risk in the mediterranean basin, Int. J. Environ. Res. Public Health, 11 (2014), 67-90. |
[8] | [ G. Cruz-Pacheco, L. Esteva and C. Vargas, Seasonality and outbreaks in west nile virus infection, Bull. Math. Biol., 71 (2009), 1378-1393. |
[9] | [ D. G. de Figueiredo and E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal., 17 (1986), 836-849. |
[10] | [ O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[11] | [ S. Fu, L. Zhang and P. Hu, Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Anal. Real World Appl., 14 (2013), 2027-2045. |
[12] | [ W. Gan and Z. Lin, Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model, J. Math. Anal. Appl., 337 (2008), 1089-1099. |
[13] | [ D. Horstmann, Remarks on some Lotka-Volterra type cross-diffusion models, Nonlinear Anal. Real World Appl., 8 (2007), 90-117. |
[14] | [ M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive iteraction, J. Math. Biol., 53 (2006), 617-641. |
[15] | [ D. J. Jamieson, J. E. Ellis, D. B. Jernigan and T. A. Treadwell, Emerging infectious disease outbreaks: Old lessons and new challenges for obstetrician-gynecologists, Am. J. Obstet. Gynecol., 194 (2006), 1546-1555. |
[16] | [ Y. Jia, J. Wu and H. Xu, Positive solutions of Lotka-Volterra competition model with cross-diffusion, Comput. Math. Appl., 68 (2014), 1220-1228. |
[17] | [ A. Jüngel and I. V. Stelzer, Entropy structure of a cross-diffusion tumor-growth model, Math. Models Methods Appl. Sci., 22 (2012), 1250009, 26pp. |
[18] | [ K. I. Kim and Z. G. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonlinear Anal., 55 (2003), 313-333. |
[19] | [ W. Ko and K. Ryu, On a predator-prey system with cross-diffusion representing the tendency of prey to keep away from its predators, Appl. Math. Lett., 21 (2008), 1177-1183. |
[20] | [ K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348. |
[21] | [ M. Lewis, J. Renclawowicz and P. Driessche, Travalling waves and spread rates for a west nile virus model, Bull. Math. Biol., 68 (2006), 3-23. |
[22] | [ S. Li, J. Wu and S. Liu, Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone, Calc. Var. Partial Differential Equations, 56 (2017), Art. 82, 35 pp. |
[23] | [ Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409. |
[24] | [ Y. Lou, W. M. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Sys A, 4 (1998), 193-203. |
[25] | [ Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458. |
[26] | [ D. Nash, F. Mostashari and A. Fine, etc., The Outbreak of West Nile Virus Infection in New York city area in 1999, N. Engl. Med., 344 (2001), 1807-1814. |
[27] | [ C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. |
[28] | [ C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Anal., 60 (2005), 1197-1217. |
[29] | [ K. A. Rahman, R. Sudarsan and H. J. Eberl, A mixed-culture biofilm model with cross-diffusion, Bull. Math. Biol., 77 (2015), 2086-2124. |
[30] | [ K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061. |
[31] | [ N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99. |
[32] | [ S. Shim, Long time properties of prey-predator system with cross diffusion, Comm. Korean Math. Soc., 21 (2006), 293-320. |
[33] | [ G. Sweers, Strong positivity in C(¯Ω) for elliptic systems, Math. Z., 209 (1992), 251-271. |
[34] | [ A. K. Tarboush, Z. G. Lin and M. Y. Zhang, Spreading and vanishing in a West Nile virus model with expanding fronts, Sci. China Math., 60 (2017), 841-860. |
[35] | [ P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[36] | [ H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus, Math. Biosci., 272 (2010), 20-28. |
[37] | [ W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. |
[38] | [ Z. Wen and S. Fu, Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects, Chaos Solitons Fractals, 91 (2016), 379-385. |
[39] | [ M. J. Wonham, T. C. Beck and M. A. Lewis, An epidemiology model for West Nile virus: Invansion analysis and control applications, Proc. R. Soc. Lond B, 271 (2004), 501-507. |
[40] | [ Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340. |
[41] | [ X. Q. Zhao, Dynamical Systems in Population Biology, Second edition, CMS Books in Mathematics/Ouvrages de Math´ee´matiques de la SMC. Springer, Cham, 2017. |
[42] | [ H. Zhou and Z. G. Lin, Coexistence in a stroungly coupled system describing a two-species cooperative model, Appl. Math. Lett., 20 (2007), 1126-1130. |
1. | Isam Al-Darabsah, Xianhua Tang, Yuan Yuan, A prey-predator model with migrations and delays, 2016, 21, 1531-3492, 737, 10.3934/dcdsb.2016.21.737 | |
2. | Dana Contreras Julio, Pablo Aguirre, Allee thresholds and basins of attraction in a predation model with double Allee effect, 2018, 41, 0170-4214, 2699, 10.1002/mma.4774 | |
3. | Manoj Kumar Singh, 2020, 2253, 0094-243X, 020003, 10.1063/5.0019202 | |
