Loading [Contrib]/a11y/accessibility-menu.js

Minimal state models for ionic channels involved in glucagon secretion

  • Pancreatic alpha cells synthesize and release glucagon. This hormone along with insulin, preserves blood glucose levels within a physiological range. During low glucose levels, alpha cells exhibit electrical activity related to glucagon secretion. In this paper, we introduce minimal state models for those ionic channels involved in this electrical activity in mice alpha cells. For estimation of model parameters, we use Monte Carlo algorithms to fit steady-state channel currents. Then, we simulate dynamic ionic currents following experimental protocols. Our aims are 1) To understand the individual ionic channel functioning and modulation that could affect glucagon secretion, and 2) To simulate ionic currents actually measured in voltage-clamp alpha-cell experiments in mice. Our estimations indicate that alpha cells are highly permeable to sodium and potassium which mainly manage action potentials. We have also found that our estimated N-type calcium channel population and density in alpha cells is in good agreement to those reported for L-type calcium channels in beta cells. This finding is strongly relevant since both, L-type and N-type calcium channels, play a main role in insulin and glucagon secretion, respectively.

    Citation: Virginia González-Vélez, Amparo Gil, Iván Quesada. Minimal state models for ionic channels involved in glucagon secretion[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 793-807. doi: 10.3934/mbe.2010.7.793

    Related Papers:

    [1] Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet . Large effects of tiny structural changes on the cluster formation process in model colloidal fluids: an integral equation study. AIMS Materials Science, 2020, 7(2): 170-181. doi: 10.3934/matersci.2020.2.170
    [2] Anna Godymchuk, Alexey Ilyashenko, Yury Konyukhov, Peter Ogbuna Offor, Galiya Baisalova . Agglomeration and dissolution of iron oxide nanoparticles in simplest biological media. AIMS Materials Science, 2022, 9(4): 642-652. doi: 10.3934/matersci.2022039
    [3] Jean-Louis Bretonnet, Jean-François Wax . Applicability conditions of the Stokes formula. AIMS Materials Science, 2021, 8(5): 809-822. doi: 10.3934/matersci.2021049
    [4] Domenico Lombardo, Pietro Calandra, Maria Teresa Caccamo, Salvatore Magazù, Mikhail Alekseyevich Kiselev . Colloidal stability of liposomes. AIMS Materials Science, 2019, 6(2): 200-213. doi: 10.3934/matersci.2019.2.200
    [5] Julien G. Mahy, Stéphanie D. Lambert, Jérémy Geens, Alain Daniel, David Wicky, Catherine Archambeau, Benoît Heinrichs . Large scale production of photocatalytic TiO2 coating for volatile organic compound (VOC) air remediation. AIMS Materials Science, 2018, 5(5): 945-956. doi: 10.3934/matersci.2018.5.945
    [6] John Campbell . Crack populations in metals. AIMS Materials Science, 2016, 3(4): 1436-1442. doi: 10.3934/matersci.2016.4.1436
    [7] Leonid A. Kaledin, Fred Tepper, Tatiana G. Kaledin . Electrokinetic aspects of water filtration by AlOOH-coated siliceous particles with nanoscale roughness. AIMS Materials Science, 2017, 4(2): 470-486. doi: 10.3934/matersci.2017.2.470
    [8] Leonid A. Kaledin, Fred Tepper, Yuly Vesga, Tatiana G. Kaledin . The effect of the surface roughness and ageing characteristics of boehmite on the removal of biological particles from aqueous solution. AIMS Materials Science, 2019, 6(4): 498-508. doi: 10.3934/matersci.2019.4.498
    [9] Michael Z. Hu, Peng Lai . Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors. AIMS Materials Science, 2015, 2(4): 346-355. doi: 10.3934/matersci.2015.4.346
    [10] Volodymyr Ivanov, Viktor Stabnikov, Olena Stabnikova, Anatoliy Salyuk, Evhenii Shapovalov, Zubair Ahmed, Joo Hwa Tay . Iron-containing clay and hematite iron ore in slurry-phase anaerobic digestion of chicken manure. AIMS Materials Science, 2019, 6(5): 821-832. doi: 10.3934/matersci.2019.5.821
  • Pancreatic alpha cells synthesize and release glucagon. This hormone along with insulin, preserves blood glucose levels within a physiological range. During low glucose levels, alpha cells exhibit electrical activity related to glucagon secretion. In this paper, we introduce minimal state models for those ionic channels involved in this electrical activity in mice alpha cells. For estimation of model parameters, we use Monte Carlo algorithms to fit steady-state channel currents. Then, we simulate dynamic ionic currents following experimental protocols. Our aims are 1) To understand the individual ionic channel functioning and modulation that could affect glucagon secretion, and 2) To simulate ionic currents actually measured in voltage-clamp alpha-cell experiments in mice. Our estimations indicate that alpha cells are highly permeable to sodium and potassium which mainly manage action potentials. We have also found that our estimated N-type calcium channel population and density in alpha cells is in good agreement to those reported for L-type calcium channels in beta cells. This finding is strongly relevant since both, L-type and N-type calcium channels, play a main role in insulin and glucagon secretion, respectively.


