
Citation: Mariacristina De Luca, Kevin Pels, Susana Moleirinho, Graziella Curtale. The epigenetic landscape of innate immunity[J]. AIMS Molecular Science, 2017, 4(1): 110-139. doi: 10.3934/molsci.2017.1.110
[1] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
[2] | Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818 |
[3] | Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247 |
[4] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[5] | Ranjit Kumar Upadhyay, Swati Mishra . Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16(1): 338-372. doi: 10.3934/mbe.2019017 |
[6] | Sangeeta Kumari, Sidharth Menon, Abhirami K . Dynamical system of quokka population depicting Fennecaphobia by Vulpes vulpes. Mathematical Biosciences and Engineering, 2025, 22(6): 1342-1363. doi: 10.3934/mbe.2025050 |
[7] | Meiling Zhu, Huijun Xu . Dynamics of a delayed reaction-diffusion predator-prey model with the effect of the toxins. Mathematical Biosciences and Engineering, 2023, 20(4): 6894-6911. doi: 10.3934/mbe.2023297 |
[8] | Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282 |
[9] | Guangxun Sun, Binxiang Dai . Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Mathematical Biosciences and Engineering, 2020, 17(4): 3520-3552. doi: 10.3934/mbe.2020199 |
[10] | Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262 |
In this paper, we consider boundary tracing problem of nonlinear fractional diffusion equations with Neumann boundary condition
{Dαtφ=φxx+F(x,t,φ,φx),(x,t)∈ΩT,φx(0,t)=u(t),t∈(0,T],φx(1,t)=g(t),t∈(0,T],φ(x,0)=φ0(x),x∈[0,1] | (1.1) |
by iterative learning algorithms, where Dαt is the Caputo fractional derivative of order α, 0<α<1, (x,t)∈ΩT≜[0,1]×[0,T] and F(x,t,φ,φx) is the nonlinear function.
The basic idea of iterative learning control (ILC) [1,4,16] can be traced back to Garden [8] in 1967 and Uchiyama [28] in 1978. ILC is a control method suitable for dealing with iterative systems, which uses information obtained from previous trial to improve the tracking performance of current trial. Owing to simplicity and effectiveness, ILC plays an important role in many fields and applications [9,10,14].
ILC schemes are widely used for ordinary differential equations (ODEs) [23,25,26,29]. However, there are few studies on its application to partial differential equations (PDEs) and fractional partial differential equations (FPDEs) [11,24]. Choi et al. [3] employed the characteristic line method and the Q-ILC method to study the ILC schemes of a first-order hyperbolic PDE system. Huang et al. [12] studied the P-type ILC scheme for boundary tracking of nonlinear hyperbolic parametric systems and evaluated the robustness of the scheme. Kang et al. [15] proposed a Newton-type ILC algorithm for nonlinear parametric equations and provided sufficient conditions for convergence of the Newton descent method using the λ-norm. Different from the convergence in the sense of the λ norm, Dai et al. [5] derived the P-type ILC for linear parabolic parametric equations and proved its convergence in the sense of the L2-norm and the W1,2-norm. Lan et al. [22] presented a second-order ILC method for a class of multi-agent systems (MAS) with time-delay distributed parameters and proved its convergence.
For the diffusion equation, Xu et al. [30] proposed P-type and D-type ILC methods for infinite-dimensional linear systems in Hilbert spaces. Huang et al. [13] extended ILC to solve the boundary tracking problem of inhomogeneous heat equations and provided evidence for the effectiveness of the D-type ILC scheme. Zhang et al. [32] presented a novel intermittent updating PD-type ILC algorithm for semi-linear distributed parameter systems with sensors or actuators, and provided convergence conditions for the output error. For the fractional diffusion equation, Lan et al. [20] discussed the P-type ILC of fractional order parameter exchange systems and demonstrated that the exchange system maintains traceability over two time periods. Lan et al. [21] proposed a second-order P-type ILC scheme for a class of linear fractional order distributed parameter systems and established a sufficient condition for convergence using λ-norm and generalized Gronwall inequality.
Overall, there have been relatively few studies on iterative learning control algorithms for fractional diffusion equations, which can describe a variety of memory materials and genetic processes [6,18]. Applying the ILC algorithm to fractional diffusion equations can improve control of the system for nonlocal transport phenomena and long-range memory effects, leading to faster convergence and improved tracking accuracy [19]. We aim to extend ILC to the nonlinear fractional diffusion equation and study their convergence. However, this work is challenging, as the difficulty lies in proving the convergence of the iterative learning control algorithm for fractional diffusion equations, with added challenges posed by the fractional derivatives and nonlinear source terms. Therefore, we assume that source term is Lipschitz continuous and employ Sobolev imbedding theorem to overcome difficulties in the proof.
In this paper, we consider boundary tracing problem of one dimensional fractional diffusion equation with input, state and output functions at the k-th iteration,
{Dαtφk=φkxx+F(x,t,φk,φkx),(x,t)∈ΩT,φkx(0,t)=uk(t),t∈(0,T],φkx(1,t)=g(t),t∈(0,T],φk(x,0)=φ0(x),x∈[0,1],yk(t)=c(t)φk(1,t)+d(t)uk(t), | (1.2) |
where k denotes the iterative number of the process and uk,φk,yk(t) are the input, state and output of the system at the k-th iteration respectively. The main idea is to adjust the control input uk(t) iteratively in order that system output {yk(t)} can track the predefined target yd(t) when k→∞.
In addition, we make some assumptions about the functions in system (1.2). Suppose c(t) and d(t) are bounded and F(x,t,φk,φkx) satisfies Lipschitz condition.
Assumption 1: The functions c(t) and d(t) satisfy
|c(t)|≤c1,0<d1≤d(t)≤d2, |
where c1,d1,d2 are positive constants.
Assumption 2: The nonlinear function Fk≜F(x,t,φk,φkx) is Lipschitz continuous,
|Fk+1−Fk|≤CF(|φk+1−φk|+|φk+1x−φkx|), | (1.3) |
where CF is a constant.
This paper is organized as follows. Preliminaries are presented in Section 2. In Section 3, P-type ILC scheme, PIθ-type ILC scheme and corresponding convergence conditions are proposed for the nonlinear system. Numerical examples are given in Section 4 to illustrate the effectiveness of the methods. Finally, conclusions are drawn in Section 5.
To prepare for our subsequent analysis, it is essential to introduce some definitions, useful lemmas and theorems.
Definition 2.1. [17] Let z(t)∈AC[0,T], the Caputo fractional derivative of order α is defined by
Dαtz(t)=1Γ(1−α)∫t0z′(τ)(t−τ)αdτ,0<α<1,0<t≤T. |
Definition 2.2. [17] Let z(t)∈L(0,T), the Riemann-Liouville fractional integral of order α is defined by
Iαtz(t)=1Γ(α)∫t0(t−τ)α−1z(τ)dτ,0<α<1,0<t≤T. |
Definition 2.3. [27] The two-parameter Mittag-Leffler function is defined by the series expansion
Eα,β(z)=∞∑k=0zkΓ(αk+β),α>0,β>0. |
Lemma 2.1. [27] Suppose 0<α<1. Caputo fractional derivative and fractional integral of order α have the following relationship
Iαt(Dαt(x(t)))=x(t)−x(0). |
Lemma 2.2. [7] Assume x(t) be a differentiable function. The following relationship holds
12Dαtx(t)2≤x(t)Dαtx(t),∀α∈(0,1]. |
Lemma 2.3. (Gronwall inequality [31]) Suppose a(t) is a nonnegative, nondecreasing, locally integrable function over 0≤t0≤t≤T and g(t) is a nonnegative, nondecreasing continuous function over 0≤t0≤t≤T, g(t)≤M, where M is a postive constant. If u(t) is nonnegative and locally integrable function over 0≤t0≤t≤T and satisfies
u(t)≤a(t)+g(t)∫tt0(t−s)α−1u(s)ds,α>0, |
then, we have
u(t)≤a(t)Eα,1(g(t)Γ(α)tα). |
Theorem 2.1. (Sobolev imbedding theorem [2]) Let Ω∈Rd be a bounded Lipschitz domain and 1≤p≤∞. If 0≤m<k−dp<m+1, the space Wk,p(Ω) is continuously imbedded in Cm,α(¯Ω) for α=k−dp−m and compactly imbedded in Cm,β(¯Ω) for all 0≤β<α.
Remark 2.1. Using the Sobolbev imbedding theorem 2.1 in the case of d = 1, we can get
maxx∈[0,1]|φ(x,t)|2≤C1||φ(x,t)||2H1, | (2.1) |
where ||φ(x,t)||2H1≜∫Ωφ2+φ2xdx and C1 is a positive constant.
We need to give some necessary lemmas to obtain the convergence conditions for the ILC scheme.
