Let s∈(0,1), 1<p<Ns and Ω⊂RN be an open bounded set. In this work we study the existence of solutions to problems (E±) Lu±g(u)=μ and u=0 a.e. in RN∖Ω, where g∈C(R) is a nondecreasing function, μ is a bounded Radon measure on Ω and L is an integro-differential operator with order of differentiability s∈(0,1) and summability p∈(1,Ns). More precisely, L is a fractional p-Laplace type operator. We establish sufficient conditions for the solvability of problems (E±). In the particular case g(t)=|t|κ−1t; κ>p−1, these conditions are expressed in terms of Bessel capacities.
Citation: Konstantinos T. Gkikas. Nonlinear nonlocal equations involving subcritical or power nonlinearities and measure data[J]. Mathematics in Engineering, 2024, 6(1): 45-80. doi: 10.3934/mine.2024003
[1] | María Ángeles García-Ferrero, Angkana Rüland . Strong unique continuation for the higher order fractional Laplacian. Mathematics in Engineering, 2019, 1(4): 715-774. doi: 10.3934/mine.2019.4.715 |
[2] | Federico Cluni, Vittorio Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, Patrizia Pucci . A mixed operator approach to peridynamics. Mathematics in Engineering, 2023, 5(5): 1-22. doi: 10.3934/mine.2023082 |
[3] | Ko-Shin Chen, Cyrill Muratov, Xiaodong Yan . Layered solutions for a nonlocal Ginzburg-Landau model with periodic modulation. Mathematics in Engineering, 2023, 5(5): 1-52. doi: 10.3934/mine.2023090 |
[4] | Patrizia Pucci, Letizia Temperini . On the concentration–compactness principle for Folland–Stein spaces and for fractional horizontal Sobolev spaces. Mathematics in Engineering, 2023, 5(1): 1-21. doi: 10.3934/mine.2023007 |
[5] | Boumediene Abdellaoui, Ireneo Peral, Ana Primo . A note on the Fujita exponent in fractional heat equation involving the Hardy potential. Mathematics in Engineering, 2020, 2(4): 639-656. doi: 10.3934/mine.2020029 |
[6] | Catharine W. K. Lo, José Francisco Rodrigues . On the obstacle problem in fractional generalised Orlicz spaces. Mathematics in Engineering, 2024, 6(5): 676-704. doi: 10.3934/mine.2024026 |
[7] | José Antonio Vélez-Pérez, Panayotis Panayotaros . Wannier functions and discrete NLS equations for nematicons. Mathematics in Engineering, 2019, 1(2): 309-326. doi: 10.3934/mine.2019.2.309 |
[8] | Francesca Colasuonno, Fausto Ferrari, Paola Gervasio, Alfio Quarteroni . Some evaluations of the fractional p-Laplace operator on radial functions. Mathematics in Engineering, 2023, 5(1): 1-23. doi: 10.3934/mine.2023015 |
[9] | Nguyen Cong Phuc, Igor E. Verbitsky . Uniqueness of entire solutions to quasilinear equations of p-Laplace type. Mathematics in Engineering, 2023, 5(3): 1-33. doi: 10.3934/mine.2023068 |
[10] | Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098 |
Let s∈(0,1), 1<p<Ns and Ω⊂RN be an open bounded set. In this work we study the existence of solutions to problems (E±) Lu±g(u)=μ and u=0 a.e. in RN∖Ω, where g∈C(R) is a nondecreasing function, μ is a bounded Radon measure on Ω and L is an integro-differential operator with order of differentiability s∈(0,1) and summability p∈(1,Ns). More precisely, L is a fractional p-Laplace type operator. We establish sufficient conditions for the solvability of problems (E±). In the particular case g(t)=|t|κ−1t; κ>p−1, these conditions are expressed in terms of Bessel capacities.
Let Ω⊂RN be an open bounded domain, s∈(0,1) and 1<p<Ns. In this article we are concerned with the existence of very weak solutions to the quasilinear nonlocal problems
{Lu±g(u)=μ,inΩ,u=0,inRN∖Ω, | ( |
where μ is a bounded Radon measure on Ω and g∈C(R) is a nondecreasing function such that g(0)=0. Here, the nonlocal operator L is defined by
Lu(x):=P.V.∫RN|u(x)−u(y)|p−2(u(x)−u(y))K(x,y)dy,∀x∈Ω, |
where the symbol P.V. stands for the principle value integral and K:RN×RN→R is a measurable and symmetric (i.e., K(x,y)=K(y,x)) function. Note that if K(x,y)≡|x−y|−N−sp then L coincides with the standard fractional p-Laplace operator (−Δ)sp.
Throughout this work, we assume that there exists a positive constant ΛK≥1 such that the following ellipticity condition holds
Λ−1K|x−y|−N−sp≤K(x,y)≤ΛK|x−y|−N−sp,∀(x,y)∈RN×RNandx≠y. |
In addition, we denote by Mb(Ω) the space of Radon measures on RN such that μ(RN∖Ω)=0, as well as by M+b(Ω) its positive cone.
Let
CN,s:=22sπ−N2sΓ(N+2s2)Γ(1−s)>0. |
For p=2 and K(x,y)=CN,s|x−y|−N−2s, operator L reduces to the well-known fractional Laplace operator (−Δ)s and the problem P+ becomes
{(−Δ)su+g(u)=μ,inΩu=0,inRN∖Ω. | (1.1) |
When g satisfies the subcritical integral condition
∫∞1(g(s)−g(−s))s−NN−2s−1ds<∞, |
Chen and Véron [9] showed that problem (1.1) admits a unique very weak solution for any μ∈Mb(Ω). In addition they showed that problem (1.1) with g(u)=|u|κ−1u(κ>1) possesses a very weak solution if and only if μ is absolutely continuous with respect to Bessel capacity CL2s,κ′, i.e., μ vanishes on compact set E of Ω satisfying Cap2s,κ′(E)=0 (see (3.21) for the definition of the Bessel capacities). Their approach is based on the properties of the Green Kernel associated with fractional Laplace operator (−Δ)s in Ω.
In the local theory and more precisely when Lu=−Δpu=−div(|∇u|p−2∇u), related problems have been studied in [4,5,6,15,30,31,32]. In particular, in the power case, i.e.,
{−Δpu+|u|κ−1u=μ,inΩ,u=0,on∂Ω, | (1.2) |
Bidaut-Véron, Nguyen and Véron [5] established that if μ∈Mb(Ω) is absolutely continuous with respect to the Bessel capacity Capp,κκ−p+1, then there exists a renormalized solution to problem (1.2) with κ>p−1. A main ingredient in the proof of this result is the pointwise estimates for p-superharmonic functions in Ω. These pointwise estimates are expressed in terms of the truncated Wolff potentials WR1,p[μ] (see, e.g., [17,19,20,31]). We recall here that the truncated Wolff potential is given by
WRα,p[μ](x):=∫R0(|μ|(Br(x))rN−αp)1p−1drr, | (1.3) |
for any R>0 and α∈(0,N) such that p∈(1,Nα). Conversely, Bidaut-Véron [4] showed that if problem (1.2) with κ>p−1 admits a renormalized solution, then μ is absolutely continuous with respect to the Bessel capacity Capp,κκ−p+1+ε, for any ε>0.
Phuc and Verbitsky [31] showed that if τ∈M+b(Ω) has compact support in Ω, then the problem
{−Δpu−|u|κ=ρτ,inΩ,u=0,on∂Ω, | (1.4) |
admits a nonnegative renormalized solution for some ρ>0, if and only if, there exists a positive constant C such that
τ(K)≤CCapp,κκ−p+1(K), | (1.5) |
for any compact K⊂Ω. Moreover, they showed that (1.5) is equivalent to
W2diam(Ω)1,p[(W2diam(Ω)1,p[τ])κ]≤CW2diam(Ω)1,p[τ],a.e. inΩ, |
for some positive constant C>0.
Recently, a great attention has been drawn to the study of the fractional p-Laplacian or more general nonlocal operators (see for example [2,11,12,18,21,22,23,24,25,26,27,28,29]). More precisely, Kuusi, Mingione and Sire [26] dealt with the problem
{LΦu=μ,inΩ,u=g,inRN∖Ω, | (1.6) |
where g∈Ws,p(RN), LΦ is a nonlocal operator defined by
<LΦu,ζ>:=∫RN∫RNΦ(u(x)−u(y))(ζ(x)−ζ(y))K(x,y)dydx,∀ζ∈C∞0(Ω). |
Here Φ:R→R is a continuous function such that Φ(0)=0 and
Λ−1Φ|t|p≤Φ(t)t≤ΛΦ|t|p. |
When 2−sN<p, they show the existence of a very weak solution to (1.6), which they called SOLA (Solutions obtained as limits of approximations). They also showed local pointwise estimates for SOLA to (1.6) in terms of the truncated Wolff Potential WRs,p[μ]. In the particular case Φ(t)=|t|p−2t and g=0, the existence of very weak solutions was established in [2] for any 1<p<Ns.
The objective of this work is to determine the subcritical integral conditions on g, which ensure the existence of very weak solutions to problems (P±). In addition, in the power case, i.e., g(u)=|u|κ−1u; κ>p−1, we aim to find sufficient conditions, expressed in terms of Bessel capacities like above, for the solvability of (P±).
Let us mention here that our work is inspired by the article [5] for problem (P+) and by the articles [30,31] for problem (P−) with g(u)=|u|κ−1u;κ>p−1. However, due to the presence of the nonlocal operator, new essential difficulties arise which complicate drastically the study of problems (P±).
In order to state our main results, we need to introduce the notion of the very weak solutions.
Definition 1.1. Let s∈(0,1), 1<p<Ns, ˜g∈C(R), Ω⊂RN be an open bounded domain and μ∈M(Ω). We will say that u:RN→R is a very weak solution to the problem
{Lu+˜g(u)=μ,inΩ,u=0,inRN∖Ω, | (1.7) |
if ˜g(u)∈L1loc(Ω) and if the following conditions are valid:
(ⅰ) u=0 a.e. in RN∖Ω and u∈Wh,q(RN) for any 0<h<s and for any 0<q<N(p−1)N−s.
(ⅱ) Tk(u):=max(−k,min(u,k))∈Ws,p0(Ω) for any k>0.
(ⅲ)
∫RN∫RN|u(x)−u(y)|p−2(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy+∫Ω˜g(u)ϕdx=∫Ωϕdμ |
for any ϕ∈C∞0(Ω).
We note here that if 2−sN<p<Ns, then the very weak solution u belongs to the fractional Sobolev space Wh,q(RN) for any q∈(1,N(p−1)N−s). If p≤2−sN, the space Wh,q(RN) in the above definition is no longer a fractional Sobolev space, however it is defined in the same way (see (2.1)).
In Section 2, we discuss the existence and main properties of the very weak solutions of problem (1.7) with ˜g≡0. Particularly, in the spirit of [26], we show the existence of a SOLA u satisfying statements (ⅰ)–(ⅲ) of the above definition (see Proposition 2.8). The approximation sequence consists of solutions of (1.7) with ˜g≡0 and smooth data. In addition, we prove that these solutions satisfy a priori estimates (2.8) and (2.11). As a result, we establish that the very weak solution satisfies (2.11) and
‖|u|p−1‖∗LNN−spw(RN)≤C(N,p,s,ΛK)∫Ω|μ|dx, | (1.8) |
where ‖⋅‖∗LNN−spw(RN) has been defined in (2.4) and is related to the Marcinkiewicz spaces. Finally, when μ∈M+b(Ω), we construct this solution (see Propositions 2.9 and 2.10) such that u≥0 and
C−1(N,p,s,ΛK)Wd(x)8s,p[μ](x)≤u(x)≤C(N,p,s,ΛK)W2diam(Ω)s,p[μ](x),a.e. inΩ, |
where d(x)=dist(x,∂Ω). The lower estimate in the above display can be obtained as a consequence of [26, estimate (1.25)]. The upper estimate in the above display is an application of [21, Theorem 5.3] and (1.8).
Using the above properties of the very weak solutions and the fact that if u,g satisfies (1.8) and (1.9) respectively then g(u)∈L1(Ω), we obtain the following result.
Theorem 1.2. Let s∈(0,1), 1<p<Ns, μ∈Mb(Ω). We assume that g∈C(R) is a nondecreasing function satisfying g(0)=0 and
∫∞1(g(s)−g(−s))s−N(p−1)N−sp−1ds<∞. | (1.9) |
Then there exist a very weak solution u to problem (P+) satisfying (1.8) and
−C(N,p,s,ΛK)W2diam(Ω)s,p[μ−]≤u≤C(N,p,s,ΛK)W2diam(Ω)s,p[μ+],a.e. inΩ. | (1.10) |
In addition, for any q∈(0,N(p−1)N−s) and h∈(0,s), there exists a positive constant c=c(N,p,s,ΛK,q,h,|Ω|) such that
(∫Ω|g(u)|dx)1p−1+(∫RN∫RN|u(x)−u(y)|q|x−y|N+hqdxdy)1q≤c(|μ|(Ω))1p−1. | (1.11) |
We note here that the integral conditions (1.9) and (1) coincide for p=2. In addition, in the corresponding local case, the integral condition (1.9) with s=1 ensures the existence of the associated renormalized solutions (see [32, Theorem 5.1.2 and (5.1.40)]).
Let us consider problem (P+) with a power absorption, i.e.,
{Lu+|u|κ−1u=μ,inΩ,u=0,inRN∖Ω. | (1.12) |
We first notice that the function g(t)=|t|κ−1t with k>0 satisfies (1.9) if and only if 0<κ<N(p−1)N−sp, hence problem (1.12) admits a very weak solution in this case. In the supercritical case κ≥N(p−1)N−sp, the sufficient condition for the solvability of problem (1.12) is expressed in terms of the Bessel capacity Capsp,κκ−p+1 as follows.
Theorem 1.3. Let s∈(0,1), 1<p<Ns, κ>p−1 and μ∈Mb(Ω). In addition we assume that μ is absolutely continuous with respect to the Bessel capacity Capsp,κκ−p+1. Then there exists a very weak solution u to problem (1.12) such that
−CW2diam(Ω)s,p[μ−]≤u≤CW2diam(Ω)s,p[μ+],a.e. inΩ. | (1.13) |
In addition, for any q∈(0,N(p−1)N−s) and h∈(0,s), there exists a positive constant c=c(N,p,s,ΛK,q,h,|Ω|) such that
(∫Ω|u|κdx)1p−1+(∫RN∫RN|u(x)−u(y)|q|x−y|N+hqdxdy)1q≤c(|μ|(Ω))1p−1. | (1.14) |
In view of the discussion on the existence of solutions to problem (1.4), we expect that the existence phenomenon occurs for (P−) only for measures μ∈Mb(Ω) with small enough total mass. Indeed, using the Schauder fixed point theorem and sharp weak Lebesgue estimates, we prove the following existence result for any μ∈Mb(Ω) with small enough total mass.
Theorem 1.4. Let s∈(0,1), 1<p<Ns and τ∈Mb(Ω) be such that |τ|(Ω)≤1. Assume that g∈C(R) is a nondecreasing function satisfying (1.9) and
|g(s)|≤a|s|dfor somea>0,d>1and for any|s|≤1. | (1.15) |
Then there exists a positive constant ρ0 depending on N,|Ω|,Λg,ΛK,a,s,p,d,|Ω| such that for every ρ∈(0,ρ0) the following problem
{Lv=g(v)+ρτ,inΩ,v=0,inRN∖Ω, | (1.16) |
admits a very weak solution v satisfying
‖|v|p−1‖∗LNN−spw(RN)≤t0. | (1.17) |
Here, t0>0 depends on N,|Ω|,Λg,ΛK,a,s,p,d,ρ0. In addition, for any q∈(0,N(p−1)N−s) and h∈(0,s), there exists a positive constant c depending only on N,p,s,Λg,ΛK,q,h,|Ω|,a,d,ρ0 and t0, such that
(∫RN∫RN|v(x)−v(y)|q|x−y|N+hqdxdy)1q≤c(1+ρ|τ|(Ω))1p−1. | (1.18) |
In the linear case, i.e., p=2, problem (P−) with L=(−Δ)s was thoroughly studied in [7]. More precisely, the authors in [7] showed that the same existence result occurs provided g satisfies (1) and (1.15).
Problem (P−) with g(t)=|t|κ−1t and μ∈M+b(Ω) becomes
{Lv=|v|κ−1v+ρτ,inΩ,v=0,inRN∖Ω. | (1.19) |
When p=2, problem (P−) with L=(−Δ)s and τ=δ0 was studied in [8]. Here δ0 denotes the dirac measure concentrated at a point x0∈Ω. In particular, the authors in [8] established that if κ≥NN−2s and u is a nonnegative solution of (1.19) then ρ=0. Concerning problem (1.19), conditions (1.9) and (1.15) are satisfied if κ belongs to the subcritical range, that is when p−1<κ<N(p−1)N−sp. In general, a sufficient condition for the solvability of (1.19) is the following.
Proposition 1.5. Let s∈(0,1), 1<p<Ns, κ>p−1 and τ∈M+b(Ω) be such that
W2diam(Ω)s,p[(W2diam(Ω)s,p[τ])κ]≤MW2diam(Ω)s,p[τ],a.e.inΩ, | (1.20) |
for some positive constant M. Then problem (1.19) admits a nonnegative very weak solution u for some ρ>0. Furthermore, there holds
M−1Wd(x)8s,p[μ](x)≤u(x)≤MW2diam(Ω)s,p[ρτ](x),for a.e.x∈Ω, | (1.21) |
where dμ=uκdx+ρdτ and the positive constant M depends only on C,N,p,q,ΛK.
Finally, inspired from Phuc and Verbitsky's ideas in [30,31], we establish the following existence result in the whole range κ>p−1.
Theorem 1.6. Let s∈(0,1), 1<p<Ns, κ>p−1 and τ∈M+b(Ω) with compact support in Ω. Then the following statements are equivalent.
(i) Problem (1.19) admits a nonnegative very weak solution uρ for some ρ>0 such that
C−11Wd(x)8s,p[μ](x)≤uρ(x)≤C1W2diam(Ω)s,p[ρτ](x),for a.e.x∈Ω, | (1.22) |
where dμ=uκdx+ρdτ and for some constant C1>0. (ii) There exists a positive constant C2 such that
τ(E)≤C2Capsp,κκ−p+1(E) | (1.23) |
for any Borel set E⊂RN.
(iii) There exists a positive constant C3 such that
∫B(W2diam(Ω)s,p[τ⌊B])κdx≤C3τ(B) | (1.24) |
for any ball B⊂RN, where dτ⌊B=χBdτ.
(iv) There exists a positive constant C4 such that
W2diam(Ω)s,p[(W2diam(Ω)s,p[τ])κ]≤C4W2diam(Ω)s,p[τ],a.e.inΩ. |
We note here that if p−1<q<N(p−1)N−sp then spqq−p+1>N, this implies that Capsp,qq−p+1({x})>0 for any x∈RN (see [1, Section 2.6]). Hence, the statement (ⅱ) in the above theorem is always satisfied in the subcritical range.
Section 2 is devoted to the study of the very weak solutions to problem (1.7) with ˜g≡0. In Section 3, we discuss problem (P+) as well as Theorems 1.2 and 1.3 are proved in Subsections 3.2 and 3.3 respectively. In section 4, we deal with problem (P−). More precisely, we prove Theorem 1.4 in Subsection 4.1 and demonstrate Proposition 1.5 and Theorem 1.6 in Subsection 4.2.
We start with the definition of the fractional spaces, which will be used frequently in this work. For any s∈(0,1) and q>0, we denote by Ws,q(RN) the fractional space
Ws,q(RN):={∫RN∫RN|u(x)−u(y)|q|x−y|N+sqdxdy+∫RN|u|qdx<∞}, | (2.1) |
endowed with the quasinorm
‖u‖Ws,q(RN):=(∫RN∫RN|u(x)−u(y)|q|x−y|N+sqdxdy)1q+(∫RN|u|qdx)1q. |
When q≥1, Ws,q(RN) is a Banach space and is called fractional Sobolev space. Finally, for any p>1, we denote by Ws,p0(Ω) the closure of C∞0(Ω) in the norm ‖⋅‖Ws,p(RN) and by (Ws,p0(Ω))∗ its dual space.
In this subsection, we introduce the notion of the weak solution of the following problem
{Lu=μ,inΩ,u=0,inRN∖Ω, | (2.2) |
where μ∈(Ws,p0(Ω))∗. In addition, when μ∈Lp′(Ω), we establish a priori estimates, which will be used in the construction of the very weak solutions of the above problem with measure data.
Definition 2.1. Let s∈(0,1), p>1, and μ∈(Ws,p0(Ω))∗. We will say that u∈Ws,p0(Ω) is a weak solution of (2.2), if it satisfies
∫RN∫RN|u(x)−u(y)|p−2(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy=<μ,ϕ>,∀ϕ∈Ws,p0(Ω). |
Let us now give the definition of weak supersolutions of L in Ω.
Definition 2.2. Let s∈(0,1) and p>1. We will say that u∈Ws,p(RN) is a weak supersolution (resp. subsolution) of L in Ω, if and only if satisfies
∫RN∫RN|u(x)−u(y)|p−2(u(x)−u(y))(ϕ(x)−ϕ(y))K(x,y)dxdy≥0(resp.≤0) |
for any nonnegative ϕ∈Ws,p0(Ω).
Next we state the comparison principle.
Proposition 2.3. ([23, Lemma 6]). Let u∈Ws,p(RN) be a weak supersolution of L in Ω as well as let v∈Ws,p(RN) be a weak subsolution of L in Ω such that (v−u)+∈Ws,p0(Ω). Then, u≥v a.e. in RN.
In view of the proof [11, Theorem 2.3], we may obtain the following existence result.
Proposition 2.4. For any μ∈(Ws,p0(Ω))∗ there exists a unique weak solution of (2.2).