4. | Swadesh Pal, S. Ghorai, Malay Banerjee, Effect of kernels on spatio-temporal patterns of a non-local prey-predator model, 2019, 310, 00255564, 96, 10.1016/j.mbs.2019.01.011 | |
5. | Yao Shi, Jianhua Wu, Qian Cao, Analysis on a diffusive multiple Allee effects predator–prey model induced by fear factors, 2021, 59, 14681218, 103249, 10.1016/j.nonrwa.2020.103249 | |
6. | Yexuan Li, Hua Liu, Yumei Wei, Ming Ma, Turing pattern of a reaction-diffusion predator-prey model with weak Allee effect and delay, 2020, 1707, 1742-6588, 012025, 10.1088/1742-6596/1707/1/012025 | |
7. | Feng Rao, Yun Kang, The complex dynamics of a diffusive prey–predator model with an Allee effect in prey, 2016, 28, 1476945X, 123, 10.1016/j.ecocom.2016.07.001 | |
8. | Xiaoyan Gao, Sadia Ishag, Shengmao Fu, Wanjun Li, Weiming Wang, Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator–prey model with predator harvesting, 2020, 51, 14681218, 102962, 10.1016/j.nonrwa.2019.102962 | |
9. | Kalyan Manna, Swadesh Pal, Malay Banerjee, Analytical and numerical detection of traveling wave and wave-train solutions in a prey–predator model with weak Allee effect, 2020, 100, 0924-090X, 2989, 10.1007/s11071-020-05655-x | |
10. | Sten Madec, Jérôme Casas, Guy Barles, Christelle Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, 2017, 75, 0303-6812, 543, 10.1007/s00285-017-1093-x | |
11. | G. Gambino, M. C. Lombardo, M. Sammartino, Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.012220 | |
12. | Kalyan Manna, Malay Banerjee, Stationary, non-stationary and invasive patterns for a prey-predator system with additive Allee effect in prey growth, 2018, 36, 1476945X, 206, 10.1016/j.ecocom.2018.09.001 | |
13. | Yun Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to Allee effects, 2016, 22, 1023-6198, 687, 10.1080/10236198.2015.1135910 | |
14. | Conghui Zhang, Hailong Yuan, Positive Solutions of a Predator–Prey Model with Additive Allee Effect, 2020, 30, 0218-1274, 2050068, 10.1142/S0218127420500686 | |
15. | Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang, Positive steady states of a density-dependent predator-prey model with diffusion, 2017, 22, 1531-3492, 16, 10.3934/dcdsb.2017209 | |
16. | Yongli Song, Xiaosong Tang, Stability, Steady-State Bifurcations, and Turing Patterns in a Predator-Prey Model with Herd Behavior and Prey-taxis, 2017, 139, 00222526, 371, 10.1111/sapm.12165 | |
17. | Yuri V. Tyutyunov, Deeptajyoti Sen, Lyudmila I. Titova, Malay Banerjee, Predator overcomes the Allee effect due to indirect prey–taxis, 2019, 39, 1476945X, 100772, 10.1016/j.ecocom.2019.100772 | |
18. | Kolade M. Owolabi, Dumitru Baleanu, Emergent patterns in diffusive Turing-like systems with fractional-order operator, 2021, 0941-0643, 10.1007/s00521-021-05917-8 | |
19. | Ye Xuan Li, Hua Liu, Yu Mei Wei, Ming Ma, Gang Ma, Jing Yan Ma, Ljubisa Kocinac, Population Dynamic Study of Prey-Predator Interactions with Weak Allee Effect, Fear Effect, and Delay, 2022, 2022, 2314-4785, 1, 10.1155/2022/8095080 | |
20. | Feng Yang, Yongli Song, Stability and spatiotemporal dynamics of a diffusive predator–prey system with generalist predator and nonlocal intraspecific competition, 2022, 194, 03784754, 159, 10.1016/j.matcom.2021.11.013 | |
21. | Naveed Ahmad Khan, Muhammad Sulaiman, Jamel Seidu, Fahad Sameer Alshammari, Chenguang Yang, Mathematical Analysis of the Prey-Predator System with Immigrant Prey Using the Soft Computing Technique, 2022, 2022, 1607-887X, 1, 10.1155/2022/1241761 | |
22. | Manal Alqhtani, Kolade M. Owolabi, Khaled M. Saad, Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator, 2022, 160, 09600779, 112267, 10.1016/j.chaos.2022.112267 | |
23. | Malay Banerjee, Swadesh Pal, Pranali Roy Chowdhury, Stationary and non-stationary pattern formation over fragmented habitat, 2022, 162, 09600779, 112412, 10.1016/j.chaos.2022.112412 | |
24. | Yingzi Liu, Zhong Li, Mengxin He, Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect, 2023, 20, 1551-0018, 8632, 10.3934/mbe.2023379 | |
25. | Wenbin Yang, Xin Chang, Hopf bifurcation and Turing patterns for a diffusive predator–prey system with weak Allee effect, 2023, 0035-5038, 10.1007/s11587-023-00824-7 | |
26. | Kalyan Manna, Malay Banerjee, Dynamics of a prey–predator model with reproductive Allee effect for prey and generalist predator, 2024, 0924-090X, 10.1007/s11071-024-09451-9 | |
27. | Kalyan Manna, Swadesh Pal, Malay Banerjee, Effects of spatiotemporal, temporal and spatial nonlocal prey competitions on population distributions for a prey-predator system with generalist predation, 2025, 0, 1531-3492, 0, 10.3934/dcdsb.2025106 | |
28. | R.P. Gupta, Shristi Tiwari, Arun Kumar, The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment, 2025, 229, 03784754, 652, 10.1016/j.matcom.2024.10.022 |