This paper demonstrates several sufficient frameworks for the multi-cluster flocking behavior of the fractional Cucker–Smale (CS) model. For this, we first employ the Caputo fractional derivative instead of the usual derivative to propose the fractional CS model with the memory effect. Then, using mathematical tools based on fractional calculus, we present suitable sufficient conditions in terms of properly separated initial data close to the multi-cluster, and well-prepared system parameters for the multi-cluster flocking of the fractional system to emerge. Finally, we offer several numerical simulations and compare them with the analytical results.
Citation: Hyunjin Ahn. On the multi-cluster flocking of the fractional Cucker–Smale model[J]. Mathematics in Engineering, 2024, 6(4): 607-647. doi: 10.3934/mine.2024024
[1] | Matteo Lapucci, Davide Pucci . Mixed-integer quadratic programming reformulations of multi-task learning models. Mathematics in Engineering, 2023, 5(1): 1-16. doi: 10.3934/mine.2023020 |
[2] | Jayme Vaz Jr., Edmundo Capelas de Oliveira . On the fractional Kelvin-Voigt oscillator. Mathematics in Engineering, 2022, 4(1): 1-23. doi: 10.3934/mine.2022006 |
[3] | Luca Azzolin, Luca Dedè, Antonello Gerbi, Alfio Quarteroni . Effect of fibre orientation and bulk modulus on the electromechanical modelling of human ventricles. Mathematics in Engineering, 2020, 2(4): 614-638. doi: 10.3934/mine.2020028 |
[4] | Karishma, Harendra Kumar . A novel hybrid model for task scheduling based on particle swarm optimization and genetic algorithms. Mathematics in Engineering, 2024, 6(4): 559-606. doi: 10.3934/mine.2024023 |
[5] | Federico Cluni, Vittorio Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, Patrizia Pucci . A mixed operator approach to peridynamics. Mathematics in Engineering, 2023, 5(5): 1-22. doi: 10.3934/mine.2023082 |
[6] | Luca Formaggia, Alessio Fumagalli, Anna Scotti . A multi-layer reactive transport model for fractured porous media. Mathematics in Engineering, 2022, 4(1): 1-32. doi: 10.3934/mine.2022008 |
[7] | Zaffar Mehdi Dar, M. Arrutselvi, Chandru Muthusamy, Sundararajan Natarajan, Gianmarco Manzini . Virtual element approximations of the time-fractional nonlinear convection-diffusion equation on polygonal meshes. Mathematics in Engineering, 2025, 7(2): 96-129. doi: 10.3934/mine.2025005 |
[8] | Giuseppe Procopio, Massimiliano Giona . Bitensorial formulation of the singularity method for Stokes flows. Mathematics in Engineering, 2023, 5(2): 1-34. doi: 10.3934/mine.2023046 |
[9] | Ko-Shin Chen, Cyrill Muratov, Xiaodong Yan . Layered solutions for a nonlocal Ginzburg-Landau model with periodic modulation. Mathematics in Engineering, 2023, 5(5): 1-52. doi: 10.3934/mine.2023090 |
[10] | Anoumou Attiogbe, Mouhamed Moustapha Fall, El Hadji Abdoulaye Thiam . Nonlocal diffusion of smooth sets. Mathematics in Engineering, 2022, 4(2): 1-22. doi: 10.3934/mine.2022009 |
This paper demonstrates several sufficient frameworks for the multi-cluster flocking behavior of the fractional Cucker–Smale (CS) model. For this, we first employ the Caputo fractional derivative instead of the usual derivative to propose the fractional CS model with the memory effect. Then, using mathematical tools based on fractional calculus, we present suitable sufficient conditions in terms of properly separated initial data close to the multi-cluster, and well-prepared system parameters for the multi-cluster flocking of the fractional system to emerge. Finally, we offer several numerical simulations and compare them with the analytical results.
The special issue “Living organisms on innovative substrates and materials” provides the reader with novel findings regarding the behavior of different organisms on artificial or unusual substrates. Interactions between living organisms and diverse substrates are on the one hand important to improve cell growth in biotechnology and tissue engineering, on the other hand to provide surfaces with antibacterial, fungicidal and similar properties.
The short communication “Graphene derivatives potentiate the activity of antibiotics against Enterococcus faecium, Klebsiella pneumoniae and E. coli” written by Butler and colleagues is an important contribution to the fight against the alarming increase in the number of key priority pathogens developing resistance against antibiotics. The antimicrobial effect of graphene, graphite and graphene oxide is well-known. In this article, the combination of these compounds with three clinically relevant antibiotics displaying different modes of activity, is described. This strategy might constitute a new approach to prevent resistant bacterial infections.
