Equilibrium solutions for microscopic stochastic systems in population dynamics

  • Received: 01 May 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : Primary: 92D25, 60J75, 45K05; Secondary: 35Q92, 35R09.

  • The present paper deals with the problem of existence of equilibrium solutionsof equations describing the general population dynamics at the microscopic levelof modified Liouville equation (individually--based model) corresponding to a Markovjump process. We show the existence of factorized equilibrium solutions and discussuniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposedunder the assumption of periodic structures.

    Citation: MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 777-786. doi: 10.3934/mbe.2013.10.777

    Related Papers:

    [1] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [2] Wenrui Li, Qimin Zhang, Meyer-Baese Anke, Ming Ye, Yan Li . Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps. Mathematical Biosciences and Engineering, 2020, 17(3): 2650-2675. doi: 10.3934/mbe.2020145
    [3] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
    [4] Jacques Demongeot, Pierre Magal . Population dynamics model for aging. Mathematical Biosciences and Engineering, 2023, 20(11): 19636-19660. doi: 10.3934/mbe.2023870
    [5] Anissa Guillemin, Michael P. H. Stumpf . Non-equilibrium statistical physics, transitory epigenetic landscapes, and cell fate decision dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 7916-7930. doi: 10.3934/mbe.2020402
    [6] H.Thomas Banks, Shuhua Hu . Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences and Engineering, 2012, 9(1): 1-25. doi: 10.3934/mbe.2012.9.1
    [7] Hao Wang, Yang Kuang . Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99. doi: 10.3934/mbe.2007.4.85
    [8] Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer . A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission. Mathematical Biosciences and Engineering, 2020, 17(4): 3294-3328. doi: 10.3934/mbe.2020188
    [9] Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610
    [10] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
  • The present paper deals with the problem of existence of equilibrium solutionsof equations describing the general population dynamics at the microscopic levelof modified Liouville equation (individually--based model) corresponding to a Markovjump process. We show the existence of factorized equilibrium solutions and discussuniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposedunder the assumption of periodic structures.


    [1] Appl. Math. Lett., 9 (1996), 65-70.
    [2] Transport Theory Statist. Phys., 29 (2000), 125-139.
    [3] Math. Comput. Modelling, 20 (1994), 107-122.
    [4] Math. Models Methods Appl. Sci., 18 (2008), 593-646.
    [5] Behavioural Sciences, 19 (1974), 374-382.
    [6] SIAM J. Appl. Math., 52 (1992), 1442-1468.
    [7] SIAM J. Appl. Math., 59 (1998), 787-809.
    [8] J. Diff. Eqs., 246 (2009), 1387-1421.
    [9] in "Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic" (eds. V. Capasso and M. Lachowicz), in Lecture Notes in Mathematics, 1940, Springer, (2008), 201-268.
    [10] Prob. Engin. Mech., 26 (2011), 54-60.
    [11] Nonlinear Analysis Real World Appl., 12 (2011), 2396-2407.
    [12] Math. Models Methods Appl. Sci., 11 (2001), 1375-1390.
    [13] Comm. Partial Diff. Eqs., 34 (2009), 419-456.
    [14] J. Theoret. Biol., 174 (1995), 313-323.
    [15] Harvard University Press, Cambridge, 1975.
  • This article has been cited by:

    1. Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha, Stability of solutions of kinetic equations corresponding to the replicator dynamics, 2014, 7, 1937-5077, 109, 10.3934/krm.2014.7.109
    2. Marina Dolfin, Mirosław Lachowicz, Zuzanna Szymańska, 2014, Chapter 5, 978-1-4939-0457-0, 151, 10.1007/978-1-4939-0458-7_5
    3. Mirosław Lachowicz, A class of microscopic individual models corresponding to the macroscopic logistic growth, 2018, 41, 01704214, 8446, 10.1002/mma.4680
    4. Marina Dolfin, Mirosław Lachowicz, Modeling DNA thermal denaturation at the mesoscopic level, 2014, 19, 1553-524X, 2469, 10.3934/dcdsb.2014.19.2469
    5. Jacek Banasiak, Mirosław Lachowicz, 2014, Chapter 8, 978-3-319-05139-0, 223, 10.1007/978-3-319-05140-6_8
    6. João Miguel Oliveira, Maria Piedade Machado Ramos, Carolina Ribeiro, Ana Jacinta Soares, Equilibrium of a kinetic model of oscillating patterns for chronic autoimmune diseases, 2024, 0, 1937-5093, 0, 10.3934/krm.2024008
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2666) PDF downloads(581) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog