Citation: Huaji Cheng, Yanxia Hu. Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method[J]. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562
[1] | Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385 |
[2] | Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu . New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432 |
[3] | Abdulah A. Alghamdi . Analytical discovery of dark soliton lattices in (2+1)-dimensional generalized fractional Kundu-Mukherjee-Naskar equation. AIMS Mathematics, 2024, 9(8): 23100-23127. doi: 10.3934/math.20241123 |
[4] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[5] | Amjad Hussain, Muhammad Khubaib Zia, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar, Ilyas Khan . Lie analysis, conserved vectors, nonlinear self-adjoint classification and exact solutions of generalized $ \left(N+1\right) $-dimensional nonlinear Boussinesq equation. AIMS Mathematics, 2022, 7(7): 13139-13168. doi: 10.3934/math.2022725 |
[6] | Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie . Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345 |
[7] | M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625 |
[8] | Ghazala Akram, Saima Arshed, Maasoomah Sadaf, Hajra Mariyam, Muhammad Nauman Aslam, Riaz Ahmad, Ilyas Khan, Jawaher Alzahrani . Abundant solitary wave solutions of Gardner's equation using three effective integration techniques. AIMS Mathematics, 2023, 8(4): 8171-8184. doi: 10.3934/math.2023413 |
[9] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[10] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
During the past decades, the exact solutions of nonlinear partial differential equations have been investigated by many authors. Meanwhile, many powerful methods have been proposed by them, such as Backlund transformation method [1], multiple exp-function method [2], homogeneous balance principle [3], tanh-sech method [4], G′/G-expansion method [5,6,7], the first integral method [8,9] and so on.
The G′/G-expansion method was first presented by Wang [5] which can be used to deal with all types of nonlinear evolution equations. The first integral method was first proposed by Feng [8] for obtaining the exact solutions of Burgers-KdV equation which is based on the ring theory of commutative algebra. The basic idea of the first integral method is to construct a first integral with polynomial coefficients of an explicit form to an equivalent autonomous planer system by using the division theorem. Both the G′/G-expansion method and the first integral method are powerful methods for computing the exact solutions of nonlinear partial differential equations. They are direct, elementary and effective algebraic methods.
In this paper, we consider the following generalized (2+1)-dimensional BKP equation [10]
{(wn)t+(wm)xxx+(wm)yyy+α(uw)x+β(vw)y=0,uy=wx,vx=wy, | (1.1) |
where α,β are arbitrary constants and α+β≠0,m,n are integers and m,n≥2. In [10], authors studied traveling wave solutions in the parameter space of this system by bifurcation theory of dynamical systems and they obtained some exact explicit parametric representations of periodic cusp wave solutions, solitary wave solutions and compacton solutions. In this paper, we continue to consider the problem of solving system (1.1) by using the G′/G-expansion method and the first integral method and we obtain the rational function solutions, periodic function solutions and the hyperbolic function solutions of (1.1) under some parametric conditions and the values of m, n in several cases.
Specially, when m=1,n=1,α=β=6, (1.1) becomes
{wt+wxxx+wyyy+6(uw)x+6(vw)y=0,uy=wx,vx=wy. |
It is the famous (2+1)-dimensional BKP equation which was introduced by Date et al. [11] and describes the processes of interaction of exponentially localized structures. It is one of a hierarchy of integrable systems emerging from a bilinear identity related to a Clifford algebra which is generated by two neutral fermion fields [12]. This equation has been studied by using many methods, such as the sine-cosine method [13], the G′/G-expansion method [6], the improved G′/G-expansion method [14] and so on.
The aim of this paper is to extract the exact solutions of the generalized (2+1)-dimensional BKP equation by using the G′/G-expansion method and the first integral method. The paper is arranged as follows: In section 2, we apply the G′/G-expansion method to this equation. In section 3, we apply the first integral method to solve this equation. In section 4, we give the conclusion of the paper.
We suppose the wave transformations
w(x,y,t)=w(ξ),u(x,y,t)=u(ξ),v(x,y,t)=v(ξ), ξ=k1x+l1y+λ1t | (2.1) |
where k1,l1,λ1 are constants. By using the wave transformations (2.1), (1.1) can be converted into ODEs
{λ1(wn)′+(k31+l31)(wm)′′′+αk1(u′w+uw′)+βl1(v′w+vw′)=0,l1u′=k1w′,k1v′=l1w′, | (2.2) |
where "′" is the derivative with respect to ξ. Integrating the second and third equation of (2.2) and neglecting integral constants, we obtain
{l1u=k1w,k1v=l1w. |
Substituting the above equations into the first equation of (2.2) and integrating it, then it becomes
λ1wn+(k31+l31)(wm)′′+(αk21l1+βl21k1)w2=g, | (2.3) |
where g is an integral constant. We assume that (2.3) has the following formal solutions [7,15]:
w(ξ)=D(G′G)N, D≠0, | (2.4) |
where D is a constant to be determined later. N is determined by balancing the linear term of the highest order derivatives with the highest order nonlinear term in (2.3) and G satisfies a second order constant coefficient ODE which is
G″(ξ)+λG′(ξ)+μG(ξ)=0, | (2.5) |
where λ, μ are constants and will be determined later. Next, we will obtain the exact solutions of (1.1) by considering the values of m and n in several cases.