Lemma 3.1. Suppose e(t)∈AC[0,T) and 0.5<θ≤1, then, we have
|Iθte|2≤Γ(2θ−1)eλtTΓ(θ)2λ2θ−1|e|2λ. | (3.1) |
Proof. From the Definition 2.2 of fractional integral, we can get
|Iθte|2=1Γ(θ)2(∫t0(t−τ)θ−1e(τ)dτ)2=1Γ(θ)2(∫t0(t−τ)θ−1eλ2τe−λ2τe(τ)dτ)2≤1Γ(θ)2∫t0(t−τ)2θ−2eλτdτ∫t0e2(τ)e−λτdτ≤1Γ(θ)2∫t0(t−τ)2θ−2eλτdτ|e|2λt=eλtΓ(θ)2∫t0(t−τ)2θ−2e−λ(t−τ)dτ|e|2λt. |
where |e|2λ≜supt∈[0,T]{e−λt|e(t)|2,λ>0} and |e(t)| represents absolute value of e(t). Let t−τ=ω and λω=v, we have
eλtΓ(θ)2∫t0(t−τ)2θ−2e−λ(t−τ)dτ|e|2λt=eλtΓ(θ)2∫t0ω2θ−2e−λωdω|e|2λt=eλtΓ(θ)2∫λt0(vλ)2θ−2e−v1λdv|e|2λt=eλtΓ(θ)2∫λt0v2θ−2e−vdv|e|2λtλ2θ−1. | (3.2) |
From the definition of the Gamma function, we can get
1Γ(θ)2∫t0(t−τ)2θ−2eλτdτ|e|2λt≤eλtΓ(θ)2∫∞0v2θ−2e−vdv|e|2λtλ2θ−1=eλtΓ(θ)2Γ(2θ−1)|e|2λtλ2θ−1=Γ(2θ−1)eλtTΓ(θ)2λ2θ−1|e|2λ. | (3.3) |
This completes the proof.
Lemma 3.2. If ψ satisfies the equation
{Dαtψ=ψxx+δF,(x,t)∈ΩT,ψx(0,t)=e(t),t∈[0,T],ψx(1,t)=0,t∈[0,T],ψ(x,0)=0,x∈[0,1], | (3.4) |
we have
||ψ||2L2,λ≤|e|2λλαEα,1((C2F+2CF+1)Tα), | (3.5) |
||ψx||2L2,λ≤(|e|2λλα+Mc1λα+C2Fλα||ψ||2L2,λ)Eα,1(C2FTα), | (3.6) |
where
||ψ(⋅,t)||2L2,λ≜supt∈[0,T]{e−λt||ψ(⋅,t)||2L2,λ>0}, |
|e(t)|2λ≜supt∈[0,T]{e−λt|e(t)|2,λ>0}, |
|e(t)| represents absolute value of e(t), M=maxt∈[0,T]|Dαtψ(0,t)|2, c1=αααΓ(α)eα, δF=F(x,t,φk+1,φk+1x)−F(x,t,φk,φkx) and ψ=φk+1−φk.
Proof. (i) We firstly prove the formula (3.5). Multiplying both sides of the equation Dαtψ=ψxx+δF by ψ and integrating with respect to x, it yields
∫10ψDαtψdx=∫10ψψxx+ψδFdx. |
Based on Lemma 2.2, formula (1.3) and boundary condition, it is not hard to know
12Dαt||ψ||2L2≤−∫10|∇ψ|2dx+∫∂Ωψψxds+CF∫10|ψ|(|ψ|+|ψx|)dx≤−∫10|ψx|2dx+|ψ(0,t)e(t)|+CF||ψ||2L2+CF∫10|ψψx|dx. |
Using Young inequality (weighted form) and taking the positive constant C1 in formula (2.1), it leads to
Dαt||ψ||2L2≤−2||ψx||2L2+2|ψ(0,t)e(t)|+2CF||ψ||2L2+2CF∫10|ψψx|dx≤−2||ψx||2L2+C1|e(t)|2+1C1|ψ(0,t)|2+2CF||ψ||2L2+||ψx||2L2+C2F||ψ||2L2≤C1|e(t)|2+1C1|ψ(0,t)|2+c2||ψ||2L2−||ψx||2L2, |
where c2=C2F+2CF. It follows from Theorem 2.1 that
Dαt||ψ||2L2≤C1|e(t)|2+||ψ||2H1+c2||ψ||2L2−||ψx||2L2≤C1|e(t)|2+(c2+1)||ψ||2L2. |
Integrating both sides of the inequality with respect to t, by Lemma 2.1 we have
||ψ||2L2≤||ψ(x,0)||2L2+C1Γ(α)∫t0(t−τ)α−1|e(τ)|2dτ+c2+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ≤||ψ(x,0)||2L2+C1Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+c2+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ. |
Using initial condition, we can get
||ψ||2L2≤C1Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+c2+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ. | (3.7) |
Applying Lemma 2.3, we can obtain
||ψ||2L2≤C1eλtλα|e|2λEα,1((C2F+2CF+1)Tα). |
Taking λ-norm on both sides of inequality, we can derive
||ψ||2L2,λ≤C1λα|e|2λEα,1((C2F+2CF+1)Tα). | (3.8) |
(ii) We then prove the formula (3.6). Multiplying both sides of the equation Dαtψ=ψxx+δF by ψxx and integrating with respect to x, it yields
∫10ψxxDαtψdx=||ψxx||2L2+∫10ψxxδFdx. |
By boundary condition, we get
∫10ψxDαtψxdx=−e(t)Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. |
Based on Lemma 2.2, it is not hard to know
12Dαt||ψx||2L2≤−e(t)Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. |
We can conclude from the formula (1.3) that
12Dαt||ψx||2L2≤−e(t)Dαtψ(0,t)−||ψxx||2L2+CF∫10|ψxxψ|+|ψxxψx|dx. |
Using Young inequality (weighted form), it leads to
Dαt||ψx||2L2≤|e(t)|2+|Dαtψ(0,t)|2+C2F(||ψx||2L2+||ψ||2L2)≤|e(t)|2+M+C2F||ψ||2L2+C2F||ψx||2L2, |
where M=maxt∈[0,T]|Dαtψ(0,t)|2. Integrating both sides of the inequality about t and using initial condition, according to Lemma 2.1 we get
||ψx||2L2≤||ψx(x,0)||2L2+1Γ(α)∫t0(t−τ)α−1(|e(τ)|2+M+C2F||ψ||2L2)dτ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ≤1Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+MαΓ(α)tα+C2FΓ(α)∫t0(t−τ)α−1eλτdτ||ψ||2L2,λ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ. |
Applying Lemma 2.3, we obtian
||ψx||2L2≤(|e|2λeλtλα+MtααΓ(α)+C2Feλtλα||φ||2L2,λ)Eα,1(C2FTα). |
Taking λ-norm on both sides of inequality, we can derive
||ψx||2L2e−λt≤(|e|2λλα+Mtαe−λtαΓ(α)+C2Fλα||φ||2L2,λ)Eα,1(C2FTα). |
Since tαe−λt gets the maximum value ααλαeα at t=αλ. Therefore, we can get
||ψx||2L2e−λt≤(|e|2λλα+Mc1λα+C2Fλα||ψ||2L2,λ)Eα,1(C2FTα) | (3.9) |
where c1=αααΓ(α)eα. Then, taking the maximum value on the left side of the inequality, we have
||ψx||2L2,λ≤(|e|2λλα+Mc1λα+C2Fλα||ψ||2L2,λ)Eα,1(C2FTα). | (3.10) |
This completes the proof.
Lemma 3.3. If ψ satisfies the equation
{Dαtψ=ψxx+δF,(x,t)∈ΩT,ψx(0,t)=βe(t)+γIθte(t),t∈[0,T],ψx(1,t)=0,t∈[0,T],ψ(x,0)=0,x∈[0,1], | (3.11) |
we have
||ψ||2L2,λ≤(2C1β2λα+C1c3λα+2θ−1)|e|2λEα,1((C2F+2CF+1)Tα), |
||ψx||2L2,λ≤(2β2λα|e|2λ+Mc1λα+C2Fλα||ψ||2L2,λ+c3|e|2λλα+2θ−1)Eα,1(C2FTα), |
where
||ψ(⋅,t)||2L2,λ≜supt∈[0,T]{e−λt||ψ(⋅,t)||2L2,λ>0}, |
|e(t)|2λ≜supt∈[0,T]{e−λt|e(t)|2,λ>0}, |
|e(t)| represents absolute value of e(t), M=maxt∈[0,T]|Dαtψ(0,t)|2, c1=αααΓ(α)eα, δF=F(x,t,φk+1,φk+1x)−F(x,t,φk,φkx), ψ=φk+1−φk and c3=2Γ(2θ−1)γ2TΓ(θ)2.
