Citation: Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source[J]. Networks and Heterogeneous Media, 2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767
| [1] | G. I. Barenblatt, "Scaling, Self-Similarity, and Intermediate Asymptotics," Cambridge University Press, 1996. |
| [2] | H. Brézis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), 73-97. |
| [3] |
H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Rational Mech. Anal., 95 (1986), 185-209. doi: 10.1007/BF00251357
|
| [4] |
J. Bricmont and A. Kupiainen, Stable non-Gaussian diffusive profiles, Nonlinear Anal., 26 (1996), 583-593. doi: 10.1016/0362-546X(94)00300-7
|
| [5] | Y. Chen and G. Struhl, Dual roles for patched in sequestering and transducing hedgehog, Cell, 87 (1996), 553-563. |
| [6] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8
|
| [7] | A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen gradients, Devel. Cell, 5 (2003), 635-646. |
| [8] |
M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal., 11 (1987), 1103-1133. doi: 10.1016/0362-546X(87)90001-0
|
| [9] | M. Escobedo and O. Kavian, Asymptotic behaviour of positive solutions of a nonlinear heat equation, Houston J. Math., 14 (1988), 39-50. |
| [10] |
M. Escobedo, O. Kavian and H. Matano, Large time behavior of solutions of a dissipative semilinear heat equation, Comm. Partial Differential Equations, 20 (1995), 1427-1452. doi: 10.1080/03605309508821138
|
| [11] | V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskiĭ, Asymptotic "eigenfunctions'' of the Cauchy problem for a nonlinear parabolic equation, Mat. Sb. (N.S.), 126 (1985), 435-472. |
| [12] | D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983. |
| [13] |
A. Gmira and L. Véron, Large time behaviour of the solutions of a semilinear parabolic equation in $R^N$, J. Differential Equations, 53 (1984), 258-276. doi: 10.1016/0022-0396(84)90042-1
|
| [14] | P. V. Gordon, C. Sample, A. M. Berezhkovskii, C. B. Muratov and S. Y. Shvartsman, Local kinetics of morphogen gradients, Proc. Natl. Acad. Sci. US., 108 (2011), 6157-6162. |
| [15] |
L. Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 49-105. doi: 10.1016/S0294-1449(99)80008-0
|
| [16] | J. P. Incardona, J. H. Lee, C. P. Robertson, K. Enga, R. P. Kapur and H. Roelink, Receptor-mediated endocytosis of soluble and membrane-tethered sonic hedgehog by patched-1, Proc. Natl. Acad. Sci. USA, 97 (2000), 12044-12049. |
| [17] |
S. Kamin and L. A. Peletier, Singular solutions of the heat equation with absorption, Proc. Amer. Math. Soc., 95 (1985), 205-210. doi: 10.2307/2044513
|
| [18] |
B. Kawohl, When are solutions to nonlinear elliptic boundary value problems convex?, Comm. Partial Differential Equations, 10 (1985), 1213-1225. doi: 10.1080/03605308508820404
|
| [19] | D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and Their Applications," Academic Press, New York, 1980. |
| [20] | A. D. Lander, W. C. Lo, Q. Nie and F. Y. Wan, The measure of success: constraints, objectives, and tradeoffs in morphogen-mediated patterning, Cold Spring Harbor Perspectives in Biology, 1 (2009), a002022. |
| [21] |
M. Lucia, C. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium, Commun. Pure Appl. Math., 57 (2004), 616-636. doi: 10.1002/cpa.20014
|
| [22] | A. Martinez-Arias and A. Stewart, "Molecular Principles of Animal Development," Oxford University Press, New York, 2002. |
| [23] | C. B. Muratov, P. V. Gordon and S. Y. Shvartsman, Self-similar dynamics of morphogen gradients, Phys. Rev. E, 84 (2011), 1-4. 041916. |
| [24] | L. Oswald, Isolated positive singularities for a nonlinear heat equation, Houston J. Math., 14 (1988), 543-572. |
| [25] |
H. G. Othmer, K. Painter, D. Umulis and C. Xue, The intersection of theory and application in elucidating pattern formation in developmental biology, Math. Model. Nat. Phenom., 4 (2009), 3-82. doi: 10.1051/mmnp/20094401
|
| [26] |
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5
|
| [27] | G. T. Reeves, C. B. Muratov, T. Schüpbach and S. Y. Shvartsman, Quantitative models of developmental pattern formation, Devel. Cell, 11 (2006), 289-300. |
| [28] | G. Sansone, "Equazioni Differenziali nel Campo Reale," 2. Nicola Zanichelli, Bologna, 1949. 2d ed. |
| [29] | L. Veron, A note on maximal solutions of nonlinear parabolic equations with absorption, arXiv:0906.0669v2 [math.AP], 2011. |
| [30] | O. Wartlick, A. Kicheva and M. Gonzalez-Gaitan, Morphogen gradient formation, Cold Spring Harbor Perspectives in Biology, 1 (2009), a001255. |
| [31] |
C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Rational Mech. Anal., 138 (1997), 279-306. doi: 10.1007/s002050050042
|