In order to state the first a priori estimate for the weak solution of (2.2), we need to give the definition and the main properties of Marcinkiewicz spaces. Let D⊂RN be a domain. Denote Lpw(D), 1≤p<∞, the weak Lp space (or Marcinkiewicz space) defined as follows. A measurable function f in D belongs to this space if there exists a constant c such that
λf(a):=|{x∈D:|f(x)|>a}|≤ca−p,∀a>0. | (2.3) |
The function λf is called the distribution function of f. For p≥1, denote
Lpw(D)={f Borel measurable:supa>0apλf(a)<∞}, |
‖f‖∗Lpw(D)=(supa>0apλf(a))1p. | (2.4) |
The ‖.‖∗Lpw(D) is not a norm, but for p>1, it is equivalent to the norm
‖f‖Lpw(D)=sup{∫ω|f|dx|ω|1/p′:ω⊂D,ω measurable,0<|ω|<∞}. | (2.5) |
More precisely,
‖f‖∗Lpw(D)≤‖f‖Lpw(D)≤pp−1‖f‖∗Lpw(D). | (2.6) |
Notice that,
Lpw(D)⊂Lr(D),∀r∈[1,p). |
From (2.4) and (2.6), one can derive the following estimate which is useful in the sequel.
∫{|u|≥s}dx≤s−p‖u‖pLpw(D). | (2.7) |
Proposition 2.5. Let 1<p<Ns, μ∈Lp′(Ω) and u∈Ws,p0(Ω) be the unique weak solution of (2.2). Then there exists a positive constant C=C(p,s,N,ΛK) such that
‖|u|p−1‖∗LNN−spw(RN)≤C∫Ω|μ|dx. | (2.8) |
Proof.
Let k>0. Taking Tk(u) as test function and using the fact that
|u(x)−u(y)|p−2(u(x)−u(y))(Tk(u)(x)−Tk(u)(y))≥|Tk(u)(x)−Tk(u)(y)|p,∀x,y∈RN, |
we obtain
∫RN∫RN|Tk(u)(x)−Tk(u)(y)|p|x−y|N+spdxdy≤ΛKk∫Ω|μ|dx. | (2.9) |
Now, by the above inequality and the fractional Sobolev inequality we have
|{|u(x)|≥k}|=|{|Tk(u)(x)|≥k}|≤k−NpN−sp∫RN|Tk(u)(x)|NpN−spdx≤Ck−N(p−1)N−sp(∫Ω|μ|dx)NN−sp, |
which implies the desired result.
Proposition 2.6. Let μ∈Lp′(Ω) and u∈Ws,p0(RN) be the unique weak solution of (2.2). Then there exists a positive constant C=C(p,s,N,ΛK) such that
∫RN∫RN|u(x)−u(y)|p(d+|u(x)|+|u(y)|)ξdxdy|x−y|N+sp≤Cd1−ξ(ξ−1)∫Ω|μ|dx | (2.10) |
for any ξ>1 and d>0.
Proof. The proof is very similar to that of [26, Lemma 3.1] (see also [25, Lemma 8.4.1]). For the sake of convenience we give it below.
Set ϕ±:=±(d1−ξ−(d+u±)1−ξ). Using ϕ± as test function we obtain
∫RN∫RN|u(x)−u(y)|p−2(u(x)−u(y))(ϕ±(x)−ϕ±(y))K(x,y)dxdy=∫Ωϕ±μdx. |
Now,
(ϕ±(x)−ϕ±(y))=±(ξ−1)(u±(x)−u±(y))∫10(d+tu±(y)+(1−t)u±(x))−ξdt, |
which implies
|u(x)−u(y)|p−2(u(x)−u(y))(ϕ±(x)−ϕ±(y))K(x,y)≥(ξ−1)|u(x)−u(y)|p−2(u±(x)−u±(y))2(d+|u(y)|+|u(x)|)−ξ. |
Combining all above we can easily reach the desired result.
We conclude this subsection by the following a priori estimate for the weak solutions of (2.2) in the whole range p>1.
Proposition 2.7. Let ¯q=min{N(p−1)N−s,p} μ∈Lp′(Ω) and u∈Ws,p0(RN) be the unique weak solution of (2.2). For any q∈(0,¯q) and h∈(0,s), there exists a positive constant c depending only on N,s,p,ΛK,q and |Ω| such that
(∫RN∫RN|u(x)−u(y)|q|x−y|N+hqdxdy)1q≤c(∫Ω|μ|dx)1p−1. | (2.11) |
Proof. The proof is an adaptation of the argument in [26, Lemma 3.2]. Let R=diam(Ω) and x0∈Ω. First, we note that
∫RN∫RN|u(x)−u(y)|q|x−y|N+hqdxdy=∫B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy+∫RN∖B2R(x0)∫RN∖B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy+2∫RN∖B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy. |
Taking into account that u=0 a.e. in RN∖Ω, we can easily prove that
∫RN∖B2R(x0)∫RN∖B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy=0 |
and
∫RN∖B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy=∫RN∖B2R(x0)∫BR(x0)|u(x)|q|x−y|N+hqdxdy≈∫BR(x0)|u(x)|qdx∫RN∖B2R(x0)1(1+|y−x0|)N+hqdy≈∫BR(x0)|u(x)|qdx. |
Here, we have also used the fact that |x−y|≈1+|y−x0| for any (x,y)∈BR(x0)×(RN∖B2R(x0)), where the implicit constants in the last estimate depend only on R. Similarly, we have
∫B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy=∫B3R2(x0)∫B3R2(x0)|u(x)−u(y)|q|x−y|N+hqdxdy+∫B2R(x0)∖B3R2(x0)∫B2R(x0)∖B3R2(x0)|u(x)−u(y)|q|x−y|N+hqdxdy+2∫B2R(x0)∖B3R2(x0)∫B3R2(x0)|u(x)−u(y)|q|x−y|N+hqdxdy≈∫B3R2(x0)∫B3R2(x0)|u(x)−u(y)|q|x−y|N+hqdxdy+∫BR(x0)|u|qdx. |
Combining all above, we have
∫RN∫RN|u(x)−u(y)|q|x−y|N+hqdxdy≈∫B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy+∫Ω|u|qdx≈∫B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy. | (2.12) |
Now, by Hölder inequality we obtain
∫B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy=∫B2R(x0)∫B2R(x0)(|u(x)−u(y)|p(d+|u(x)|+|u(y)|)ξ|x−y|ps(d+|u(x)|+|u(y)|)ξ|x−y|p(s−h))qpdxdy|x−y|N≤(∫B2R(x0)∫B2R(x0)|u(x)−u(y)|p(d+|u(x)|+|u(y)|)ξ|x−y|N+spdxdy)qp×(∫B2R(x0)∫B2R(x0)(d+|u(x)|+|u(y)|)ξqp−q|x−y|N−qp(s−h)p−qdxdy)p−qp. | (2.13) |
Setting
d=(∫Ω|u(y)|ξqp−qdx)p−qξq |
and combining (2.10) and (2.13), we conclude
∫B2R(x0)∫B2R(x0)|u(x)−u(y)|q|x−y|N+hqdxdy≤cdqp(∫Ω|μ|dx)qp. | (2.14) |
If p>2−sN, without loss of generality, we may assume that q>1. Therefore, we may apply the fractional Sobolev inequality to d as in the proof of [26, Lemma 3.2] to obtain the desired result.