Balancing (wm)′′ with wn of (2.3), we have mN+2=nN, i.e., N=2/(n−m). Thus, we assume
w(ξ)=D1(G′G)2n−m, D1≠0 | (2.6) |
where D1 is a constant to be determined later. Then, we have
wn=Dn1(G′G)2nn−m, w2=D21(G′G)4n−m,(wm)″=2mn−mDm1[(2mn−m+1)(G′G)2mn−m+2+(4mn−m+1)λ(G′G)2mn−m+1+2mn−m(2μ+λ2)(G′G)2mn−m+(4mn−m−1)λμ(G′G)2mn−m−1+(2mn−m−1)μ2(G′G)2mn−m−2]. |
Substituting the above formulas into (2.3) and collecting all terms with the same order of G′/G together, we can convert the left-hand side of (2.3) into a polynomial in G′/G. Then, setting each coefficient of each polynomial to zero, we can derive a set of algebraic equation for λ,μ and D1:
(G′G)2mn−m+2 coeff:
(k31+l31)(2mn−m+1)2mn−mDm1+λ1Dn1=0, | (2.7) |
(G′G)2mn−m+1 coeff:
(k31+l31)(4mn−m+1)2mn−mλDm1=0. | (2.8) |
Here, we need to consider the value of 4/(n−m) in the following cases:
Case 1. 4n−m=2mn−m−1
(G′G)2mn−m coeff:
(k31+l31)(2mn−m)2(2μ+λ2)Dm1=0, | (2.9) |
(G′G)2mn−m−1 coeff:
(k31+l31)(4mn−m−1)2mn−mλμDm1+(αk21l1+βl21k1)D21=0, | (2.10) |
(G′G)2mn−m−2 coeff:
(k31+l31)(2mn−m−1)2mn−mμ2Dm1=0. | (2.11) |
Solving the set of (2.7)-(2.11), we obtain
λ=μ=0, g=0, αk21l1+βl21k1=0, D1=(−(k31+l31)(2mn−m+1)2mn−mλ1)1/(n−m). | (2.12) |
Case 2. 4n−m=2mn−m−2
(G′G)2mn−m coeff:
(k31+l31)(2mn−m)2(2μ+λ2)Dm1=0, | (2.13) |
(G′G)2mn−m−1 coeff:
(k31+l31)(4mn−m−1)2mn−mλμDm1=0, | (2.14) |
(G′G)2mn−m−2 coeff:
(k31+l31)(2mn−m−1)2mn−mμ2Dm1+(αk21l1+βl21k1)D21=0. | (2.15) |
Solving the set of (2.7)-(2.8) and (2.13)-(2.15), we get the same results as those of Case 1.
Case 3. 4n−m≠2mn−m−1 } and 4n−m≠2mn−m−2
(G′G)2mn−m coeff:
(k31+l31)(2mn−m)2(2μ+λ2)Dm1=0, | (2.16) |
(G′G)2mn−m−1 coeff:
(k31+l31)(4mn−m−1)2mn−mλμDm1=0, | (2.17) |
(G′G)2mn−m−2 coeff:
(k31+l31)(2mn−m−1)2mn−mμ2Dm1=0, | (2.18) |
(G′G)4n−m coeff:
(αk21l1+βl21k1)D21=0. | (2.19) |
Solving the set of (2.7)-(2.8) and (2.16)-(2.19), we obtain the same results as those of former cases. Substituting (2.12) into (2.5) and (2.6), then, we can get the rational function solutions
w(x,y,t)=(−(k31+l31)(2mn−m+1)2mn−mλ1)1n−m(C1C1(k1x+l1y+λ1t)+C2)2n−m,v(x,y,t)=l1k1(−(k31+l31)(2mn−m+1)2mn−mλ1)1n−m(C1C1(k1x+l1y+λ1t)+C2)2n−m,u(x,y,t)=k1l1(−(k31+l31)(2mn−m+1)2mn−mλ1)1n−m(C1C1(k1x+l1y+λ1t)+C2)2n−m, |
where C1,C2 are arbitrary constants and αk31+βl31=0.