Three research articles in this special issue report on the attachment of mammalian Chinese hamster ovary (CHO) cells and certain molds, respectively, on synthetic polymers. The investigation of mammalian cell adhesion on plastic material is an important aspect for the design of novel tissue engineering scaffolds. In addition, particular attention must be paid to the sterilization of the scaffolds since the utilization of antibiotics is unfavorable. Another possible technical application might be the use of synthetic polymers as novel microcarriers for upstream bioprocessing. In contrast, adhesion of living organisms on plastic material is sometimes undesirable. In their research article, Whitehead and colleagues report on “The effect of the surface properties of poly(methyl methacrylate) on the attachment, adhesion and retention of fungal conidia”. Here, the behavior of certain molds on different polymethyl methacrylates is in the focus of their research.
The green microalga Chlorella vulgaris is a popular food additive due to its nutrient-content. In addition, it can be used in the cosmetics industry or to feed aquaculture. In their contribution “Improved growth and harvesting of microalgae Chlorella vulgaris on textile fabrics as 2.5 D substrates”, Brockhagen and co-workers investigated novel methods to cultivate the microalga on different natural and non-natural fabrics.
Last but not least, Tsivileva and colleagues report on the effect of different synthetic acridones on the mushroom Lentinula edodes (shiitake). Apart from their technical use as dyes, many natural-occurring acridones were reported to display anti-inflammatory or anti-cancer effects. Thus, possible unfavorable ecological effects of these compounds must be clarified. The authors analyzed several metabolic substances in the fungus that could be attributed to the presence of the particular acridone.
Taken together, the reader gets new insights into the behavior of small organisms in unusual environments during the visit of this special zoo.
[1] |
H. Ahn, Emergent behaviors of thermodynamic Cucker–Smale ensemble with unit-speed constraint, Discrete Cont. Dyn. Syst.-Ser. B, 28 (2023), 4800–4825. https://doi.org/10.3934/dcdsb.2023042 doi: 10.3934/dcdsb.2023042
![]() |
[2] |
H. Ahn, S. Y. Ha, D. Kim, F. Schlöder, W. Shim, The mean-field limit of the Cucker–Smale model on Riemannian manifolds, Quart. Appl. Math., 80 (2022), 403–450. https://doi.org/10.1090/qam/1613 doi: 10.1090/qam/1613
![]() |
[3] |
H. Ahn, S. Y. Ha, J. Kim, Nonrelativistic limits of the relativistic Cucker–Smale model and its kinetic counterpart, J. Math. Phys., 63 (2022), 082701. https://doi.org/10.1063/5.0070586 doi: 10.1063/5.0070586
![]() |
[4] |
H. Ahn, S. Y. Ha, W. Shim, Emergent dynamics of a thermodynamic Cucker–Smale ensemble on complete Riemannian manifolds, Kinet. Relat. Models, 14 (2021), 323–351. https://doi.org/10.3934/krm.2021007 doi: 10.3934/krm.2021007
![]() |
[5] |
B. Bonilla, M. Rivero, J. J. Trujillo, On systems of linear fractional differential equations with constant coefficients, Appl. Math. Comput., 187 (2007), 68–78. https://doi.org/10.1016/j.amc.2006.08.104 doi: 10.1016/j.amc.2006.08.104
![]() |
[6] |
L. Bourdin, Cauchy–Lipschitz theory for fractional multi-order dynamics: state-transition matrices, Duhamel formulas and duality theorems, Differ. Integral Equ., 31 (2018), 559–594. https://doi.org/10.57262/die/1526004031 doi: 10.57262/die/1526004031
![]() |
[7] |
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM. J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/090757290 doi: 10.1137/090757290
![]() |
[8] |
P. Cattiaux, F. Delebecque, L. Pédèches, Stochastic Cucker–Smale models: old and new, Ann. Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400 doi: 10.1214/18-AAP1400
![]() |
[9] |
J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for the Cucker–Smale model, Math. Mod. Meth. Appl. Sci., 26 (2016), 1191–1218. https://doi.org/10.1142/S0218202516500287 doi: 10.1142/S0218202516500287
![]() |
[10] |
S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953–972. https://doi.org/10.4310/CMS.2016.v14.n4.a4 doi: 10.4310/CMS.2016.v14.n4.a4
![]() |
[11] | Y. P. Choi, S. Y. Ha, Z. Li, Emergent dynamics of the Cucker–Smale flocking model and its variants, In: N. Bellomo, P. Degond, E. Tadmor, Active particles, volume 1: advances in theory, models, and applications, Cham: Birkhäuser, 2017,299–331. https://doi.org/10.1007/978-3-319-49996-3_8 |