If 1<p≤2−Ns, we have that 0<q≤1, therefore, we can not apply the fractional Sobolev inequality to d. To overcome this difficulty we use (2.8) instead of fractional Sobolev inequality. More precisely, let 1<p<Ns, then 0<q<N(p−1)N−s<p. Hence, we may choose ξ>1 such that 1<γ:=ξq(p−1)(p−q)<NN−sp. Thus, by (2.6) and (2.8), we deduce
(∫Ω|u|γ(p−1))1γ≤C(γ,N,p,s,|Ω|,ΛK)∫Ω|μ|dx, |
which in turn implies
d≤C(γ,N,p,s,|Ω|,ΛK)(∫Ω|μ|dx)1p−1. |
The desired result follows by (2.12), (2.14) and the above inequality.
In this subsection, we construct a very weak solution to problem (2.2) which possesses several important properties, such as it satisfies pointwise estimates in terms of Wolff's potential. These estimates play an important role in the study of problems (P±).
We start with the following existence result.
Proposition 2.8. Let 1<p<Ns and μ∈Mb(Ω). Then there exists a very weak solution to (2.2) satisfying
‖|u|p−1‖∗LNN−spw(RN)≤C1(N,p,s,ΛK)μ(Ω) | (2.15) |
and
∫RN∫RN|Tk(u)(x)−Tk(u)(y)|p|x−y|N+spdxdy≤kΛK|μ|(Ω),∀k>0. | (2.16) |
In addition, for any q∈(0,N(p−1)N−s) and h∈(0,s), there exist a positive constant C2=C2(N,p,s,ΛK,q,h,|Ω|) such that
(∫RN∫RN|u(x)−u(y)|q|x−y|N+hqdxdy)1q≤C2|μ|(Ω)1p−1. | (2.17) |
Proof. Let {ρn}n be a sequence of mollifiers and μn=ρn∗μ. Then μn∈C∞0(RN) and μn⇀μ weakly in RN. We denote by un the weak solution of (2.2) with μ=μn.
By (2.8), (2.9) and (2.11), there exist positive constants C1 and C2 such that
‖|un|p−1‖∗LNN−spw(RN)≤C1(N,p,s,ΛK)μ(Ω),∀n∈N, | (2.18) |
∫RN∫RN|Tk(un)(x)−Tk(un)(y)|p|x−y|N+spdxdy≤kΛKμ(Ω),∀k>0andn∈N, | (2.19) |
and
(∫RN∫RN|un(x)−un(y)|q|x−y|N+hqdxdy)1q≤C2(N,p,s,ΛK,q,h)μ(Ω)1p−1 | (2.20) |
for any n∈N, q∈(0,N(p−1)N−s) and h∈(0,s). In the spirit of the proof of [10, Theorem 3.4], we will show that the existence of a subsequence (still denoted by {un}) and a function u:RN→R satisfying the following properties:
(ⅰ) u∈Wh,q(RN) for any 0<q<N(p−1)N−s and 0<h<s.
(ⅱ) un→u a.e. in RN, u=0 a.e. in RN∖Ω and ‖u−un‖Wh,q(RN)→0 for any q∈(0,N(p−1)N−s) and h∈(0,s).
(ⅲ) Tk(u)∈Ws,p0(Ω) for any k>0.
Step 1. There exists a subsequence, still denoted by un, such that
limn→∞limm→∞|{x∈Ω:|un−um|>η}|=0,∀η>0. |
Let n,m∈N and η,ρ>0. Then
{|un−um|>η}⊂{|Tk(un)|>k}∪{|Tk(um)|>k}∪{|Tk(un)−Tk(um)|>η}. |
By (2.18) and (2.7), there exists k0>0 such that
|{|Tk(un)|>k}|+|{|Tk(um)|>k}|≤ρ2,∀k≥k0. | (2.21) |
By (2.19), the fractional Sobolev embedding theorem (see e.g., [13, Corollary 7.2]) and the fact that Ws,p0(Ω) is a reflexive Banach space, we may prove the existence of a subsequence Tk0(unj) of Tk0(un) such that Tk0(unj)→vk0 in Lp(RN) and a.e. in RN as well as Tk0(unj)⇀vk0 in Ws,p0(Ω). Hence,
|{|Tk0(unj)−Tk0(um˜j)|>η}|≤ρ2,∀j,˜j≥n0. | (2.22) |
The desired result follows by (2.21) and (2.22).