(2.3) becomes
λ1wn+(k31+l31)(w2)′′+(αk21l1+βl21k1)w2=g. | (2.20) |
Balancing (w2)′′ with wn, we have N=2/(n−2). Thus, (2.20) has the following formal solutions
w(ξ)=D2(G′G)2n−2, D2≠0, | (2.21) |
where D2 is a constant to be determined later and G satisfies (2.5). Similarly, we can get a set of algebraic equations:
(G′G)4n−2+2 coeff:
(k31+l31)(4n−2+1)4n−2D22+λ1Dn2=0, | (2.22) |
(G′G)4n−2+1 coeff:
(k31+l31)(8n−2+1)4n−2λD22=0, | (2.23) |
(G′G)4n−2 coeff:
(k31+l31)(4n−2)2(2μ+λ2)D22+(αk21l1+βl21k1)D22=0, | (2.24) |
Ⅰ. The case g=0
(G′G)4n−2−1 coeff:
(k31+l31)(8n−2−1)4n−2λμD22=0, | (2.25) |
(G′G)4n−2−2 coeff:
(k31+l31)(4n−2−1)4n−2μ2D22=0. | (2.26) |
Solving that set of (2.22)-(2.26), we obtain
λ=μ=0, αk21l1+βl21k1=0, D2=(−(k31+l31)(4n−2+1)4n−2λ1)1/(n−2). | (2.27) |
Specially, when 4n−2−1=0, i.e., n=6, we obtain
λ=0, μ=−αk21l1+βl21k12(k31+l31), D2=(−2(k31+l31)λ1)1/4. | (2.28) |
Substituting (2.27) into (2.5) and (2.21), then, we can get the rational function solutions
w(x,y,t)=(−(k31+l31)(4n−2+1)4n−2λ1)1n−2(C3C3(k1x+l1y+λ1t)+C4)2n−2,v(x,y,t)=l1k1(−(k31+l31)(4n−2+1)4n−2λ1)1n−2(C3C3(k1x+l1y+λ1t)+C4)2n−2,u(x,y,t)=k1l1(−(k31+l31)(4n−2+1)4n−2λ1)1n−2(C3C3(k1x+l1y+λ1t)+C4)2n−2, |
where C3,C4 are arbitrary constants and αk31+βl31=0. Substituting (2.28) into (2.5) and (2.21), then, we have
G″+(−αk21l1+βl21k12(k31+l31))G=0. |
Case 1. αk21l1+βl21k12(k31+l31)>0
We obtain the hyperbolic function solutions
w(x,y,t)=(−(αk21l1+βl21k1)22λ1(k31+l31))1/4{C5sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C6cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)C5cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C6sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)}1/2,v(x,y,t)=l1k1(−(αk21l1+βl21k1)22λ1(k31+l31))1/4{C5sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C6cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)C5cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C6sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)}1/2,u(x,y,t)=k1l1(−(αk21l1+βl21k1)22λ1(k31+l31))1/4{C5sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C6cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)C5cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C6sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)}1/2, |
where C5,C6 are arbitrary constants.
Case 2. αk21l1+βl21k12(k31+l31)<0
We obtain the hyperbolic function solutions
w(x,y,t)=(−(αk21l1+βl21k1)22λ1(k31+l31))1/4{−C7sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C8cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)C7cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C8sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)}1/2,v(x,y,t)=l1k1(−(αk21l1+βl21k1)22λ1(k31+l31))1/4{−C7sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C8cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)C7cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C8sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)}1/2,u(x,y,t)=k1l1(−(αk21l1+βl21k1)22λ1(k31+l31))1/4{−C7sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C8cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)C7cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C8sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)}1/2, |
where C7,C8 are arbitrary constants.
Case 3. αk21l1+βl21k12(k31+l31)=0
We obtain the rational function solutions
w(x,y,t)=(−2(k31+l31)λ1)1/4{C9C9(k1x+l1y+λ1t)+C10}1/2,v(x,y,t)=l1k1(−2(k31+l31)λ1)1/4{C9C9(k1x+l1y+λ1t)+C10}1/2,u(x,y,t)=k1l1(−2(k31+l31)λ1)1/4{C9C9(k1x+l1y+λ1t)+C10}1/2, |
where C9,C10 are arbitrary constants.
Ⅱ. The case g≠0
When 4n−2−2=0, i.e, n=4.
(G′G) coeff:
6(k31+l31)λμD22=0, | (2.29) |
(G′G)0 coeff:
2(k31+l31)μ2D22=g. | (2.30) |
Solving the set of (2.22)-(2.24) and (2.29)-(2.30), we obtain
λ=0, μ=−αk21l1+βl21k12(k31+l31), D2=(−6(k31+l31)λ1)1/2, αk21l1+βl21k1≠0, −3(αk21l1+βl21k1)2λ1=g. | (2.31) |
Similarly, we can obtain the hyperbolic function solutions and trigonometric function solutions
Case 1. αk21l1+βl21k12(k31+l31)>0
w(x,y,t)=(−3(αk21l1+βl21k1)λ1)1/2{C11sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C12cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)C11cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C12sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)},v(x,y,t)=l1k1(−3(αk21l1+βl21k1)λ1)1/2{C11sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C12cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)C11cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C12sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)},u(x,y,t)=k1l1(−3(αk21l1+βl21k1)λ1)1/2{C11sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C12cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)C11cosh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)+C12sinh(αk21l1+βl21k12(k31+l31))1/2(k1x+l1y+λ1t)}, | (2.32) |
where C11,C12 are arbitrary constants and λ1(k31+l31)<0.