Proof. (i) We firstly prove the formula (3.12). Multiplying both sides of the equation Dαtψ=ψxx+δF by ψ and integrating with respect to x, it yields
∫10ψDαtψdx=∫10ψψxx+ψδFdx. |
Based on Lemma 2.2 and boundary condition, it is not hard to know
12Dαt||ψ||2L2≤−∫10|∇ψ|2dx+ψψx|10+CF∫10|ψ|(|ψ|+|ψx|)dx≤−∫10|ψx|2dx+|ψ(0,t)(βe(t)+γIθte(t))|+CF||ψ||2L2+CF∫10|ψψx|dx. |
Using Young inequality (weighted form) and taking the positive constant C1 in formula (2.1), we obtain
Dαt||ψ||2L2≤2C1β2|e(t)|2+2C1γ2|Iθte(t)|2+1C1|ψ(0,t)|2+(C2F+2CF)||ψ||2L2−||ψx||2L2. |
Applying Theorem2.1 and Lemma 3.1, it leads to
Dαt||ψ||2L2≤2C1β2|e(t)|2+2C1γ2|Iθte(t)|2+||ψ||2H1+(C2F+2CF)||ψ||2L2−||ψx||2L2≤2C1β2|e|2+C1c3eλtλ2θ−1|e|2λ+(C2F+2CF+1)||ψ||2L2. |
where c3=2Γ(2θ−1)γ2TΓ(θ)2. Integrating both sides of the inequality about t and using initial condition, by Lemma 2.1 we get
||ψ||2L2≤||ψ(x,0)||2L2+2C1β2Γ(α)∫t0(t−τ)α−1|e|2dτ+C1c3eλtλα+2θ−1|e|2λ+C2F+2CF+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ≤2C1β2eλtλα|e|2λ+C1c3eλtλα+2θ−1|e|2λ+C2F+2CF+1Γ(α)∫t0(t−τ)α−1||ψ||2L2dτ. |
It follows from Lemma 2.3 that
||ψ||2L2≤(2C1β2eλtλα+C1c3eλtλα+2θ−1)|e|2λEα,1((C2F+2CF+1)Tα). |
Taking λ-norm on both sides of inequality, we can derive
||ψ||2L2,λ≤(2C1β2λα+C1c3λα+2θ−1)|e|2λEα,1((C2F+2CF+1)Tα). | (3.12) |
(ii) We then prove the formula (3.12). Multiplying both sides of the equation Dαtψ=ψxx+δF by ψxx and integrating with respect to x, it yields
∫10ψxxDαtψdx=||ψxx||2L2+∫10ψxxδFdx. |
Based on boundary condition, it is not hard to know
∫10ψxDαtψxdx=−(βe(t)+γIθte(t))Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. |
According to Lemma 2.2, we obtain
12Dαt||ψx||2L2≤−(βe(t)+γIθte(t))Dαtψ(0,t)−||ψxx||2L2−∫10ψxxδFdx. |
Applying Lipschitz condition (1.3), we have
12Dαt||ψx||2L2≤−(βe(t)+γIθte(t))Dαtψ(0,t)−||ψxx||2L2+CF∫10|ψxxψ|+|ψxxψx|dx. |
Using Young inequality (weighted form), it leads to
Dαt||ψx||2L2≤2β2|e(t)|2+2γ2|Iθte(t)|2+|Dαtψ(0,t)|2+C2F||ψx||2L2+C2F||ψ||2L2≤2β2|e(t)|2+2γ2|Iθte(t)|2+M+C2F||ψ||2L2+C2F||ψx||2L2. |
Integrating both sides of the inequality with respect to t and using initial condition, by Lemma 2.1 and Lemma 3.1, we get
||ψx||2L2≤||ψx(x,0)||2L2+1Γ(α)∫t0(t−τ)α−1(2β2|e|2+M+C2F||ψ||2L2)dτ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ+c3eλt|e|2λλα+2θ−1≤2β2Γ(α)∫t0(t−τ)α−1eλτdτ|e|2λ+MαΓ(α)tα+C2FΓ(α)∫t0(t−τ)α−1eλτdτ||ψ||2L2,λ+c3eλt|e|2λλα+2θ−1+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ≤2β2eλtλα|e|2λ+MαΓ(α)tα+C2Feλtλα||ψ||2L2,λ+C2FΓ(α)∫t0(t−τ)α−1||ψx||2L2dτ+c3eλt|e|2λλα+2θ−1, |
where c3=2Γ(2θ−1)γ2TΓ(θ)2. Using Lemma 2.3, we have
||ψx||2L2≤(2β2|e|2λeλtλα+MαΓ(α)tα)Eα,1(C2FTα)+(C2Feλtλα||ψ||2L2,λ+c3eλt|e|2λλα+2θ−1)Eα,1(C2FTα). |
Taking λ-norm on both sides of inequality, similar to Lemma (3.2), we obtain
||ψx||2L2,λ≤(2β2λα|e|2λ+Mc1λα+C2Fλα||ψ||2L2,λ+c3|e|2λλα+2θ−1)Eα,1(C2FTα), |
where c1=αααΓ(α)eα. This completes the proof.
The open-loop P-type ILC scheme for Eq (1.2) is
uk+1(t)=uk(t)+βek(t), | (3.13) |
where ek(t)=yd(t)−yk(t) denotes the output error and the learning gain β is an unknown parameter to be determined later.
Theorem 3.1. For system (1.2) and the open-loop P-type law (3.13), if there exist a learning gain β and a constant l(l>0) satisfying
(1+l)¯ρ21≤1, | (3.14) |
where ¯ρ1=maxt∈[0,T]|1−βd(t)|, then the output error ek can converge to the ϵ-neighborhood of zero for any constant ϵ>0 in the sense of λ-norm as k→∞.
Proof. From the definition of error, we get
ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t)). | (3.15) |
Based on the formula (3.13), it is not hard to know
ek+1(t)=ek(t)−c(t)δφk+1(1,t)−βd(t)ek(t)=(1−βd(t))ek(t)−c(t)δφk+1(1,t). | (3.16) |
Squaring both sides of the equation, we get
|ek+1(t)|2≤¯ρ21|ek(t)|2+¯c2|δφk+1(1,t)|2+2¯ρ1¯c|ek(t)||δφk+1(1,t)|, |
where ¯ρ1=maxt∈[0,T]|1−βd(t)| and ¯c=maxt∈[0,T]|c(t)|. Using Young inequality (weighted form) to ensure (1+l)¯ρ21≤1 and Theorem 2.1, we have
|ek+1(t)|2≤(1+l)¯ρ21|ek(t)|2+(1+1l)¯c2|δφk+1(1,t)|2≤(1+l)¯ρ21|ek(t)|2+(1+1l)¯c2maxx∈[0,1]|δφk+1(x,t)|2≤(1+l)¯ρ21|ek(t)|2+(1+1l)¯c2C1||δφk+1||2H1. | (3.17) |
Taking λ-norm on both sides of inequality, we get
|ek+1(t)|2λ≤(1+l)¯ρ21|ek(t)|2λ+(1+1l)¯c2C1||δφk+1||2H1,λ≤(1+l)¯ρ21|ek(t)|2λ+(1+1l)¯c2C1(||δφk+1||2L2,λ+||δφk+1x||2L2,λ). |
Using Lemma 3.2, we obtain
|ek+1(t)|2λ≤q1|ek(t)|2λ+μ1,k, | (3.18) |
where
q1=(1+l)¯ρ21+(1+1l)¯c2C1β2(CT+Eα,1(C2FTα)+C2FCTEα,1(C2FTα)1λα)1λα, |
μ1,k=(1+1l)¯c2C1Eα,1(C2FTα)MkαααΓ(α)eαλα,CT=Eα,1((C2F+2CF+1)Tα) |
and Mk=maxt∈[0,T]|Dαtφk(0,t)|2. Choosing λ large enough so that q1<1, we get
|ek+1(t)|2λ≤q1(|ek−1(t)|2λ+μ1,k−1)+μ1,k≤qk+11|e0(t)|2λ+qk1μ1,0+qk−11μ1,1+⋯+μ1,k≤qk+11|e0(t)|2λ+¯μ1,k1−q1, | (3.19) |
where ¯μ1,k≜maxm∈{0,1,⋯,k}μ1,m. We select λ large enough so that ¯μ1,k is sufficiently small. Therefore, to ensure |ek+1(t)|2λ≤ϵ2, it is sufficient to make
qk+11|e0(t)|2λ<ϵ2, | (3.20) |
which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration (k>2(lnϵ−ln|e0|λ)lnq1−1).
Remark 3.1. Due to q1(λ) is a monotonic decreasing function of λ and (1+l)¯ρ21<1, we can see that the inequality q1<1 holds when λ is large enough. From the definition of μ1,k, μ1,k is proportional to λ−α. The number of iterations k is finited, so ¯μ1,k is also proportional to λ−α and ¯μ1,k tends to zero when λ is large enough.
Remark 3.2. In order to satisfy the convergence condition (3.14), the learning gain β should satisfy
√1+l−1d1√1+l<β<√1+l+1d2√1+l. |
To ensure that the above inequality holds, parameter l should satisfy
l<(d2+d1d2−d1)2−1. |
The closed-loop P-type ILC control scheme for (1.2) is
uk+1(t)=uk(t)+βek+1(t), | (3.21) |
where ek+1(t)=yd(t)−yk+1(t) is the output error and the learning gain β is an unknown parameter to be determined later.
Theorem 3.2. For system (1.2) and the ILC law (3.21), if there exist a learning gain β and a constant l(l>0) satisfying
(1+¯ρ22l)¯ρ22≤1, | (3.22) |
where ¯ρ2=maxt∈[0,T]1|1+βd(t)|, then the output error ek can converge to the ϵ-neighborhood of zero for any constant ϵ>0 in the sense of λ-norm as k→∞.
Proof. From the definition of error, we get
ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t))=ek(t)−c(t)δφk+1(1,t)−βd(t)ek+1(t). | (3.23) |
Based on the formula (3.21), it is not hard to know
(1+βd(t))ek+1(t)=ek(t)−c(t)δφk+1(1,t). | (3.24) |
Simplifying the above equation, we have
ek+1(t)=ek(t)(1+βd(t))−c(t)δφk+1(1,t)(1+βd(t)). | (3.25) |
Squaring both sides of the equation, we get
|ek+1(t)|2≤¯ρ22|ek(t)|2+¯ρ22¯c2|δφk+1(1,t)|2+2¯ρ22¯c|ek(t)||δφk+1(1,t)|, |
where ¯ρ2=maxt∈[0,T]1|1+βd(t)| and ¯c=maxt∈[0,T]|c(t)|. Using Theorem 2.1 and Young inequality (weighted form) to ensure (1+¯ρ22l)¯ρ22<1, we have
|ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(¯ρ22+1l)¯c2|δφk+1(1,t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(¯ρ22+1l)¯c2maxx∈[0,1]|δφk+1(x,t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(¯ρ22+1l)¯c2C1||δφk+1||2H1. |
Taking λ-norm on both sides of inequality, we get
|ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek(t)|2λ+(¯ρ22+1l)¯c2C1||δφk+1||2H1,λ. |
According to Lemma 3.2, we obtain
|ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek|2λ+N1|ek+1|2λ+N2,k, | (3.26) |
where
N1=(¯ρ22+1l)¯c2C1β2(CT+Eα,1(C2FTα)+C2FCTEα,1(C2FTα)1λα)1λα, |
N2,k=(¯ρ22+1l)¯c2C1Eα,1(C2FTα)MkαααΓ(α)eαλα, |
CT=Eα,1((C2F+2CF+1)Tα) |
and Mk=maxt∈[0,T]|Dαtφk(0,t)|2. Selecting a sufficiently large λ such that N1<1, we can get
|ek+1(t)|2λ≤(1+¯ρ22l)¯ρ221−N1|ek|2λ+N2,k1−N1≤q2|ek|2λ+μ2,k, | (3.27) |
where q2=(1+¯ρ22l)¯ρ221−N1 and μ2,k=N2,k1−N1. Using recursion, we get
|ek+1(t)|2λ≤q2(q2|ek−1(t)|2λ+μ2,k−1)+μ2,k≤qk+12|e0(t)|2λ+qk2μ2,0+qk−12μ2,1+⋯+μ2,k≤qk+12|e0(t)|2λ+¯μ2,k1−q2, | (3.28) |
where ¯μ2,k≜maxm∈{0,1,⋯,k}μ2,m. We select λ large enough such that q2 is less than 1 and ¯μ2,k is sufficiently small. Therefore, to ensure |ek+1(t)|2λ≤ϵ2, it is sufficient to make
qk+12|e0(t)|2λ<ϵ2, | (3.29) |
which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration (k>2(lnϵ−ln|e0|λ)lnq2−1).
Remark 3.3. In order to satisfy the convergence condition (3.22), the learning gain β should satisfy
β>√1+l−1d1. |
The open-loop P-type ILC scheme for (1.2) is
uk+1(t)=uk(t)+βek(t)+γIθek(t),0.5<θ≤1, | (3.30) |
where ek(t)=yd(t)−yk(t) denotes the output error and the learning gain β and γ are unknown parameters to be determined later.
Theorem 3.3. For system (1.2) and the ILC law (3.30), if the learning gain γ is bounded, and there exist the learning gain β and the constant l(l>0) satisfying
(1+l)¯ρ21≤1, | (3.31) |
where ¯ρ1=maxt∈[0,T]|1−βd(t)|, then the output error ek can converge to the ϵ-neighborhood of zero for any constant ϵ>0 in the sense of λ-norm as k→∞.
Proof. By the definition of error, we have
ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t)). | (3.32) |
Based on the formula (3.30), it is not hard to know
ek+1(t)=ek(t)−c(t)δφk+1(1,t)−βd(t)ek(t)−γd(t)Iθtek=(1−βd(t))ek(t)−c(t)δφk+1(1,t)−γd(t)Iθtek(t). |
Applying Young inequality (weight form), we get
|ek+1(t)|2≤(1+l)(1−βd(t))2|ek(t)|2+(2+2l)(c(t)2|δφk+1(1,t)|2+γ2d(t)2|Iθtek|2). |
Using Theorem 2.1, it leads to
|ek+1(t)|2≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2|δφk+1(1,t)|2+γ2d22|Iθtek|2)≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2maxx∈[0,1]|δφk+1(x,t)|2+γ2d22|Iθtek|2)≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2C1||δφk+1(⋅,t)||2H1+γ2d22|Iθtek|2), |
where ¯ρ1=maxt∈[0,T]|1−βd(t)| and ¯c=maxt∈[0,T]|c(t)|. Using Lemma 3.1, we obtain
|ek+1(t)|2≤(1+l)¯ρ21|ek(t)|2+(2+2l)(¯c2C1||δφk+1||2H1+d22c3eλtλ2θ−1|ek|2λ), |
where c3=2Γ(2θ−1)γ2TΓ(θ)2. Taking λ-norm on both sides of inequality, we have
|ek+1(t)|2λ≤((1+l)¯ρ21+(2+2l)d22c3λ2θ−1)|ek(t)|2λ+(2+2l)¯c2C1||δφk+1||2H1,λ. |
According to Lemma 3.3, we get
|ek+1(t)|2λ≤q3|ek(t)|2λ+μ3,k, | (3.33) |
where
q3=(1+l)¯ρ21+(2+2l)¯c2C1(CEC1CPCT+CPEα,1(C2FTα))+(2+2l)d22c3λ2θ−1, |
μ3,k=(2+2l)¯c2C1Eα,1(C2FTα)MkαααΓ(α)eαλα, |
CT=Eα,1((C2F+2CF+1)Tα), |
CP=2β2λα+c3λα+2θ−1, |
CE=1+C2FEα,1(C2FTα)λα |
and
Mk=maxt∈[0,T]|Dαtφk(0,t)|2. |
Choosing λ large enough such that q3<1, it leads to
|ek+1(t)|2λ≤q3(q3|ek−1(t)|2λ+μ3,k−1)+μ3,k≤qk+13|e0(t)|2λ+qk3μ3,0+qk−13μ3,1+⋯+μ3,k≤qk+13|e0(t)|2λ+¯μ3,k1−q3, | (3.34) |
where ¯μ3,k≜maxm∈{0,1,⋯,k}μ3,m. We select λ large enough such that q3 is less than 1 and ¯μ3,k is sufficiently small. Therefore, to ensure |ek+1(t)|2λ≤ϵ2, it is sufficient to make
qk+13|e0(t)|2λ<ϵ2, | (3.35) |
which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration (k>2(lnϵ−ln|e0|λ)lnq3−1).
The closed-loop P-type ILC scheme for (1.2) is
uk+1(t)=uk(t)+βek+1(t)+γIθek+1(t),0.5<θ≤1, | (3.36) |
where ek(t)=yd(t)−yk(t) denotes the output error and the learning gain β and γ are unknown parameters to be determined later.
Theorem 3.4. For system (1.2) and the ILC law (3.36), if the learning gain γ is bounded, and there exist the learning gain β and the constant l(l>0) satisfying
(1+¯ρ22l)¯ρ22≤1, | (3.37) |
where ¯ρ2=maxt∈[0,T]1|1+βd(t)|, then the output error ek can converge to the ϵ-neighborhood of zero for any constant ϵ>0 in the sense of λ-norm as k→∞.
Proof. By the definition of error, we have
ek+1(t)=yd(t)−yk+1(t)=yd(t)−yk(t)−(yk+1(t)−yk(t)). | (3.38) |
Based on the formula (3.36), it is not hard to know
ek+1(t)=ek(t)−c(t)δφk+1(1,t)−βd(t)ek+1(t)−γd(t)Iθtek+1. |
Combining similar items, it leads to
(1+βd(t))ek+1(t)=ek(t)−c(t)δφk+1(1,t)−γd(t)Iθtek+1. | (3.39) |
Simplifying the above equation, we have
ek+1(t)=ek(t)1+βd(t)−c(t)δφk+1(1,t)1+βd(t)−γd(t)1+βd(t)Iθtek+1(t). |
Applysing Young inequality (weighted form), we get
|ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2|δφk+1(1,t)|2+γ2d22|Iθtek+1(t)|2), |
where ¯ρ2=maxt∈[0,T]1|1+βd(t)| and ¯c=maxt∈[0,T]|c(t)|. Using Theorem 2.1, we obtain
|ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2maxx∈[0,1]|δφk+1(⋅,t)|2+γ2d22|Iθtek+1|2)≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2C1||δφk+1||2H1+γ2d22|Iθtek+1|2). |
According to Lemma 3.1, we have
|ek+1(t)|2≤(1+¯ρ22l)¯ρ22|ek(t)|2+(2¯ρ22+2l)(¯c2C1||δφk+1||2H1+d22c3eλt|ek+1|2λλ2θ−1), |
where c3=2Γ(2θ−1)γ2TΓ(θ)2. Taking λ-norm on both sides of inequality, it leads to
|ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek(t)|2λ+(2¯ρ22+2l)(¯c2C1||δφk+1||2H1,λ+d22c3|ek+1|2λλ2θ−1). |
Using Lemma 3.3, we can get
|ek+1(t)|2λ≤(1+¯ρ22l)¯ρ22|ek(t)|2λ+N3|ek+1(t)|2λ+N4,k, | (3.40) |
where
N3=(2¯ρ22+2l)¯c2C1(CEC1CPCT+CPEα,1(C2FTα))+(2¯ρ22+2l)d22c3λ2θ−1, |
N4,k=(2¯ρ22+2l)¯c2C1Eα,1(C2FTα)MkαααΓ(α)eαλα, |
CT=Eα,1((C2F+2CF+1)Tα), |
CP=2β2λα+c3λα+2θ−1, |
CE=1+C2FEα,1(C2FTα)λα and Mk=maxt∈[0,T]|Dαtφk(0,t)|2. Selecting a sufficiently large λ such that q4<1, we can obtain
|ek+1(t)|2λ≤(1+¯ρ22l)¯ρ221−N3|ek(t)|2λ+N4,k1−N3≤q4|ek(t)|2λ+μ4,k, | (3.41) |
where q4=(1+¯ρ22l)¯ρ221−N3 and μ4,k=N4,k1−N3. Using recursion, we get
|ek+1(t)|2λ≤q4(q4|ek−1(t)|2λ+μ4,k−1)+μ4,k≤qk+14|e0(t)|2λ+qk4μ4,0+qk−14μ4,1+⋯+μ4,k≤qk+14|e0(t)|2λ+¯μ4,k1−q4, | (3.42) |
where ¯μ4,k≜maxm∈{0,1,⋯,k}μ4,m. We select λ large enough such that q4 is less than 1 and ¯μ4,k is sufficiently small. Therefore, to ensure |ek+1(t)|2λ≤ϵ2, it is sufficient to make
qk+14|e0(t)|2λ<ϵ2, | (3.43) |
which means that the output error converges to the ϵ-neighborhood of zero after finite step iteration (k>2(lnϵ−ln|e0|λ)lnq4−1).
In this section, we use the following numerical examples to verify convergence conditions of the open-loop P-type ILC, Closed-loop P-type ILC, open-loop PIθ-type ILC and Closed-loop PIθ-type ILC schemes. We can also observe the convergence speed of the four iterative learning algorithms from the numerical results.
Example 4.1. We consider a boundary tracing problem of one dimensional fractional diffusion equation
{C0Dαtφk=φkxx+F(x,t,φk),(x,t)∈(0,1)×(0,1],φkx(0,t)=uk(t),t∈[0,1],φkx(1,t)=2t2−3t+2,t∈[0,1],φk(x,0)=x2,x∈[0,1], |
where
F(x,t,φk)=2x2(t−1)2−α+xt1−α−2(t−1)2−x2(t−1)2−xt−(x2(t−1)2+xt)2+φk+|φk|2, |
α=0.9 and T=1. In this simulation, the output is determined as yk(t)=tφk(1,t)+(t2−t+1)uk(t), that is c(t)=t, d(t)=(t2−t+1). The output reference trajectory is yd(t)=2(t3−t2+t).
Figure 1a displays the tracking performance of the open-loop P-type ILC, while Figure 1b shows the tracking performance of the closed-loop P-type ILC. Additionally, Figure 1c displays the tracking performance of the open-loop PIθ-type ILC, and Figure 1d shows the tracking performance of the closed-loop PIθ-type ILC.
Figure 2 displays the maximum norm of four ILC schemes at different iteration times, including the open-loop P-type, closed-loop P-type, open-loop PIθ-type, and closed-loop PIθ-type ILC schemes. The results demonstrate that the closed-loop-type ILC schemes converge faster than the open-loop-type ILC schemes.
Figure 3a shows the unstable behavior of the open-loop ILC scheme. When β is set to 2, the open-loop P-type ILC scheme fails to meet the convergence conditions. Figure 3b displays that the closed-loop P-type ILC scheme satisfies the convergence conditions and achieves faster convergence speed.
Figure 4 illustrates the convergence behavior of the maximum error ||ek||∞ of the closed-loop P-type ILC scheme over 100 iterations. Although the maximum error does not decrease at iteration k=50, the scheme remains stable and does not diverge.
Tables 1 and 2 respectively provide the maximum error of open-loop PIθ-type and closed-loop PIθ-type schemes. Comparing the data of PIθ-type and P-type schemes in the tables, it can be observed that the PIθ-type ILC scheme converges faster than the P-type ILC scheme. Comparing the data of the PIθ-type (0.5<θ<1) and the PI-type (θ=1) schemes in the tables, it can be observed that the PIθ-type ILC scheme converges faster than the PI-type ILC scheme.
open-loop P-type | open-loop PIθ-type | |||||
θ=1 | θ=0.95 | θ=0.7 | θ=0.5 | θ=0.3 | ||
k=1 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 |
k=4 | 0.202638726 | 0.019996924 | 0.015212742 | 0.008726639 | 0.005928183 | 0.010502699 |
k=7 | 0.068332236 | 0.002482255 | 0.001857693 | 3.6649×10−4 | 9.5086×10−5 | 0.002354680 |
k=10 | 0.021782898 | 2.8469×10−4 | 1.9983×10−4 | 3.1580×10−5 | 6.5572×10−6 | 7.2370×10−5 |
k=13 | 0.006572122 | 5.0058×10−5 | 3.5348×10−5 | 3.5879×10−6 | 2.8750×10−7 | 5.7637×10−6 |
k=15 | 0.002889629 | 1.5586×10−5 | 1.0709×10−5 | 8.4523×10−7 | 3.3754×10−8 | 1.9978×10−7 |
closed-loop P-type | closed-loop PIθ-type | |||||
θ=1 | θ=0.95 | θ=0.7 | θ=0.5 | θ=0.3 | ||
k=1 | 0.473649453 | 0.222303282 | 0.218931679 | 0.209854876 | 0.205446586 | 0.199953476 |
k=3 | 0.132338134 | 0.006667802 | 0.005053414 | 0.001356560 | 0.002265694 | 0.001989692 |
k=5 | 0.037264451 | 7.3260×10−4 | 4.5345×10−4 | 1.1225×10−4 | 7.2258×10−5 | 8.0773×10−5 |
k=7 | 0.009879078 | 7.2626×10−5 | 4.9175×10−5 | 4.7746×10−6 | 6.0573×10−6 | 7.3168×10−6 |
k=9 | 0.002488555 | 1.0026×10−5 | 6.6767×10−6 | 4.7218×10−7 | 5.1262×10−7 | 6.9890×10−7 |
k=11 | 6.0534×10−4 | 1.5862×10−6 | 1.0129×10−6 | 4.9032×10−7 | 4.9714×10−7 | 4.3887×10−7 |
k=13 | 1.4366×10−4 | 2.5168×10−7 | 1.4757×10−7 | 3.1214×10−8 | 3.7037×10−8 | 5.1572×10−8 |
k=15 | 3.3461×10−5 | 3.8956×10−8 | 2.1760×10−8 | 1.2383×10−9 | 5.7806×10−9 | 3.3308×10−9 |
In this paper, we investigate iterative learning algorithms for boundary tracking of nonlinear fractional diffusion equation. We provide convergence conditions for open-loop P-type, closed-loop P-type, open-loop PIθ-type and closed-loop PIθ-type ILC algorithms. Numerical results demonstrate the effectiveness and stability of our proposed ILC schemes. Specifically, the closed-loop ILC schemes converge faster than the open-loop ILC schemes, and the PIθ-type ILC scheme outperforms the P-type and PI-type ILC schemes.
This research was supported by National Natural Science Foundation of China (No.11971387) and the fund of Sichuan Gas Turbine Establishment Aero Engine Corporation of China (GJCZ-2020-0018).
The authors declare that there is no conflict of interest.
[1] |
Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2: 256-267. doi: 10.1038/35066006
![]() |
[2] |
Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 805-820. doi: 10.1016/j.cell.2010.01.022
![]() |
[3] |
Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373-384. doi: 10.1038/ni.1863
![]() |
[4] |
O'Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13: 453-460. doi: 10.1038/nri3446
![]() |
[5] |
Clarke TB (2014) Microbial programming of systemic innate immunity and resistance to infection. PLoS Pathog 10: e1004506. doi: 10.1371/journal.ppat.1004506
![]() |
[6] |
Drevets DA, Schawang JE, Dillon MJ, et al. (2008) Innate responses to systemic infection by intracellular bacteria trigger recruitment of Ly-6Chigh monocytes to the brain. J Immunol 181: 529-536. doi: 10.4049/jimmunol.181.1.529
![]() |
[7] | Blach-Olszewska Z, Leszek J (2007) Mechanisms of over-activated innate immune system regulation in autoimmune and neurodegenerative disorders. Neuropsychiatr Dis Treat 3: 365-372. |
[8] |
Bachmann MF, Kopf M (2001) On the role of the innate immunity in autoimmune disease. J Exp Med 193: F47-50. doi: 10.1084/jem.193.12.F47
![]() |
[9] | Alvarez-Errico D, Vento-Tormo R, Sieweke M, et al. (2015) Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol 15: 7-17. |
[10] | Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41: 10-13. |
[11] |
Saeed S, Quintin J, Kerstens HH, et al. (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345: 1251086. doi: 10.1126/science.1251086
![]() |
[12] |
Novakovic B, Habibi E, Wang SY, et al. (2016) beta-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 167: 1354-1368. doi: 10.1016/j.cell.2016.09.034
![]() |
[13] | NE II, Heward JA, Roux B, et al. (2014) Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 5: 3979. |
[14] |
Logie C, Stunnenberg HG (2016) Epigenetic memory: A macrophage perspective. Semin Immunol 28: 359-367. doi: 10.1016/j.smim.2016.06.003
![]() |
[15] |
O'Sullivan TE, Sun JC, Lanier LL (2015) Natural Killer Cell Memory. Immunity 43: 634-645. doi: 10.1016/j.immuni.2015.09.013
![]() |
[16] |
Netea MG, Quintin J, van der Meer JW (2011) Trained immunity: a memory for innate host defense. Cell Host Microbe 9: 355-361. doi: 10.1016/j.chom.2011.04.006
![]() |
[17] |
Quintin J, Cheng SC, van der Meer JW, et al. (2014) Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol 29: 1-7. doi: 10.1016/j.coi.2014.02.006
![]() |
[18] |
Netea MG, Joosten LA, Latz E, et al. (2016) Trained immunity: A program of innate immune memory in health and disease. Science 352: aaf1098. doi: 10.1126/science.aaf1098
![]() |
[19] | Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465-476. |
[20] | Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13: 343-357. |
[21] |
Fang TC, Schaefer U, Mecklenbrauker I, et al. (2012) Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J Exp Med 209: 661-669. doi: 10.1084/jem.20112343
![]() |
[22] |
Martinez P, Denys A, Delos M, et al. (2015) Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans. Glycobiology 25: 502-513. doi: 10.1093/glycob/cwu137
![]() |
[23] |
Loke P, Nair MG, Parkinson J, et al. (2002) IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 3: 7. doi: 10.1186/1471-2172-3-7
![]() |
[24] |
Jenkins SJ, Ruckerl D, Thomas GD, et al. (2013) IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med 210: 2477-2491. doi: 10.1084/jem.20121999
![]() |
[25] |
Cabanel M, Brand C, Oliveira-Nunes MC, et al. (2015) Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity. PLoS One 10: e0132984. doi: 10.1371/journal.pone.0132984
![]() |
[26] |
Yang X, Wang X, Liu D, et al. (2014) Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol Endocrinol 28: 565-574. doi: 10.1210/me.2013-1293
![]() |
[27] |
Ramirez-Carrozzi VR, Nazarian AA, Li CC, et al. (2006) Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev 20: 282-296. doi: 10.1101/gad.1383206
![]() |
[28] |
Ramirez-Carrozzi VR, Braas D, Bhatt DM, et al. (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138: 114-128. doi: 10.1016/j.cell.2009.04.020
![]() |
[29] |
Satoh T, Takeuchi O, Vandenbon A, et al. (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11: 936-944. doi: 10.1038/ni.1920
![]() |
[30] |
Stender JD, Glass CK (2013) Epigenomic control of the innate immune response. Curr Opin Pharmacol 13: 582-587. doi: 10.1016/j.coph.2013.06.002
![]() |
[31] | Blackwood EM, Kadonaga JT (1998) Going the distance: a current view of enhancer action. Science 281: 60-63. |
[32] |
Kaikkonen MU, Spann NJ, Heinz S, et al. (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51: 310-325. doi: 10.1016/j.molcel.2013.07.010
![]() |
[33] | Pott S, Lieb JD (2015) What are super-enhancers? Nat Genet 47: 8-12. |
[34] |
Brown JD, Lin CY, Duan Q, et al. (2014) NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56: 219-231. doi: 10.1016/j.molcel.2014.08.024
![]() |
[35] |
Price AE, Liang HE, Sullivan BM, et al. (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A 107: 11489-11494. doi: 10.1073/pnas.1003988107
![]() |
[36] |
Monticelli LA, Sonnenberg GF, Abt MC, et al. (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12: 1045-1054. doi: 10.1038/ni.2131
![]() |
[37] |
Fuchs A, Vermi W, Lee JS, et al. (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38: 769-781. doi: 10.1016/j.immuni.2013.02.010
![]() |
[38] |
Cella M, Fuchs A, Vermi W, et al. (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457: 722-725. doi: 10.1038/nature07537
![]() |
[39] |
Buonocore S, Ahern PP, Uhlig HH, et al. (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464: 1371-1375. doi: 10.1038/nature08949
![]() |
[40] |
Goto Y, Ivanov, II (2013) Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol Cell Biol 91: 204-214. doi: 10.1038/icb.2012.80
![]() |
[41] |
Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 19: 70-83. doi: 10.1016/j.smim.2007.04.002
![]() |
[42] |
Fischer N, Sechet E, Friedman R, et al. (2016) Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proc Natl Acad Sci U S A 113: E2993-3001. doi: 10.1073/pnas.1605997113
![]() |
[43] |
Chookajorn T, Dzikowski R, Frank M, et al. (2007) Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci U S A 104: 899-902. doi: 10.1073/pnas.0609084103
![]() |
[44] |
Huguenin M, Bracha R, Chookajorn T, et al. (2010) Epigenetic transcriptional gene silencing in Entamoeba histolytica: insight into histone and chromatin modifications. Parasitology 137: 619-627. doi: 10.1017/S0031182009991363
![]() |
[45] |
Marazzi I, Ho JS, Kim J, et al. (2012) Suppression of the antiviral response by an influenza histone mimic. Nature 483: 428-433. doi: 10.1038/nature10892
![]() |
[46] |
Pennini ME, Pai RK, Schultz DC, et al. (2006) Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J Immunol 176: 4323-4330. doi: 10.4049/jimmunol.176.7.4323
![]() |
[47] | Lebreton A, Job V, Ragon M, et al. (2014) Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA. MBio 5: e00775-00713. |
[48] |
Eskandarian HA, Impens F, Nahori MA, et al. (2013) A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341: 1238858. doi: 10.1126/science.1238858
![]() |
[49] |
Arbibe L, Kim DW, Batsche E, et al. (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8: 47-56. doi: 10.1038/ni1423
![]() |
[50] |
Harouz H, Rachez C, Meijer BM, et al. (2014) Shigella flexneri targets the HP1gamma subcode through the phosphothreonine lyase OspF. EMBO J 33: 2606-2622. doi: 10.15252/embj.201489244
![]() |
[51] |
Li H, Xu H, Zhou Y, et al. (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315: 1000-1003. doi: 10.1126/science.1138960
![]() |
[52] | Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447: 972-978. |
[53] |
El Gazzar M, Liu T, Yoza BK, et al. (2010) Dynamic and selective nucleosome repositioning during endotoxin tolerance. J Biol Chem 285: 1259-1271. doi: 10.1074/jbc.M109.067330
![]() |
[54] |
Shalova IN, Lim JY, Chittezhath M, et al. (2015) Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1alpha. Immunity 42: 484-498. doi: 10.1016/j.immuni.2015.02.001
![]() |
[55] |
Cheng SC, Scicluna BP, Arts RJ, et al. (2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 17: 406-413. doi: 10.1038/ni.3398
![]() |
[56] |
Chen J, Ivashkiv LB (2010) IFN-gamma abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc Natl Acad Sci U S A 107: 19438-19443. doi: 10.1073/pnas.1007816107
![]() |
[57] | Tribouley J, Tribouley-Duret J, Appriou M (1978) [Effect of Bacillus Callmette Guerin (BCG) on the receptivity of nude mice to Schistosoma mansoni]. C R Seances Soc Biol Fil 172: 902-904. |
[58] |
Kleinnijenhuis J, Quintin J, Preijers F, et al. (2014) Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun 6: 152-158. doi: 10.1159/000355628
![]() |
[59] |
van 't Wout JW, Poell R, van Furth R (1992) The role of BCG/PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand J Immunol 36: 713-719. doi: 10.1111/j.1365-3083.1992.tb03132.x
![]() |
[60] |
Kleinnijenhuis J, Quintin J, Preijers F, et al. (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109: 17537-17542. doi: 10.1073/pnas.1202870109
![]() |
[61] |
Quintin J, Saeed S, Martens JH, et al. (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12: 223-232. doi: 10.1016/j.chom.2012.06.006
![]() |
[62] |
Ostuni R, Piccolo V, Barozzi I, et al. (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152: 157-171. doi: 10.1016/j.cell.2012.12.018
![]() |
[63] |
Bezman NA, Kim CC, Sun JC, et al. (2012) Molecular definition of the identity and activation of natural killer cells. Nat Immunol 13: 1000-1009. doi: 10.1038/ni.2395
![]() |
[64] |
Schlums H, Cichocki F, Tesi B, et al. (2015) Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42: 443-456. doi: 10.1016/j.immuni.2015.02.008
![]() |
[65] |
Kagi D, Ledermann B, Burki K, et al. (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369: 31-37. doi: 10.1038/369031a0
![]() |
[66] |
Ferlazzo G, Tsang ML, Moretta L, et al. (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195: 343-351. doi: 10.1084/jem.20011149
![]() |
[67] |
Xu HC, Grusdat M, Pandyra AA, et al. (2014) Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 40: 949-960. doi: 10.1016/j.immuni.2014.05.004
![]() |
[68] |
Bouchon A, Cella M, Grierson HL, et al. (2001) Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol 167: 5517-5521. doi: 10.4049/jimmunol.167.10.5517
![]() |
[69] |
Kruse PH, Matta J, Ugolini S, et al. (2014) Natural cytotoxicity receptors and their ligands. Immunol Cell Biol 92: 221-229. doi: 10.1038/icb.2013.98
![]() |
[70] |
Uhrberg M, Valiante NM, Shum BP, et al. (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7: 753-763. doi: 10.1016/S1074-7613(00)80394-5
![]() |
[71] |
O'Leary JG, Goodarzi M, Drayton DL, et al. (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7: 507-516. doi: 10.1038/ni1332
![]() |
[72] |
Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457: 557-561. doi: 10.1038/nature07665
![]() |
[73] |
Min-Oo G, Lanier LL (2014) Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J Exp Med 211: 2669-2680. doi: 10.1084/jem.20141172
![]() |
[74] |
Lee J, Zhang T, Hwang I, et al. (2015) Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42: 431-442. doi: 10.1016/j.immuni.2015.02.013
![]() |
[75] |
Calore F, Lovat F, Garofalo M (2013) Non-coding RNAs and cancer. Int J Mol Sci 14: 17085-17110. doi: 10.3390/ijms140817085
![]() |
[76] |
Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145: 178-181. doi: 10.1016/j.cell.2011.03.014
![]() |
[77] | Da Sacco L, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13: 97-114. |
[78] |
Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23: 1494-1504. doi: 10.1101/gad.1800909
![]() |
[79] |
Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90: 430-440. doi: 10.1093/cvr/cvr097
![]() |
[80] |
Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43: 904-914. doi: 10.1016/j.molcel.2011.08.018
![]() |
[81] |
Ng KW, Anderson C, Marshall EA, et al. (2016) Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 15: 5. doi: 10.1186/s12943-016-0491-9
![]() |
[82] |
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. doi: 10.1016/S0092-8674(04)00045-5
