Rotating antibiotics does not minimize selection for resistance

  • Received: 01 August 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : 92B05, 92C50, 92D30, 93C15.

  • N/A

    Citation: Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 919-922. doi: 10.3934/mbe.2010.7.919

    Related Papers:

    [1] Robert E. Beardmore, Rafael Peña-Miller . Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923
    [2] Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527
    [3] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [4] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [5] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [6] Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779
    [7] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
    [8] Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
    [9] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
  • N/A


  • This article has been cited by:

    1. Nasim Muhammad, Hermann J Eberl, Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behavior, 2020, 84, 10075704, 105207, 10.1016/j.cnsns.2020.105207
    2. Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of the Honeybee–Varroa destructor–Acute Bee Paralysis Virus System with Seasonal Effects, 2015, 77, 0092-8240, 1493, 10.1007/s11538-015-0093-5
    3. Nasim Muhammad, Hermann J. Eberl, 2018, Chapter 35, 978-3-319-99718-6, 385, 10.1007/978-3-319-99719-3_35
    4. K. Messan, G. DeGrandi-Hoffman, C. Castillo-Chavez, Y. Kang, M. Banerjee, A. Perasso, E. Venturino, Migration Effects on Population Dynamics of the Honeybee-mite Interactions, 2017, 12, 1760-6101, 84, 10.1051/mmnp/201712206
    5. Alex Petric, Ernesto Guzman-Novoa, Hermann J. Eberl, A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies, 2017, 11, 1751-3758, 348, 10.1080/17513758.2016.1237682
    6. Komi Messan, Marisabel Rodriguez Messan, Jun Chen, Gloria DeGrandi-Hoffman, Yun Kang, Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality, 2021, 440, 03043800, 109359, 10.1016/j.ecolmodel.2020.109359
    7. Lotte Sewalt, Kristen Harley, Peter van Heijster, Sanjeeva Balasuriya, Influences of Allee effects in the spreading of malignant tumours, 2016, 394, 00225193, 77, 10.1016/j.jtbi.2015.12.024
    8. Brian Dennis, William P. Kemp, James A.R. Marshall, How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee, 2016, 11, 1932-6203, e0150055, 10.1371/journal.pone.0150055
    9. Ross D. Booton, Yoh Iwasa, James A.R. Marshall, Dylan Z. Childs, Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies, 2017, 420, 00225193, 213, 10.1016/j.jtbi.2017.03.009
    10. Mataeli B. Lerata, Jean M-S. Lubuma, Abdullahi A. Yusuf, Continuous and discrete dynamical systems for the declines of honeybee colonies, 2018, 41, 01704214, 8724, 10.1002/mma.5093
    11. P. Magal, G. F. Webb, Yixiang Wu, An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination, 2019, 81, 0092-8240, 4908, 10.1007/s11538-019-00662-5
    12. Kenneth John Aitken, “If it looks like a duck…” – why humans need to focus on different approaches than insects if we are to become efficiently and effectively ultrasocial, 2016, 39, 0140-525X, 10.1017/S0140525X15000977
    13. A mechanistic model to assess risks to honeybee colonies from exposure to pesticides under different scenarios of combined stressors and factors, 2016, 13, 23978325, 10.2903/sp.efsa.2016.EN-1069
    14. Vardayani Ratti, Peter G. Kevan, Hermann J. Eberl, A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus, 2017, 79, 0092-8240, 1218, 10.1007/s11538-017-0281-6
    15. Yun Kang, Krystal Blanco, Talia Davis, Ying Wang, Gloria DeGrandi-Hoffman, Disease dynamics of honeybees with Varroa destructor as parasite and virus vector, 2016, 275, 00255564, 71, 10.1016/j.mbs.2016.02.012
    16. J. Reilly Comper, Hermann J. Eberl, Mathematical modelling of population and food storage dynamics in a honey bee colony infected with Nosema ceranae, 2020, 6, 24058440, e04599, 10.1016/j.heliyon.2020.e04599
    17. P. Magal, G. F. Webb, Yixiang Wu, A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees, 2020, 80, 0303-6812, 2363, 10.1007/s00285-020-01498-7
    18. Alessio Ippolito, Andreas Focks, Maj Rundlöf, Andres Arce, Marco Marchesi, Franco Maria Neri, Agnès Rortais, Csaba Szentes, Domenica Auteri, Analysis of background variability of honey bee colony size, 2021, 18, 23978325, 10.2903/sp.efsa.2021.EN-6518
    19. Jun Chen, Gloria DeGrandi-Hoffman, Vardayani Ratti, Yun Kang, Review on mathematical modeling of honeybee population dynamics, 2021, 18, 1551-0018, 9606, 10.3934/mbe.2021471
    20. Partha Sarathi Mandal, Sunil Maity, Impact of demographic variability on the disease dynamics for honeybee model, 2022, 32, 1054-1500, 083120, 10.1063/5.0096638
    21. Hermann J. Eberl, Nasim Muhammad, Mathematical modelling of between hive transmission of Nosemosis by drifting, 2022, 114, 10075704, 106636, 10.1016/j.cnsns.2022.106636
    22. David C. Elzinga, W. Christopher Strickland, Generalized Stressors on Hive and Forager Bee Colonies, 2023, 85, 0092-8240, 10.1007/s11538-023-01219-3
    23. Atanas Z. Atanasov, Miglena N. Koleva, Lubin G. Vulkov, Inverse Problem Numerical Analysis of Forager Bee Losses in Spatial Environment without Contamination, 2023, 15, 2073-8994, 2099, 10.3390/sym15122099
    24. Miglena N. Koleva, Lubin G. Vulkov, Reconstruction coefficient analysis of honeybee collapse due to pesticide contamination, 2023, 2675, 1742-6588, 012024, 10.1088/1742-6596/2675/1/012024
    25. Atanas Z. Atanasov, Slavi G. Georgiev, Lubin G. Vulkov, Analysis of the Influence of Brood Deaths on Honeybee Population, 2024, 14, 2076-3417, 11412, 10.3390/app142311412
    26. Miglena N. Koleva, Lubin G. Vulkov, 2025, Chapter 12, 978-3-031-96310-0, 131, 10.1007/978-3-031-96311-7_12
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3489) PDF downloads(508) Cited by(15)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog