Citation: Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation[J]. Networks and Heterogeneous Media, 2012, 7(4): 705-740. doi: 10.3934/nhm.2012.7.705
| [1] |
M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl., 92 (2009), 651-667. doi: 10.1016/j.matpur.2009.05.003
|
| [2] | S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems," Princeton University Press, Princeton, NJ, 2003. |
| [3] |
A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257-297. doi: 10.1016/j.anihpb.2006.03.003
|
| [4] | . |
| [5] |
S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems, Discrete and Continuous Dynamical Systems, Series B, 17 (2012), 1859-1887. doi: 10.3934/dcdsb.2012.17.1859
|
| [6] | L. C. Evans, "Partial Differential Equations," American Mathematical Society, Providence, RI, 1998. |
| [7] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3
|
| [8] | D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber Deutsch Math., 105 (2003), 103-165. |
| [9] | D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber Deutsch Math., 106 (2004), 51-69. |
| [10] |
M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction, J. Math. Biol., 53 (2006), 617-641. doi: 10.1007/s00285-006-0013-2
|
| [11] | S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.), Appl. Ent. Zool., 5 (1970), 33-41. |
| [12] | S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae), Appl. Ent. Zool., 2 (1967), 203-217. |
| [13] | S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs, Experientia, 24 (1968), 88-89. |
| [14] | R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches, Animal Behavior, 69 (2005), 169-180. |
| [15] | E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415. |
| [16] | C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems," Springer, 1999. |
| [17] | O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1967. |
| [18] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64. doi: 10.1007/BF00276035
|
| [19] |
M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826. doi: 10.1063/1.166282
|
| [20] |
D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations, J. Math. Biol., 50 (2005), 49-66. doi: 10.1007/s00285-004-0279-1
|
| [21] |
H. Murakawa, A relation between cross-diffusion and reaction-diffusion, Discrete and Continuous Dynamical Systems, Series S, 5 (2011), 147-158. doi: 10.3934/dcdss.2012.5.147
|
| [22] | A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives," Springer-Verlag, 2001. |
| [23] |
H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976
|
| [24] | J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192. |
| [25] |
R. Schaaf, Stationary solutions of chemotaxis systems, Trans. AMS, 292 (1985), 531-556. doi: 10.2307/2000228
|
| [26] |
A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria, SIAM J. Appl. Math., 61 (2000), 172-182. doi: 10.1137/S0036139998342053
|
| [27] |
A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212. doi: 10.1137/S0036139998342065
|
| [28] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
|
| [29] | R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," AMS Chelsea Publishing, Providence, RI, 2001. |