[12] |
Y. P. Choi, D. Kalsie, J. Peszek, A. Peters, A collisionless singular Cucker–Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954–1981. https://doi.org/10.1137/19M1241799 doi: 10.1137/19M1241799
![]() |
[13] |
Y. P. Choi, Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018 doi: 10.1016/j.aml.2018.06.018
![]() |
[14] |
F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
![]() |
[15] |
K. Diethelm, Monotonocity of functions and sign changes of their Caputo derivatives, Fract. Calc. Appl. Anal., 19 (2016), 561–566. https://doi.org/10.1515/fca-2016-0029 doi: 10.1515/fca-2016-0029
![]() |
[16] |
J. G. Dong, S. Y. Ha, D. Kim, Emergent behaviors of continuous and discrete thermomechanical Cucker–Smale models on general digraphs, Math. Mod. Meth. Appl. Sci., 29 (2019), 589–632. https://doi.org/10.1142/S0218202519400013 doi: 10.1142/S0218202519400013
![]() |
[17] |
A. Figalli, M. Kang, A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843
![]() |
[18] |
E. Girejko, D. Mozyrska, M. Wyrwas, Numerical analysis of behaviour of the Cucker–Smale type models with fractional operators, J. Comput. Appl. Math., 339 (2018), 111–123. https://doi.org/10.1016/j.cam.2017.12.013 doi: 10.1016/j.cam.2017.12.013
![]() |
[19] |
E. Girejko, D. Mozyrska, M. Wyrwas, On the fractional variable order Cucker–Smale type model, IFAC-PapersOnLine, 51 (2018), 693–697. https://doi.org/10.1016/j.ifacol.2018.06.184 doi: 10.1016/j.ifacol.2018.06.184
![]() |
[20] |
S. Y. Ha, J. Jung, P. Kuchling, Emergence of anomalous flocking in the fractional Cucker–Smale model, Discrete Cont. Dyn. Syst., 39 (2019), 5465–5489. https://doi.org/10.3934/dcds.2019223 doi: 10.3934/dcds.2019223
![]() |
[21] |
S. Y. Ha, J. Kim, T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker–Smale flocking, Arch. Rational Mech. Anal., 235 (2020), 1661–1706. https://doi.org/10.1007/s00205-019-01452-y doi: 10.1007/s00205-019-01452-y
![]() |
[22] |
S. Y. Ha, J. Kim, X. Zhang, Uniform stability of the Cucker–Smale model and its application to the mean-field limit, Kinet. Relat. Mod., 11 (2018), 1157–1181. https://doi.org/10.3934/KRM.2018045 doi: 10.3934/KRM.2018045
![]() |
[23] | S. Y. Ha, J. G. Liu, A simple proof of Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. |
[24] |
S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Rational Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3 doi: 10.1007/s00205-016-1062-3
![]() |
[25] | S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Mod., 1 (2008), 415–435. |
[26] |
J. Jung, P. Kuchling, Emergent dynamics of the fractional Cucker–Smale model under general network topologies, Commun. Pure Appl. Anal., 21 (2022), 2831–2856. https://doi.org/10.3934/cpaa.2022077 doi: 10.3934/cpaa.2022077
![]() |
[27] |
T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math. Mod. Meth. Appl. Sci., 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050
![]() |
[28] |
Z. Lu, Y. Zhu, Comparison principle for fractional differential equations with the Caputo derivatives, Adv. Differ. Equ., 2018 (2018), 237. https://doi.org/10.1186/s13662-018-1691-y doi: 10.1186/s13662-018-1691-y
![]() |
[29] | A. B. Malinowska, T. Odzijewicz, E. Schmeidel, On the existence of optimal controls for the fractional continuous-time Cucker–Smale model, In: A. Babiarz, A. Czornik, J. Klamka, M. Niezabitowski, Theory and applications of non-integer order systems, Cham: Springer, 407 (2017), 227–240. https://doi.org/10.1007/978-3-319-45474-0_21 |
[30] | M. Merkle, Completely monotone functions: a digest, In: G. V. Milovanoviˊc, M. Rassias, Analytic number theory, approximation theory, and special functions, New York: Springer, 2014,347–364. https://doi.org/10.1007/978-1-4939-0258-3_12 |
[31] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Mathematics in Science and Engineering, Elsevier, 1999. |
[32] |
A. Ricardo, K. Rafal, A. B. Malinowska, O. Tatiana, On the necessary optimality conditions for the fractioanl Cucker–Smale optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105678. https://doi.org/10.1016/j.cnsns.2020.105678 doi: 10.1016/j.cnsns.2020.105678
![]() |
[33] |
A. Ricardo, K. Rafal, A. B. Malinowska, O. Tatiana, On the existence of optimal consensus control for the fractioanl Cucker–Smale model, Arch. Control Sci., 30 (2020), 625–651. https://doi.org/10.24425/acs.2020.135844 doi: 10.24425/acs.2020.135844
![]() |
[34] | W. R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expo. Math., 14 (1996), 3–16. |