  • This article has been cited by:

    1. Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet, Local order and cluster formation in model fluids with competing interactions: a simulation and theoretical study, 2020, 22, 1463-9076, 5355, 10.1039/C9CP06710H
    2. M. Khatouri, R. Ahfir, M. Lemaalam, S. El Khaoui, A. Derouiche, M. Filali, Effect of hydrophobically modified PEO polymers (PEO-dodecyl) on oil/water microemulsion properties: in vitro and in silico investigations, 2021, 11, 2046-2069, 7059, 10.1039/D0RA09804C
    3. Manal A. Awad, Awatif A. Hendi, Khalid Mustafa Ortashi, Batool Alzahrani, Dina Soliman, Amnah Alanazi, Wadha Alenazi, Rasha Mohammed Taha, Rasha Ramadan, Maha El-Tohamy, Najla AlMasoud, Taghrid S. Alomar, Biogenic synthesis of silver nanoparticles using Trigonella foenum-graecum seed extract: Characterization, photocatalytic and antibacterial activities, 2021, 323, 09244247, 112670, 10.1016/j.sna.2021.112670
    4. Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet, Large effects of tiny structural changes on the cluster formation process in model colloidal fluids: an integral equation study, 2020, 7, 2372-0484, 170, 10.3934/matersci.2020.2.170
    5. T.P.O. Nogueira, José Rafael Bordin, Patterns in 2D core-softened systems: From sphere to dumbbell colloids, 2022, 605, 03784371, 128048, 10.1016/j.physa.2022.128048
    6. Julia Dshemuchadse, Soft matter crystallography—Complex, diverse, and new crystal structures in condensed materials on the mesoscale, 2022, 131, 0021-8979, 020901, 10.1063/5.0072017
    7. Gianmarco Munaò, Dino Costa, Gianpietro Malescio, Jean-Marc Bomont, Santi Prestipino, Competition between clustering and phase separation in binary mixtures containing SALR particles, 2022, 18, 1744-683X, 6453, 10.1039/D2SM00944G
    8. M. Khatouri, M. Lemaalem, R. Ahfir, S. El Khaoui, A. Derouiche, M. Filali, Sol/gel transition of oil/water microemulsions controlled by surface grafted triblock copolymer dodecyl–PEO227–dodecyl: molecular dynamics simulations with experimentally validated interaction potential, 2021, 11, 2046-2069, 20824, 10.1039/D1RA02649F
    9. Gianmarco Munaò, Santi Prestipino, Dino Costa, Early stages of aggregation in fluid mixtures of dimers and spheres: a theoretical and simulation study, 2021, 23, 1463-9076, 22661, 10.1039/D1CP03604A
    10. Gianmarco Munaò, Santi Prestipino, Jean-Marc Bomont, Dino Costa, Clustering in Mixtures of SALR Particles and Hard Spheres with Cross Attraction, 2022, 126, 1520-6106, 2027, 10.1021/acs.jpcb.1c09758
    11. Murilo Sodré Marques, José Rafael Bordin, Interplay between adsorption, aggregation and diffusion in confined core-softened colloids, 2021, 4, 2666934X, 100029, 10.1016/j.jciso.2021.100029
    12. I. Kravtsiv, T. Patsahan, M. Holovko, D. di Caprio, Soft core fluid with competing interactions at a hard wall, 2022, 362, 01677322, 119652, 10.1016/j.molliq.2022.119652
    13. Dino Costa, Gianmarco Munaò, Jean-Marc Bomont, Gianpietro Malescio, Amedeo Palatella, Santi Prestipino, Microphase versus macrophase separation in the square-well-linear fluid: A theoretical and computational study, 2023, 108, 2470-0045, 10.1103/PhysRevE.108.034602
    14. Ana M. Montero, Santos B. Yuste, Andrés Santos, Mariano López de Haro, Discontinuous Structural Transitions in Fluids with Competing Interactions, 2025, 27, 1099-4300, 95, 10.3390/e27010095
    15. D. C. Thakur, Jalim Singh, A. V. Anil Kumar, Phase separation in a binary mixture of sticky spheres, 2025, 163, 0021-9606, 10.1063/5.0266285
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2895) PDF downloads(442) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog