The present paper deals with the problem of existence of equilibrium solutionsof equations describing the general population dynamics at the microscopic levelof modified Liouville equation (individually--based model) corresponding to a Markovjump process. We show the existence of factorized equilibrium solutions and discussuniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposedunder the assumption of periodic structures.
Citation: MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 777-786. doi: 10.3934/mbe.2013.10.777
Related Papers:
[1] |
Linda J. S. Allen, P. van den Driessche .
Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458.
doi: 10.3934/mbe.2006.3.445
|
[2] |
Wenrui Li, Qimin Zhang, Meyer-Baese Anke, Ming Ye, Yan Li .
Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps. Mathematical Biosciences and Engineering, 2020, 17(3): 2650-2675.
doi: 10.3934/mbe.2020145
|
[3] |
Katarzyna Pichór, Ryszard Rudnicki .
Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22.
doi: 10.3934/mbe.2025001
|
[4] |
Jacques Demongeot, Pierre Magal .
Population dynamics model for aging. Mathematical Biosciences and Engineering, 2023, 20(11): 19636-19660.
doi: 10.3934/mbe.2023870
|
[5] |
Anissa Guillemin, Michael P. H. Stumpf .
Non-equilibrium statistical physics, transitory epigenetic landscapes, and cell fate decision dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 7916-7930.
doi: 10.3934/mbe.2020402
|
[6] |
H.Thomas Banks, Shuhua Hu .
Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences and Engineering, 2012, 9(1): 1-25.
doi: 10.3934/mbe.2012.9.1
|
[7] |
Hao Wang, Yang Kuang .
Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99.
doi: 10.3934/mbe.2007.4.85
|
[8] |
Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer .
A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission. Mathematical Biosciences and Engineering, 2020, 17(4): 3294-3328.
doi: 10.3934/mbe.2020188
|
[9] |
Yansong Pei, Bing Liu, Haokun Qi .
Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078.
doi: 10.3934/mbe.2022610
|
[10] |
Fabien Crauste .
Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346.
doi: 10.3934/mbe.2006.3.325
|
Abstract
The present paper deals with the problem of existence of equilibrium solutionsof equations describing the general population dynamics at the microscopic levelof modified Liouville equation (individually--based model) corresponding to a Markovjump process. We show the existence of factorized equilibrium solutions and discussuniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposedunder the assumption of periodic structures.
References
[1]
|
Appl. Math. Lett., 9 (1996), 65-70.
|
[2]
|
Transport Theory Statist. Phys., 29 (2000), 125-139.
|
[3]
|
Math. Comput. Modelling, 20 (1994), 107-122.
|
[4]
|
Math. Models Methods Appl. Sci., 18 (2008), 593-646.
|
[5]
|
Behavioural Sciences, 19 (1974), 374-382.
|
[6]
|
SIAM J. Appl. Math., 52 (1992), 1442-1468.
|
[7]
|
SIAM J. Appl. Math., 59 (1998), 787-809.
|
[8]
|
J. Diff. Eqs., 246 (2009), 1387-1421.
|
[9]
|
in "Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic" (eds. V. Capasso and M. Lachowicz), in Lecture Notes in Mathematics, 1940, Springer, (2008), 201-268.
|
[10]
|
Prob. Engin. Mech., 26 (2011), 54-60.
|
[11]
|
Nonlinear Analysis Real World Appl., 12 (2011), 2396-2407.
|
[12]
|
Math. Models Methods Appl. Sci., 11 (2001), 1375-1390.
|
[13]
|
Comm. Partial Diff. Eqs., 34 (2009), 419-456.
|
[14]
|
J. Theoret. Biol., 174 (1995), 313-323.
|
[15]
|
Harvard University Press, Cambridge, 1975.
|