Case 2. αk21l1+βl21k12(k31+l31)<0
w(x,y,t)=(−3(αk21l1+βl21k1)λ1)1/2{−C13sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C14cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)C13cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C14sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)},v(x,y,t)=l1k1(−3(αk21l1+βl21k1)λ1)1/2{−C13sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C14cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)C13cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C14sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)},u(x,y,t)=k1l1(−3(αk21l1+βl21k1)λ1)1/2{−C13sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C14cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)C13cos(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)+C14sin(−(αk21l1+βl21k1)2(k31+l31))1/2(k1x+l1y+λ1t)}, | (2.33) |
where C13,C14 are arbitrary constants and \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0.
(2.3) becomes
{\bigg(}\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}w^{2}+(k^{3}_{1}+l^{3}_{1})(w^{m})^{\prime\prime}=g. | (2.34) |
Balancing (w^{m})^{\prime\prime} with w^{2}, we have N=2/(2-m). Thus, (2.34) has the following formal solution
w(\xi)=D_{3}{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2}{2-m}}, ~~~~D_{3}\neq0, | (2.35) |
where D_{3} is a constant to be determined later and G satisfies (2.5). Similarly, we can get a set of algebraic equations:
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}+2} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)(\frac{2m}{2-m})D^{m}_{3}+{\bigg(}\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}D^{2}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}+1} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4m}{2-m}+1)\frac{2m}{2-m}\lambda D^{m}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m})^{2}(2\mu+\lambda^{2})D^{m}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}-1} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{4m}{2-m}-1)\frac{2m}{2-m}\lambda\mu D^{m}_{3}=0, |
{\bigg(}\frac{G^{\prime}}{G}{\bigg)}^{\frac{2m}{2-m}-2} coeff:
(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}\mu^{2} D^{m}_{3}=0. |
Solving the above algebraic equations, we obtain
\lambda=\mu=0, ~~~~ g=0, ~~~~D_{3}={\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{1/(2-m)}. | (2.36) |
Substituting (2.36) into (2.5) and (2.35), then, when m\neq n=2, we have the rational function solutions
\begin{eqnarray*} w(x, y, t)&=&{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{\frac{1}{2-m}}{\bigg(}\frac{C_{15}}{C_{15}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{16}}{\bigg)}^{\frac{2}{2-m}}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{\frac{1}{2-m}}{\bigg(}\frac{C_{15}}{C_{15}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{16}}{\bigg)}^{\frac{2}{2-m}}, \\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}{\bigg(}-\frac{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}} {\bigg)}^{\frac{1}{2-m}}{\bigg(}\frac{C_{15}}{C_{15}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{16}}{\bigg)}^{\frac{2}{2-m}}, \end{eqnarray*} |
where C_{15}, C_{16} are arbitrary constants and \lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}\neq0.
Now, (2.3) can be converted into a second order ODE
{\bigg(}\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}w^{2}+(k^{3}_{1}+l^{3}_{1})(w^{2})^{\prime\prime}=g. | (2.37) |
Obviously, the characteristic equation of (2.37) is r^{2}+{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}=0, r is the characteristic value.
Case 1. \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}} < 0
We can obtain the exact solution
\begin{eqnarray} w(x, y, t)&=&{\bigg(}C_{17}e^{{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+C_{18}e^{-{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{\bigg)}^{1/2}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}{\bigg(}C_{17}e^{{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+C_{18}e^{-{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{\bigg)}^{1/2}, \nonumber\\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}{\bigg(}C_{17}e^{{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+C_{18}e^{-{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{\bigg)}^{1/2}\nonumber, \end{eqnarray} | (2.38) |
where C_{17}, C_{18} are arbitrary constants.
Case 2. \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}>0
We can obtain the periodic function solutions
\begin{eqnarray} w(x, y, t)&=&\bigg{(}C_{19}\cos\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}\nonumber\\ &&+C_{20}\sin\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}\bigg{)}^{1/2}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}\bigg{(}C_{19}\cos\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}\nonumber\\ &&+C_{20}\sin\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}\bigg{)}^{1/2}, \nonumber\\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}\bigg{(}C_{19}\cos\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}\nonumber\\ &&+C_{20}\sin\bigg{[}{\bigg(}\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}{\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)\bigg{]}+\frac{g}{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}\bigg{)}^{1/2}\nonumber, \end{eqnarray} | (2.39) |
where C_{19}, C_{20} are arbitrary constants.