![]() |
[83] |
Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18: 504-511. doi: 10.1101/gad.1184404
![]() |
[84] |
Grimson A, Farh KK, Johnston WK, et al. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91-105. doi: 10.1016/j.molcel.2007.06.017
![]() |
[85] | Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126-139. |
[86] | Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. |
[87] |
Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855-862. doi: 10.1016/0092-8674(93)90530-4
![]() |
[88] |
Paladini L, Fabris L, Bottai G, et al. (2016) Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res 35: 103. doi: 10.1186/s13046-016-0375-2
![]() |
[89] |
Taganov KD, Boldin MP, Chang KJ, et al. (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103: 12481-12486. doi: 10.1073/pnas.0605298103
![]() |
[90] |
O'Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11: 163-175. doi: 10.1038/nri2957
![]() |
[91] |
Pathak S, Grillo AR, Scarpa M, et al. (2015) MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med 47: e164. doi: 10.1038/emm.2015.21
![]() |
[92] |
Bazzoni F, Rossato M, Fabbri M, et al. (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A 106: 5282-5287. doi: 10.1073/pnas.0810909106
![]() |
[93] |
Androulidaki A, Iliopoulos D, Arranz A, et al. (2009) The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31: 220-231. doi: 10.1016/j.immuni.2009.06.024
![]() |
[94] |
Curtale G, Mirolo M, Renzi TA, et al. (2013) Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A 110: 11499-11504. doi: 10.1073/pnas.1219852110
![]() |
[95] |
McCoy CE, Sheedy FJ, Qualls JE, et al. (2010) IL-10 inhibits miR-155 induction by toll-like receptors. J Biol Chem 285: 20492-20498. doi: 10.1074/jbc.M110.102111
![]() |
[96] |
Rossato M, Curtale G, Tamassia N, et al. (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A 109: E3101-3110. doi: 10.1073/pnas.1209100109
![]() |
[97] |
Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11: 141-147. doi: 10.1038/ni.1828
![]() |
[98] |
El Gazzar M, McCall CE (2010) MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem 285: 20940-20951. doi: 10.1074/jbc.M110.115063
![]() |
[99] |
El Gazzar M, Church A, Liu T, et al. (2011) MicroRNA-146a regulates both transcription silencing and translation disruption of TNF-alpha during TLR4-induced gene reprogramming. J Leukoc Biol 90: 509-519. doi: 10.1189/jlb.0211074
![]() |
[100] |
Tili E, Michaille JJ, Cimino A, et al. (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179: 5082-5089. doi: 10.4049/jimmunol.179.8.5082
![]() |
[101] | Renzi TA, Rubino M, Gornati L, et al. (2015) MiR-146b Mediates Endotoxin Tolerance in Human Phagocytes. Mediators Inflamm 2015: 145305. |
[102] |
Magistri M, Faghihi MA, St Laurent G, 3rd, et al. (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet 28: 389-396. doi: 10.1016/j.tig.2012.03.013
![]() |
[103] |
Louro R, El-Jundi T, Nakaya HI, et al. (2008) Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci. Genomics 92: 18-25. doi: 10.1016/j.ygeno.2008.03.013
![]() |
[104] |
Pandey RR, Mondal T, Mohammad F, et al. (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32: 232-246. doi: 10.1016/j.molcel.2008.08.022
![]() |
[105] | Wang X, Song X, Glass CK, et al. (2011) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 3: a003756. |
[106] |
Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482: 339-346. doi: 10.1038/nature10887
![]() |
[107] | Kretz M, Siprashvili Z, Chu C, et al. (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493: 231-235. |
[108] |
Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470: 284-288. doi: 10.1038/nature09701
![]() |
[109] |
Carpenter S, Aiello D, Atianand MK, et al. (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341: 789-792. doi: 10.1126/science.1240925
![]() |
[110] | Rapicavoli NA, Qu K, Zhang J, et al. (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2: e00762. |
[111] |
Li Z, Chao TC, Chang KY, et al. (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111: 1002-1007. doi: 10.1073/pnas.1313768111
![]() |
[112] | Krawczyk M, Emerson BM (2014) p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. Elife 3: e01776. |
[113] |
Liu B, Sun L, Liu Q, et al. (2015) A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27: 370-381. doi: 10.1016/j.ccell.2015.02.004
![]() |
[114] |
Murphy MB, Medvedev AE (2016) Long noncoding RNAs as regulators of Toll-like receptor signaling and innate immunity. J Leukoc Biol 99: 839-850. doi: 10.1189/jlb.2RU1215-575R
![]() |
[115] |
Li W, Notani D, Rosenfeld MG (2016) Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 17: 207-223. doi: 10.1038/nrg.2016.4
![]() |
[116] |
Hah N, Murakami S, Nagari A, et al. (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23: 1210-1223. doi: 10.1101/gr.152306.112
![]() |
[117] |
Melgar MF, Collins FS, Sethupathy P (2011) Discovery of active enhancers through bidirectional expression of short transcripts. Genome Biol 12: R113. doi: 10.1186/gb-2011-12-11-r113
![]() |
[118] |
Zhu Y, Sun L, Chen Z, et al. (2013) Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Res 41: 10032-10043. doi: 10.1093/nar/gkt826
![]() |
[119] |
Arner E, Daub CO, Vitting-Seerup K, et al. (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347: 1010-1014. doi: 10.1126/science.1259418
![]() |
[120] |
Hah N, Benner C, Chong LW, et al. (2015) Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc Natl Acad Sci U S A 112: E297-302. doi: 10.1073/pnas.1424028112
![]() |
[121] |
Kim TK, Hemberg M, Gray JM, et al. (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465: 182-187. doi: 10.1038/nature09033
![]() |
[122] |
Alexopoulou L, Holt AC, Medzhitov R, et al. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738. doi: 10.1038/35099560
![]() |
[123] |
Lee J, Sayed N, Hunter A, et al. (2012) Activation of innate immunity is required for efficient nuclear reprogramming. Cell 151: 547-558. doi: 10.1016/j.cell.2012.09.034
![]() |
[124] |
Takahashi K, Tanabe K, Ohnuki M, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872. doi: 10.1016/j.cell.2007.11.019
![]() |
[125] |
Takahashi K, Okita K, Nakagawa M, et al. (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2: 3081-3089. doi: 10.1038/nprot.2007.418
![]() |
[126] | Meng S, Zhou G, Gu Q, et al. (2016) Transdifferentiation Requires iNOS Activation: Role of RING1A S-Nitrosylation. Circ Res 119: e129-e138. |
[127] |
Buenrostro JD, Giresi PG, Zaba LC, et al. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10: 1213-1218. doi: 10.1038/nmeth.2688
![]() |
[128] |
Mercer TR, Edwards SL, Clark MB, et al. (2013) DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat Genet 45: 852-859. doi: 10.1038/ng.2677
![]() |
[129] |
Nagano T, Lubling Y, Yaffe E, et al. (2015) Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat Protoc 10: 1986-2003. doi: 10.1038/nprot.2015.127
![]() |
[130] |
Miyanari Y, Torres-Padilla ME (2012) Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483: 470-473. doi: 10.1038/nature10807
![]() |
[131] |
Soucie EL, Weng Z, Geirsdottir L, et al. (2016) Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351: aad5510. doi: 10.1126/science.aad5510
![]() |
[132] |
Paul F, Arkin Y, Giladi A, et al. (2015) Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell 163: 1663-1677. doi: 10.1016/j.cell.2015.11.013
![]() |
[133] |
Abraham BJ, Cui K, Tang Q, et al. (2013) Dynamic regulation of epigenomic landscapes during hematopoiesis. BMC Genomics 14: 193. doi: 10.1186/1471-2164-14-193
![]() |
[134] |
Olsson A, Venkatasubramanian M, Chaudhri VK, et al. (2016) Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537: 698-702. doi: 10.1038/nature19348
![]() |
[135] |
Epelman S, Lavine KJ, Beaudin AE, et al. (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40: 91-104. doi: 10.1016/j.immuni.2013.11.019
![]() |
[136] | Italiani P, Boraschi D (2014) From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol 5: 514. |
[137] |
Ganan-Gomez I, Wei Y, Starczynowski DT, et al. (2015) Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 29: 1458-1469. doi: 10.1038/leu.2015.69
![]() |
[138] |
Lin CY, Loven J, Rahl PB, et al. (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151: 56-67. doi: 10.1016/j.cell.2012.08.026
![]() |
[139] |
