Citation: Holly Gaff, Robyn Nadolny. Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 625-635. doi: 10.3934/mbe.2013.10.625
[1] | Ardak Kashkynbayev, Daiana Koptleuova . Global dynamics of tick-borne diseases. Mathematical Biosciences and Engineering, 2020, 17(4): 4064-4079. doi: 10.3934/mbe.2020225 |
[2] | Holly Gaff . Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences and Engineering, 2011, 8(2): 463-473. doi: 10.3934/mbe.2011.8.463 |
[3] | Yijun Lou, Li Liu, Daozhou Gao . Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1301-1316. doi: 10.3934/mbe.2017067 |
[4] | Kwadwo Antwi-Fordjour, Folashade B. Agusto, Isabella Kemajou-Brown . Modeling the effects of lethal and non-lethal predation on the dynamics of tick-borne disease. Mathematical Biosciences and Engineering, 2025, 22(6): 1428-1463. doi: 10.3934/mbe.2025054 |
[5] | Maeve L. McCarthy, Dorothy I. Wallace . Optimal control of a tick population with a view to control of Rocky Mountain Spotted Fever. Mathematical Biosciences and Engineering, 2023, 20(10): 18916-18938. doi: 10.3934/mbe.2023837 |
[6] | Marco Tosato, Xue Zhang, Jianhong Wu . A patchy model for tick population dynamics with patch-specific developmental delays. Mathematical Biosciences and Engineering, 2022, 19(5): 5329-5360. doi: 10.3934/mbe.2022250 |
[7] | Shangbing Ai . Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences and Engineering, 2007, 4(4): 567-572. doi: 10.3934/mbe.2007.4.567 |
[8] | Wandi Ding . Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences and Engineering, 2007, 4(4): 633-659. doi: 10.3934/mbe.2007.4.633 |
[9] | Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou . Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences and Engineering, 2018, 15(4): 1033-1054. doi: 10.3934/mbe.2018046 |
[10] | Ning Yu, Xue Zhang . Discrete stage-structured tick population dynamical system with diapause and control. Mathematical Biosciences and Engineering, 2022, 19(12): 12981-13006. doi: 10.3934/mbe.2022606 |
[1] | American Journal of Tropical Medicine and Hygiene, 49 (1993), 239-244. |
[2] | MMWR, 55 (2008), 1-94. |
[3] | Annual Review of Entomology, 48 (2003), 307-337. |
[4] | American Journal of Tropical Medicine and Hygiene, 85 (2011), 124-131. |
[5] | Journal of Medical Entomology, 32 (1995), 368-374. |
[6] | Annals of Internal Medicine, 120 (1994), 736-743. |
[7] | Mathematical Biosciences and Engineering, 8 (2011), 463-473. |
[8] | Ecological Modelling, 221 (2010), 2760-2768. |
[9] | American Society of Microbiology, (2005). |
[10] | Journal of Vector Ecology, 25 (2000), 102-113. |
[11] | Clinical Microbiology Reviews, 16 (2003), 37-64. |
[12] | Current Topics in Microbiology and Immunology, 315 (2007), 289-324. |
[13] | Journal of Parasitology, 64 (1978), 1100-1106. |
[14] | Journal of Medical Entomology, 37 (2000), 349-356. |
1. | Antoinette Ludwig, Howard S. Ginsberg, Graham J. Hickling, Nicholas H. Ogden, A Dynamic Population Model to Investigate Effects of Climate and Climate-Independent Factors on the Lifecycle ofAmblyomma americanum(Acari: Ixodidae), 2016, 53, 0022-2585, 99, 10.1093/jme/tjv150 | |
2. | Hsiao-Hsuan Wang, W. E. Grant, P. D. Teel, S. A. Hamer, Simulation of climate-tick-host-landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick densities, 2015, 40, 10811710, 247, 10.1111/jvec.12161 | |
3. | Marina E. Eremeeva, Gregory A. Dasch, Challenges Posed by Tick-Borne Rickettsiae: Eco-Epidemiology and Public Health Implications, 2015, 3, 2296-2565, 10.3389/fpubh.2015.00055 | |
4. | R. Nadolny, H. Gaff, Modelling the Effects of Habitat and Hosts on Tick Invasions, 2018, 5, 23737867, 10.30707/LiB5.1Nadolny | |
5. | Milliward Maliyoni, Faraimunashe Chirove, Holly D. Gaff, Keshlan S. Govinder, A stochastic epidemic model for the dynamics of two pathogens in a single tick population, 2019, 127, 00405809, 75, 10.1016/j.tpb.2019.04.004 | |
6. | Milliward Maliyoni, Faraimunashe Chirove, Holly D. Gaff, Keshlan S. Govinder, A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence, 2017, 79, 0092-8240, 1999, 10.1007/s11538-017-0317-y | |
7. | Silas W. Mutizhe, Lindah Mhlanga, Rudo Sithole, Banele T. Maya, Artwell Sibanda, Protect Mpofu, Spatio‐temporal variation in tick community composition and abundance in a wildlife–livestock interface within Nyanga National Park, Zimbabwe, 2022, 60, 0141-6707, 607, 10.1111/aje.12932 | |
8. | Alexis L. White, Holly D. Gaff, 2021, Chapter 4, 978-3-030-84595-7, 31, 10.1007/978-3-030-84596-4_4 | |
9. | Milliward Maliyoni, Holly D. Gaff, Keshlan S. Govinder, Faraimunashe Chirove, Multipatch stochastic epidemic model for the dynamics of a tick-borne disease, 2023, 9, 2297-4687, 10.3389/fams.2023.1122410 | |
10. | Emma M. Young, Christine S. Anderson, Detection of a zoonotic pathogen in a mouse reservoir and tick vector in the Hocking Hills region of Ohio, 2024, 95, 0005-3155, 10.1893/BIOS-D-21-00030 | |
11. | Cyrine Chenaoui, Nicolas Marilleau, Slimane Ben Miled, Towards a generic agent-based vector-host model: effects of carrying capacity and host mobility, 2024, 9, 2364-8228, 10.1007/s41109-024-00629-z |