Case 3. \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}=0
We can obtain the rational function solutions
\begin{eqnarray} w(x, y, t)&=&\bigg{(}\frac{g}{2(k_{1}^{3}+l_{1}^{3})}(k_{1}x+l_{1}y+\lambda_{1}t)^{2}+C_{21}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{22}\bigg{)}^{1/2}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}\bigg{(}\frac{g}{2(k_{1}^{3}+l_{1}^{3})}(k_{1}x+l_{1}y+\lambda_{1}t)^{2}+C_{21}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{22}\bigg{)}^{1/2}, \nonumber\\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}\bigg{(}\frac{g}{2(k_{1}^{3}+l_{1}^{3})}(k_{1}x+l_{1}y+\lambda_{1}t)^{2}+C_{21}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{22}\bigg{)}^{1/2}, \nonumber \end{eqnarray} | (2.40) |
where C_{21}, C_{22} are arbitrary constants.
For simplicity, we let g=0 and propose a transformation w=\varphi^{\frac{2}{n-m}}. Then, (2.3) is converted to
\lambda_{1}\varphi^{4}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}(\varphi')^{2}+(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}\varphi\varphi''+{\bigg(}\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}\varphi^{2-\frac{2m-4}{n-m}}=0. | (3.1) |
Let x=\varphi, y=\frac{\mathrm {d}\varphi}{\mathrm {d}\xi}, thus (3.1) is equivalent to the two dimensional autonomous system
\begin{cases} x'=y, \\ y'=-{\bigg(}\frac{ \lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}y^{2}}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}x} {\bigg)}. \end{cases} | (3.2) |
Making the transformation d\eta=\frac{d\xi}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}x}, then, (3.2) becomes
\begin{cases} \frac{dx}{d\eta}=(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xy, \\ \frac{dy}{d\eta}=-\left(\lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}y^{2}\right). \end{cases} | (3.3) |
Then, we will apply the Division Theorem to seek the first integral of system (3.3). Suppose that x=x(\eta), y=y(\eta) are the nontrivial solutions to (3.3), and p(x, y)=\sum^{M}_{i=0}a_{i}(x)y^{i} is an irreducible polynomial in C[x, y], where a_{i}(x) (i=0, 1..., M) are polynomials of x and a_{i}(x)\neq0. Let p(x(\eta), y(\eta))=0 be the first integral to system (3.3). \frac{dp}{d\eta} is a polynomial in x, y and \frac{dp}{d\eta}\big|_{(3.3)}=0. According to the Division Theorem, there exists a polynomial g(x)+h(x)y in C[x, y], such that
\begin{eqnarray} \frac{dp}{d\eta}\bigg|_{(3.3)}&=&\left( \frac{\partial p}{\partial x}\frac{dx}{d\eta}+\frac{\partial p}{\partial y}\frac{dy}{d\eta} \right)\bigg|_{(3.3)} \nonumber \\ &=&\sum^{M}_{i=0}[a^{\prime}_{i}(x)y^{i}\cdot (k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xy]\nonumber\\ &&-\sum^{2}_{i=0}\left[ia_{i}(x)y^{i-1}(\lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}y^{2})\right] \nonumber \\ &=&[g(x)+h(x)y] \bigg{[}\sum^{M}_{i=0}a_{i}(x)y^{i}\bigg{]}. \end{eqnarray} | (3.4) |
Here, let M=1, thus, p(x, y)=a_{0}(x)+a_{1}(x)y. By comparing with the coefficients of y^{i} of both sides of (3.4), we have
(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xa'_{1}(x)=h(x)a_{1}(x)+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m}a_{1}(x), | (3.5) |
(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}xa_{0}'(x)=g(x)a_{1}(x)+h(x)a_{0}(x), | (3.6) |
g(x)a_{0}(x)=-\left(\lambda_{1}x^{4}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{2-\frac{2m-4}{n-m}}\right)a_{1}(x). | (3.7) |
Since a_{i}(x)(i=0, 1) are polynomials, then from (3.5), we deduce that h(x)=-(k^{3}_{1}+l^{3}_{1})(\frac{2m}{n-m}-1)\frac{2m}{n-m} and a_{1}(x) is a constant. For simplicity, take a_{1}(x)=1. Balancing the degrees of g(x) and a_{0}(x), we conclude that \deg(g(x))=\deg(a_{0}(x)). Then, we derive \deg(g(x))=\deg(a_{0}(x))=j, (j\in Z^{+}, j\geq2).