Step 2. Weak convergence of the truncates. Since un→u a.e. in RN, we have that Tk(un)→Tk(u) a.e. in RN. Furthermore, by (2.19) and the fractional Sobolev embedding theorem, we can find a subsequence {Tk(unj)}∞j=1 such that Tk(unj)→vk in Lp(RN) and Tk(unj)⇀vk in Ws,p0(Ω). Since vk=Tk(u) a.e. in RN, we have that Tk(u)∈Ws,p0(Ω). This implies that the limit does not depend on the subsequence. Hence, for the same subsequence un of the Step 1, we have that
Tk(un)⇀Tk(u)inWs,p0(Ω),∀k>0. |
Furthermore, by (2.18)–(2.20) and Fatou's lemma, we have that
‖|u|p−1‖∗LNN−spw(RN)≤C1(N,p,s,ΛK)μ(Ω), | (2.23) |
∫RN∫RN|Tk(u)(x)−Tk(u)(y)|p|x−y|N+spdxdy≤kΛKμ(Ω),∀k>0, | (2.24) |
and
(∫RN∫RN|u(x)−u(y)|q|x−y|N+hqdxdy)1q≤C2(N,p,s,ΛK,q,h)μ(Ω)1p−1 | (2.25) |
for any q∈(0,N(p−1)N−s) and h∈(0,s).
By (2.20), (2.25) and the fact that un→u a.e. in RN, We can easily show that ‖u−un‖Wh,q(RN)→0 for any q∈(0,N(p−1)N−s) and h∈(0,s). Let ϕ∈C∞0(Ω), q∈(p−1,N(p−1)N−s) and h∈(max(sp−1p−1,0),s). For any bounded Borel set E⊂RN, we have that
|∫E∫E|un(x)−un(y)|p−2(un(x)−un(y))(ϕ(x)−ϕ(y))K(x,y)dxdy|≤C(ϕ,ΛK)∫E∫E|un(x)−un(y)|p−1|x−y|N+hp−1+sp−h(p−1)−1≤C(ϕ,ΛK)(∫E∫E|un(x)−un(y)|q|x−y|N+hqdxdy)p−1q(∫E∫E|x−y|−N−q(sp−h(p−1)−1)q−p+1dxdy)q−p+1q. |
This, together with (ⅰ), (ⅱ) and the fact that q(sp−h(p−1)−1)q−p+1<0, implies that
∫Ωϕdμ=limn→∞∫Ωϕμndx=limn→∞∫RN∫RN|un(x)−un(y)|p−2(un(x)−un(y))(ϕ(x)−ϕ(y))K(x,y)dxdy=∫RN∫RN|u(x)−u(y)|p−2(un(x)−un(y))(ϕ(x)−ϕ(y))K(x,y)dxdy. |
The proof is complete.
In the next theorem, we establish a priori pointwise estimates for a certain nonnegative very weak solution of problem (2.2) with μ∈M+b(Ω).
Proposition 2.9. Let 1<p<Ns and μ∈M+b(Ω). Then there exist a nonnegative very weak solution u of (2.2) and a positive constant C depending only on N,s,p,ΛK such that
C−1Wd(x)8s,p[μ](x)≤u(x)≤C(essinfBd(x)4(x)u+Wd(x)2s,p[μ](x)+((d(x)4)sp∫RN∖Bd(x)4(x)u(y)p−1|x−y|N+spdy)1p−1) | (2.26) |
for a.e. x∈Ω.
Proof. Let u be the solution constructed in Proposition 2.8 and {un} be the sequence defined in Proposition 2.8 such that
(ⅰ) u∈Wh,q(RN) for any 0<q<N(p−1)N−s and 0<h<s.
(ⅱ) un→u a.e. in RN, u=0 a.e. in RN∖Ω and ‖u−un‖Wh,q(RN)→0 for any q∈(0,N(p−1)N−s) and h∈(0,s).
Since μn∈C∞0(RN) is a nonnegative function, by (2.3), we have that un≥0 a.e. in RN. Hence, by [23, Lemma 7], uk,n=min(un,k) is a nonnegative weak supersolution. By properties (ⅰ) and (ⅱ), we may show that uk=min(u,k) is a nonnegative weak supersolution. Hence, there exists a nonnegative Radon measure μk∈M+(Ω) such that
∫RN∫RN|uk(x)−uk(y)|p−2(uk(x)−uk(y))(ϕ(x)−ϕ(y))K(x,y)dxdy=∫Ωϕ(x)dμk | (2.27) |
for any ϕ∈C∞0(Ω). Since uk→u in RN, we have that ‖u−uk‖Wh,q(RN)→0 for any h∈(0,s) and q∈(0,N(p−1)N−s). This, together with (2.27), implies
∫Ωϕ(x)dμk→∫Ωϕ(x)dμ,∀ϕ∈C∞0(Ω). | (2.28) |
Now, we remark that, in view of the proof of [26, Theorem 1.3], we may apply [26, estimate (1.25)] to uk. Hence,
C−1Wd(x)8s,p[μk](x)≤uk(x),for a.e.x∈Ωand∀k>0. |
Letting k\to\infty in the above inequality and using some elementary manipulations, we may obtain the lower estimate in (2.26).
For the upper estimate in (2.26), by [23, Theorem 9], we have that
v_k(x): = \mathop {{\rm{ess}}\;{\rm{lim}}\;{\rm{inf}}}\limits_{y\to x}\;u_k(y) = u_k(x),\qquad \text{for a.e.} \;x\in{\mathbb R}^N. |
Hence, v_k is a lower semicontinuous functions in \Omega and a nonnegative weak supersolution. By [23, Theorem 12], v_k is (s, p) -superharmonic function in \Omega (see [23, Definition 1] for the definition of (s, p) -superharmonic function). This, together with [23, Lemma 12], implies that v: = \lim_{k\to\infty} v_k is (s, p) -superharmonic function in \Omega and v = u a.e. in {\mathbb R}^N. The desired result follows by applying [21, Theorem 5.3] to v and the fact that v = u a.e. in {\mathbb R}^N.