Liu G, Gramling S, Munoz D, et al. (2011) Two novel BRM insertion promoter sequence variants are associated with loss of BRM expression and lung cancer risk. Oncogene 30: 3295-3304. doi: 10.1038/onc.2011.81
![]() |
[140] |
Kawauchi S, Calof AL, Santos R, et al. (2009) Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange Syndrome. PLoS Genet 5: e1000650. doi: 10.1371/journal.pgen.1000650
![]() |
[141] |
Ballman KV (2015) Biomarker: Predictive or Prognostic? J Clin Oncol 33: 3968-3971. doi: 10.1200/JCO.2015.63.3651
![]() |
[142] |
Mehta S, Shelling A, Muthukaruppan A, et al. (2010) Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2: 125-148. doi: 10.1177/1758834009360519
![]() |
[143] |
van Leeuwen MA, Westra J, Limburg PC, et al. (1995) Clinical significance of interleukin-6 measurement in early rheumatoid arthritis: relation with laboratory and clinical variables and radiological progression in a three year prospective study. Ann Rheum Dis 54: 674-677. doi: 10.1136/ard.54.8.674
![]() |
[144] | Knudsen LS, Klarlund M, Skjodt H, et al. (2008) Biomarkers of inflammation in patients with unclassified polyarthritis and early rheumatoid arthritis. Relationship to disease activity and radiographic outcome. J Rheumatol 35: 1277-1287. |
[145] |
Klein-Wieringa IR, van der Linden MP, Knevel R, et al. (2011) Baseline serum adipokine levels predict radiographic progression in early rheumatoid arthritis. Arthritis Rheum 63: 2567-2574. doi: 10.1002/art.30449
![]() |
[146] | Lard LR, Roep BO, Toes RE, et al. (2004) Enhanced concentrations of interleukin 16 are associated with joint destruction in patients with rheumatoid arthritis. J Rheumatol 31: 35-39. |
[147] |
Syversen SW, Goll GL, Haavardsholm EA, et al. (2008) A high serum level of eotaxin (CCL 11) is associated with less radiographic progression in early rheumatoid arthritis patients. Arthritis Res Ther 10: R28. doi: 10.1186/ar2381
![]() |
[148] |
Irizarry RA, Ladd-Acosta C, Wen B, et al. (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41: 178-186. doi: 10.1038/ng.298
![]() |
[149] |
Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3: 253-266. doi: 10.1038/nrc1045
![]() |
[150] | Luczak MW, Jagodzinski PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44: 143-154. |
[151] | Lu H, Liu X, Deng Y, et al. (2013) DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci 5: 85. |
[152] |
Richardson B, Scheinbart L, Strahler J, et al. (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33: 1665-1673. doi: 10.1002/art.1780331109
![]() |
[153] |
Liu Y, Aryee MJ, Padyukov L, et al. (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31: 142-147. doi: 10.1038/nbt.2487
![]() |
[154] |
Lin SY, Hsieh SC, Lin YC, et al. (2012) A whole genome methylation analysis of systemic lupus erythematosus: hypomethylation of the IL10 and IL1R2 promoters is associated with disease activity. Genes Immun 13: 214-220. doi: 10.1038/gene.2011.74
![]() |
[155] |
Yeung KS, Chung BH, Choufani S, et al. (2017) Genome-Wide DNA Methylation Analysis of Chinese Patients with Systemic Lupus Erythematosus Identified Hypomethylation in Genes Related to the Type I Interferon Pathway. PLoS One 12: e0169553. doi: 10.1371/journal.pone.0169553
![]() |
[156] |
Hashimoto Y, Zumwalt TJ, Goel A (2016) DNA methylation patterns as noninvasive biomarkers and targets of epigenetic therapies in colorectal cancer. Epigenomics 8: 685-703. doi: 10.2217/epi-2015-0013
![]() |
[157] |
Uhl B, Gevensleben H, Tolkach Y, et al. (2017) PITX2 DNA Methylation as Biomarker for Individualized Risk Assessment of Prostate Cancer in Core Biopsies. J Mol Diagn 19: 107-114. doi: 10.1016/j.jmoldx.2016.08.008
![]() |
[158] |
Lofton-Day C, Model F, Devos T, et al. (2008) DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 54: 414-423. doi: 10.1373/clinchem.2007.095992
![]() |
[159] |
Yang M, Park JY (2012) DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol 863: 67-109. doi: 10.1007/978-1-61779-612-8_5
![]() |
[160] |
Chung W, Kwabi-Addo B, Ittmann M, et al. (2008) Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS One 3: e2079. doi: 10.1371/journal.pone.0002079
![]() |
[161] |
Jiao Y, Shi C, Edil BH, et al. (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331: 1199-1203. doi: 10.1126/science.1200609
![]() |
[162] |
Dalgliesh GL, Furge K, Greenman C, et al. (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463: 360-363. doi: 10.1038/nature08672
![]() |
1. | Sourav Kumar Sasmal, Yasuhiro Takeuchi, Evolutionary dynamics of single species model with Allee effects and aposematism, 2021, 58, 14681218, 103233, 10.1016/j.nonrwa.2020.103233 | |
2. | Sourav Kumar Sasmal, Balram Dubey, Diffusive patterns in a predator–prey system with fear and hunting cooperation, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02497-x | |
3. | Sourav Kumar Sasmal, Yasuhiro Takeuchi, Editorial: Mathematical Modeling to Solve the Problems in Life Sciences, 2020, 17, 1551-0018, 2967, 10.3934/mbe.2020167 | |
4. | Balram Dubey, Sourav Kumar Sasmal, Anand Sudarshan, Consequences of fear effect and prey refuge on the Turing patterns in a delayed predator–prey system, 2022, 32, 1054-1500, 123132, 10.1063/5.0126782 | |
5. | Balram Dubey, Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion, 2024, 182, 09600779, 114797, 10.1016/j.chaos.2024.114797 | |
6. | Ankit Kumar, Sourav Kumar Sasmal, Complex dynamics of a stage structured prey-predator model with parental care in prey, 2024, 112, 0924-090X, 15623, 10.1007/s11071-024-09821-3 |
open-loop P-type | open-loop PIθ-type | |||||
θ=1 | θ=0.95 | θ=0.7 | θ=0.5 | θ=0.3 | ||
k=1 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 |
k=4 | 0.202638726 | 0.019996924 | 0.015212742 | 0.008726639 | 0.005928183 | 0.010502699 |
k=7 | 0.068332236 | 0.002482255 | 0.001857693 | 3.6649×10−4 | 9.5086×10−5 | 0.002354680 |
k=10 | 0.021782898 | 2.8469×10−4 | 1.9983×10−4 | 3.1580×10−5 | 6.5572×10−6 | 7.2370×10−5 |
k=13 | 0.006572122 | 5.0058×10−5 | 3.5348×10−5 | 3.5879×10−6 | 2.8750×10−7 | 5.7637×10−6 |
k=15 | 0.002889629 | 1.5586×10−5 | 1.0709×10−5 | 8.4523×10−7 | 3.3754×10−8 | 1.9978×10−7 |
closed-loop P-type | closed-loop PIθ-type | |||||
θ=1 | θ=0.95 | θ=0.7 | θ=0.5 | θ=0.3 | ||
k=1 | 0.473649453 | 0.222303282 | 0.218931679 | 0.209854876 | 0.205446586 | 0.199953476 |
k=3 | 0.132338134 | 0.006667802 | 0.005053414 | 0.001356560 | 0.002265694 | 0.001989692 |
k=5 | 0.037264451 | 7.3260×10−4 | 4.5345×10−4 | 1.1225×10−4 | 7.2258×10−5 | 8.0773×10−5 |
k=7 | 0.009879078 | 7.2626×10−5 | 4.9175×10−5 | 4.7746×10−6 | 6.0573×10−6 | 7.3168×10−6 |
k=9 | 0.002488555 | 1.0026×10−5 | 6.6767×10−6 | 4.7218×10−7 | 5.1262×10−7 | 6.9890×10−7 |
k=11 | 6.0534×10−4 | 1.5862×10−6 | 1.0129×10−6 | 4.9032×10−7 | 4.9714×10−7 | 4.3887×10−7 |
k=13 | 1.4366×10−4 | 2.5168×10−7 | 1.4757×10−7 | 3.1214×10−8 | 3.7037×10−8 | 5.1572×10−8 |
k=15 | 3.3461×10−5 | 3.8956×10−8 | 2.1760×10−8 | 1.2383×10−9 | 5.7806×10−9 | 3.3308×10−9 |
open-loop P-type | open-loop PIθ-type | |||||
θ=1 | θ=0.95 | θ=0.7 | θ=0.5 | θ=0.3 | ||
k=1 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 | 0.630568931 |
k=4 | 0.202638726 | 0.019996924 | 0.015212742 | 0.008726639 | 0.005928183 | 0.010502699 |
k=7 | 0.068332236 | 0.002482255 | 0.001857693 | 3.6649×10−4 | 9.5086×10−5 | 0.002354680 |
k=10 | 0.021782898 | 2.8469×10−4 | 1.9983×10−4 | 3.1580×10−5 | 6.5572×10−6 | 7.2370×10−5 |
k=13 | 0.006572122 | 5.0058×10−5 | 3.5348×10−5 | 3.5879×10−6 | 2.8750×10−7 | 5.7637×10−6 |
k=15 | 0.002889629 | 1.5586×10−5 | 1.0709×10−5 | 8.4523×10−7 | 3.3754×10−8 | 1.9978×10−7 |
closed-loop P-type | closed-loop PIθ-type | |||||
θ=1 | θ=0.95 | θ=0.7 | θ=0.5 | θ=0.3 | ||
k=1 | 0.473649453 | 0.222303282 | 0.218931679 | 0.209854876 | 0.205446586 | 0.199953476 |
k=3 | 0.132338134 | 0.006667802 | 0.005053414 | 0.001356560 | 0.002265694 | 0.001989692 |
k=5 | 0.037264451 | 7.3260×10−4 | 4.5345×10−4 | 1.1225×10−4 | 7.2258×10−5 | 8.0773×10−5 |
k=7 | 0.009879078 | 7.2626×10−5 | 4.9175×10−5 | 4.7746×10−6 | 6.0573×10−6 | 7.3168×10−6 |
k=9 | 0.002488555 | 1.0026×10−5 | 6.6767×10−6 | 4.7218×10−7 | 5.1262×10−7 | 6.9890×10−7 |
k=11 | 6.0534×10−4 | 1.5862×10−6 | 1.0129×10−6 | 4.9032×10−7 | 4.9714×10−7 | 4.3887×10−7 |
k=13 | 1.4366×10−4 | 2.5168×10−7 | 1.4757×10−7 | 3.1214×10−8 | 3.7037×10−8 | 5.1572×10−8 |
k=15 | 3.3461×10−5 | 3.8956×10−8 | 2.1760×10−8 | 1.2383×10−9 | 5.7806×10−9 | 3.3308×10−9 |