When 2-\frac{2m-4}{n-m}=4 (n=2) and \deg(g(x))=\deg(a_{0}(x))=2, we suppose that
\begin{eqnarray} g(x)&=&A_{0}+A_{1}x+A_{2}x^{2}, \nonumber\\ a_{0}(x)&=&B_{0}+B_{1}x+B_{2}x^{2}, ~~(A_{2}\neq0, B_{2}\neq0), \end{eqnarray} | (3.8) |
where A_{i}, B_{i}, (i=0, 1, 2) are all constants to be determined. Substituting (3.8) into (3.6), we obtain
g(x)=(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}\left[(\frac{2m}{2-m}-1)B_{0}+\frac{2m}{2-m}B_{1}x+(\frac{2m}{2-m}+1)B_{2}x^{2}\right]. |
Substituting a_{0}(x), a_{1}(x) and g(x) into (3.7), and setting all the coefficients of powers x to be zero, we can get a system of nonlinear algebraic equations. After solving it, we can get the following solutions
B_{0}=B_{1}=0, ~~~~~~B_{2}=\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}. | (3.9) |
Using the conditions (3.9) in p(x, y)=a_{0}(x)+a_{1}(x)y=0, we obtain
y\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}x^{2}=0. | (3.10) |
Combining (3.3) with (3.10), we find
\frac{dx}{d\eta}=\pm(k_{1}^{3}+l_{1}^{3})\frac{2m}{n-m}{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}x^{3}. |
Thus, (3.10) can be reduced to
\frac{d\varphi}{d\xi}=\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}\varphi^{2}. |
Then, we have
\varphi(\xi)=\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}\xi+C_{23}\bigg{]}^{-1}. |
Thus, we can have the rational function solutions
\begin{eqnarray*} w(x, y, t)&=&\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{23}\bigg{]}^{2/(m-2)}, \\ v(x, y, t)&=&\frac{l_{1}}{k_{1}}\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{23}\bigg{]}^{2/(m-2)}, \\ u(x, y, t)&=&\frac{k_{1}}{l_{1}}\bigg{[}\pm{\bigg(}-\frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}+1)\frac{2m}{2-m}} {\bigg)}^{1/2}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{23}\bigg{]}^{2/(m-2)}, \end{eqnarray*} |
where C_{23} is an arbitrary constant and k^{3}_{1}+l^{3}_{1}\neq0.
Remark 1: When \deg(g(x))=\deg(a_{0}(x))=2 and 2-\frac{2m-4}{n-m}=i, (i\in Z, i < 4), there is no solution for them by using the method as that of 2-\frac{2m-4}{n-m}=4.
Remark 2: When \deg(g(x))=\deg(a_{0}(x))=j, (j\in Z, j>2), there is no exact solution of (1.1) by using the method as that of \deg(g(x))=\deg(a_{0}(x))=2.
Similarly, we propose a transformation denoted by w=\phi^{\frac{2}{2-m}}. Then, (2.3) can be converted to
\lambda_{1}\phi^{2}+{\bigg(}\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}{\bigg)}\phi^{4}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}(\phi')^{2}+(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}\phi\phi''-g\phi^{2-\frac{2m}{2-m}}=0. | (3.11) |
Let x=\phi, y=\frac{\mathrm {d}\phi}{\mathrm {d}\xi}, thus (3.11) is equivalent to the two dimensional autonomous system
\begin{cases} x'=y, \\ y'=-\bigg{(}\frac{\lambda_{1}x^{2}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{4}-gx^{2-\frac{2m}{2-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}y^{2}}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}x} {\bigg)}. \end{cases} | (3.12) |
Making the transformation d\eta=\frac{d\xi}{(k^{3}_{1}+l^{3}_{1})\frac{2m}{n-m}x}, then, (3.12) becomes
\begin{cases} \frac{dx}{d\eta}=(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}xy, \\ \frac{dy}{d\eta}=-\left(\lambda_{1}x^{2}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{4}-gx^{2-\frac{2m}{2-m}}+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}y^{2}\right). \end{cases} | (3.13) |
Similarly, let M=1, we have
(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}xa'_{1}(x)=h(x)a_{1}(x)+(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}a_{1}(x), | (3.14) |
(k^{3}_{1}+l^{3}_{1})\frac{2m}{2-m}xa_{0}'(x)=g(x)a_{1}(x)+h(x)a_{0}(x), | (3.15) |
g(x)a_{0}(x)=-\left(\lambda_{1}x^{2}+(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})x^{4}-gx^{2-\frac{2m}{2-m}}\right)a_{1}(x). | (3.16) |
According to m\neq n, we have h(x)=-(k^{3}_{1}+l^{3}_{1})(\frac{2m}{2-m}-1)\frac{2m}{2-m}, a_{1}(x)=1 and \deg(g(x))=\deg(a_{0}(x))=j, (j\in Z^{+}, j\geq2). Considering all cases, only when \deg(g(x))=\deg(a_{0}(x))=3, i.e., 2-\frac{2m}{2-m}=6 (m=n=4), there exist solutions of (1). We suppose that
\begin{eqnarray} g(x)&=&a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}, \nonumber\\ a_{0}(x)&=&b_{0}+b_{1}x+b_{2}x^{2}+b_{3}x^{3}, ~~(a_{3}\neq0, b_{3}\neq0), \end{eqnarray} | (3.17) |
where a_{i}, b_{i}, (i=0, 1, 2, 3) are all constants to be determined. Substituting (3.17) into (3.15), we obtain
g(x)=4(k^{3}_{1}+l^{3}_{1})\left(5b_{0}+4b_{1}x+3b_{2}x^{2}+2b_{3}x^{3}\right). |
Substituting a_{0}(x), a_{1}(x) and g(x) into (3.16), and setting all the coefficients of powers x to be zero, we have
b_{0}=b_{2}=0, ~~ 16(k_{1}^{3}+l_{1}^{3})b_{1}^{2}=-\lambda_{1}, ~~ 8(k_{1}^{3}+l_{1}^{3})b_{3}^{2}=g, ~~ 24(k_{1}^{3}+l_{1}^{3})b_{1}b_{3}=-(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}). |
Solving it, we find
b_{0}=b_{2}=0, ~~~ b_{1}=\pm\sqrt{\frac{-\lambda_{1}}{16(k_{1}^{3}+l_{1}^{3})}}, ~~~ b_{3}=\pm\sqrt{\frac{g}{8(k_{1}^{3}+l_{1}^{3})}}, ~~~-9\lambda_{1}g=2(\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}})^{2}. | (3.18) |
Using the conditions (3.18) in p(x, y)=a_{0}(x)+a_{1}(x)y=0, we obtain
y=\pm\sqrt{\frac{-\lambda_{1}}{16(k_{1}^{3}+l_{1}^{3})}}x\pm\sqrt{\frac{g}{8(k_{1}^{3}+l_{1}^{3})}}x^{3}. | (3.19) |
Then, (3.19) can be reduced to
\frac{d\phi}{d\xi}=\pm\sqrt{\frac{-\lambda_{1}}{16(k_{1}^{3}+l_{1}^{3})}}\xi\pm\sqrt{\frac{g}{8(k_{1}^{3}+l_{1}^{3})}}\xi^{3}. | (3.20) |
Solving (3.20), we obtain
\phi(\xi)=\pm\left( \pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}\xi} \right)^{-1/2}. |
Thus, we can have the exact solution
\begin{eqnarray*} w(x, y, t)=&&\pm\left(\pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}(k_{1}x+l_{1}y+\lambda_{1}t)} \right)^{1/2}, \\ v(x, y, t)=&&\pm\frac{l_{1}}{k_{1}}\left( \pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}(k_{1}x+l_{1}y+\lambda_{1}t)} \right)^{1/2}, \\ u(x, y, t)=&&\pm\frac{k_{1}}{l_{1}}\left( \pm\sqrt{\frac{-2g}{\lambda_{1}}}+C_{24}e^{\pm\frac{1}{2}\sqrt{\frac{-\lambda_{1}}{k_{1}^{3}+l_{1}^{3}}}(k_{1}x+l_{1}y+\lambda_{1}t)} \right)^{1/2}, \end{eqnarray*} |
where C_{24} is an arbitrary constant and \alpha k_{1}^{3}+\beta l_{1}^{3}\neq0, \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0.
This paper considered the generalized (2+1)-dimensional BKP equation, by the aid of the G'/G-expansion method and the first integral method. Rational function solutions, periodic function solutions and hyperbolic function solutions are obtained under some parametric conditions and the values of m and n in several cases. In [10], authors gave some exact solutions of system (1.1) under some parametric conditions by using the bifurcation theory of dynamical systems. Here, we make a simple comparison:
1. When m=2, n=3, g=0, in [10], authors gave the exact solution (3.20) in P2443 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\frac{-20(k^{3}_{1}+l^{3}_{1})}{\lambda_{1}}{\bigg(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}{\bigg)}^{2} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
2. When m=2, n=2(k+1), (k\in Z^{+}), g=0, in [10], authors gave the solitary wave solutions (3.9) in P2441 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\bigg{(}\sqrt{\frac{-2(k+2)(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}k^{2}}}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}\bigg{)}^{1/k} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
3. When m=3, n=4, g=0, in [10], authors gave the compacton solution (3.23) in P2443 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\frac{-42(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}}\bigg{(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}\bigg{)}^{2} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
4. When m=3, n=5, g=0, in [10], authors gave the exact solution (3.27) in P2443 under the parametric conditions c < 0 and in this paper, we get w(x, y, t)=\sqrt{\frac{-12(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}}}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
5. When m=4, n=6, g=0, in [10], authors gave the periodic cusp wave solutions (3.6) in P2441 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\sqrt{\frac{-20(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}}}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
6. When m=4, n=2k+1, (k\in Z^{+}), g=0, in [10], authors gave the exact solutions (3.17) and (3.18) in P2442 under the parametric conditions \alpha+\beta < 0, c < 0 and in this paper, we get w(x, y, t)=\bigg{(}\frac{-8(2k+5)(k_{1}^{3}+l_{1}^{3})}{\lambda_{1}(2k-3)^{2}}\bigg{)}^{\frac{1}{2k-3}}\bigg{(}\frac{C_{1}}{C_{1}(k_{1}x+l_{1}y+\lambda_{1}t)+C_{2}}\bigg{)}^{\frac{2}{2k-3}} under the parametric condition \alpha k^{3}_{1}+\beta l^{3}_{1}=0.
7. When m=2, n=4, g\neq0, in [10], authors gave the exact solutions (3.30) in P2443 under the parametric conditions g < \frac{(\alpha+\beta)^{2}}{4c}, c>0, g>0, \alpha+\beta>0, (3.33) in P2444 under the parametric conditions g < \frac{(\alpha+\beta)^{2}}{4c}, c < 0, g>0, \alpha+\beta>0 or g>\frac{(\alpha+\beta)^{2}}{4c}, c < 0, g>0, \alpha+\beta < 0 and (3.41), (3.43) in P2445 under the parametric conditions g>\frac{(\alpha+\beta)^{2}}{4c}, c < 0, g < 0, \alpha+\beta < 0 and in this paper, we get (2.32) under the parametric conditions \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0, ~ \frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})}>0 and (2.33) under the parametric conditions \lambda_{1}(k_{1}^{3}+l_{1}^{3}) < 0, ~\frac{\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{2(k_{1}^{3}+l_{1}^{3})} < 0.
8. When m=2, n=2, g\neq 0, in [10], authors gave the exact solutions (3.36) and (3.38) in P2444 under the parametric conditions \alpha+\beta-c>0, g>0 and in this paper, we get the exact solutions (2.38) under the parametric conditions \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}} < 0, (2.39) under the parametric conditions \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}>0 and (2.40) under the parametric conditions \frac{\lambda_{1}+\frac{\alpha k^{2}_{1}}{l_{1}}+\frac{\beta l^{2}_{1}}{k_{1}}}{k^{3}_{1}+l^{3}_{1}}=0.
In addition, when let m, n be other values, we have got other exact solutions of (1.1) under some parametric conditions that haven't been given in [10]. Certainly, system (1.1) should be studied further, which will be left to a further discussion.
All authors declare no conflicts of interest in this paper.
[1] | M. R. Miura, Backlund Transformation, New York: Springer-Verlag, Berlin, 1978. |
[2] | W. Ma, T. Huang, and Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82 (2010), 065003. |
[3] | W. Ma and J. H. Lee, A transfortiom rational function method and exact solutions to (3+1)-dimensional Jimbo-Miwa equation, Choas Solitons Fractals, 42 (2009), 1356-1363. |
[4] | A. M. Wazwaz, Two reliable methods for solving variants of the KdV equation with compact and noncompact structures, Choas Solitons Fractals, 28 (2006), 454-462. |
[5] | M. L. Wang, X. Z. Li, and J. L. Zhang, The G'/G-expansion method and traveling wave solutions of nonlinear evolutions in mathematical physics, Phys. Lett., 372 (2008), 417-423. |
[6] | E. M. E. Zayed and Khaled A. Gepreel, Some applications of the (G'/G)-expansion method to nonlinear partial differential equations, Appl. Math. Comput., 212 (2009), 1-13. |
[7] | H. Q. Zhang, New application of the G0'/G-expansion method, Commun Nolinear Sci. Numer. Simul., 14 (2009), 3220-3225. |
[8] | Z. S. Feng, The first integral method to study the Burgers-Korteweg-de Vries equation, J. Phys. A., 35 (2002), 343-349. |
[9] | N. Taghizadeh and M. Mirzazadeh, Exact solutions of some nonlinear evolution equations via the first integral method, Ain Shams Engineering Journal, 4 (2013), 493-499. |
[10] | Y. G. Xie, B. W. Zhou, and S. Q. Tang, Bifurcations of traveling wave soluions for the generalized (2+1)-dimensional Boussinesq-Kadomtesv-Petviashvili equation, Appl. Math. Comput., 217 (2010), 2433-2447. |
[11] | E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Transformation groups for soliton equations. Ⅳ. A new hierarchy of soliton equations of KP type, Physica D., 4 (1982), 343-365. |
[12] | H. C. Ma, Y. Wang, and Z. Y. Qin, New exact complex traveling wave solutions for (2+1)-dimensional BKP equation, Appl. Math. Comput., 208 (2009), 564-568. |
[13] | F. Tascan and A. Bekir, Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sine-cosine method, Appl. Math. Comput., 215 (2009), 3134-3139. |
[14] | H. Q. Zhang, A note on exact complex travelling wave solutions for (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Appl. Math. Comput., 216 (2010), 2771-2777. |
[15] | M. Mirzazadeh and M. Eslami, Topological solitons of resonant nonlinear Schrödinger's equation with dual-power law nonlinearity by G'/G-expansion technique, Optik, 125 (2014), 5480-5489. |
1. | Gui Mu, Yan Zhu, Tingfu Feng, New Localized Structure for (2+1) Dimensional Boussinesq-Kadomtsev-Petviashvili Equation, 2022, 10, 2227-7390, 2634, 10.3390/math10152634 | |
2. | Sanjaya K. Mohanty, Sachin Kumar, Apul N. Dev, Manoj Kr. Deka, Dmitry V. Churikov, Oleg V. Kravchenko, An efficient technique of G′G–expansion method for modified KdV and Burgers equations with variable coefficients, 2022, 37, 22113797, 105504, 10.1016/j.rinp.2022.105504 |