Proposition 2.10. Let \mu\in \mathfrak{M}_b(\Omega). Then there exists a very weak solution u of (2.2) and a positive constant C depending only on N, s, p and \Lambda_K such that
\begin{align} -C W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \mu^-]\leq u\leq CW_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \mu^+],\qquad \mathit{\text{a.e. in}}\;\; \Omega. \end{align} | (2.29) |
Proof. Let u be the solution constructed in Proposition 2.8 and x_0\in \Omega. Set R = \mathrm{diam}\, (\Omega), \mu_n = \rho_n* \mu and \mu_n^\oplus = \rho_n* \mu^+. We denote by v_n^{\oplus}\in W^{s, p}_0(\Omega) the solution of
\begin{align*} \left\{ \begin{aligned} Lv_n^\oplus& = \mu_n^\oplus,&&\quad\text{in}\;B_{2R}(x_0),\\ v_n^\oplus& = 0,&&\quad\text{in}\;{\mathbb R}^N\setminus B_{2R}(x_0). \end{aligned}\right. \end{align*} |
By Proposition 2.3, we have that v_n^{\oplus}\geq 0 and v_n^{\oplus}\geq u_n, where u_n\in W^{s, p}_0(\Omega) is the weak solution of (2.2) with \mu = \mu_n. By statements (ⅰ)–(ⅲ) in the proof of Proposition 2.8, there exist subsequences \{u_{n_k}, v_{n_k}^{\oplus}\}_{k = 1}^\infty such that u_{n_k}\to u and v_{n_k}^\oplus\to v^\oplus a.e. in {\mathbb R}^N and
\left \|{u-u_{n_k}}\right \|_{W^{h,q}({\mathbb R}^N)} +\left \|{v^{\oplus}-v_{n_k}^{\oplus}}\right \|_{W^{h,q}({\mathbb R}^N)}\to 0 |
for any h\in (0, s) and q\in(0, \frac{N(p-1)}{N-s}). Combining all above, we may deduce that u\leq v^\oplus a.e. in {\mathbb R}^N and v^\oplus is a nonnegative very weak solution to
\begin{align*} \left\{ \begin{aligned} Lv^\oplus& = \mu^+,&&\quad\text{in}\;B_{2R}(x_0),\\ v^\oplus& = 0,&&\quad\text{in}\;{\mathbb R}^N\setminus B_{2R}(x_0). \end{aligned}\right. \end{align*} |
In addition, in view of the proof of Proposition 2.9, there exists a positive constant C = C(p, s, \Lambda_K, N) such that
\begin{align} u(x)\leq v^\oplus(x)\leq C\bigg(W_{s,p}^{R}[ \mu^+](x)+\mathop {{\rm{ess}}\;{\rm{inf}}}\limits_{B_\frac{R}{2}(x)} v^\oplus +\mathrm{Tail}{(v^\oplus;x,\frac{R}{2})}\bigg),\;\;\text{for a.e.}\; x\in \Omega, \end{align} | (2.30) |
where
\mathrm{Tail}{(v^\oplus;x,\frac{R}{2})} = \bigg(\bigg(\frac{R}{2}\bigg)^{sp}\int_{{\mathbb R}^N\setminus B_{\frac{R}{2}}(x)}\frac{|v^\oplus(y)|^{p-1}}{|x-y|^{N+sp}}{{\mathrm{d}}} y\bigg)^\frac{1}{p-1}. |
By (2.15) and (2.6), we derive that
\begin{align} \mathop {{\rm{ess}}\;{\rm{inf}}}\limits_{B_\frac{R}{2}(x)} v^\oplus\lesssim \bigg(\rlap{-} \displaystyle {\int }_{B_{\frac{R}{2}}(x)}|v^\oplus|^{p-1}{{\mathrm{d}}} x\bigg)^\frac{1}{p-1}\lesssim R^{-\frac{N-sp}{p-1}} \mu^+(B_R(x))^\frac{1}{p-1}\lesssim W_{s,p}^{2R}[ \mu^+](x), \end{align} | (2.31) |
and
\begin{align} \begin{aligned} \mathrm{Tail}{(v^\oplus;x_0,\frac{R}{2})}\lesssim\bigg(\rlap{-} \displaystyle {\int }_{B_{2R}(x_0})|v^\oplus|^{p-1}{{\mathrm{d}}} x\bigg)^\frac{1}{p-1} \lesssim W_{s,p}^{2R}[ \mu^+](x),\quad\forall x\in \Omega, \end{aligned} \end{align} | (2.32) |
where the implicit constants in (2.31) and (2.32) depend only on p, s, \Lambda_K, N. The inequalities in (2.32) follow by the fact that v^\oplus = 0 in {\mathbb R}^N\setminus B_{2R}(x_0) and \mu({\mathbb R}^N\setminus \Omega) = 0.
Combining (2.30)–(2.32), we obtain the upper bound in (2.29).
The proof of the lower bound in (2.29) is similar and we omit it.
We assume that g\in C({\mathbb R}) and rg(r)\geq0. Let \Omega\subset{\mathbb R}^N be an open bounded domain and \mu\in (W^{s, p}_0(\Omega))^*. Set G(r) = \int_0^rg(s){{\mathrm{d}}} s,
J(v) = \frac{1}{p}\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|v(x)-v(y)|^pK(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_{ \Omega}G(v){{\mathrm{d}}} x- < \mu,v > |
and
\mathbf{X}_G( \Omega) = \{v\in W^{s,p}_0( \Omega):\;G(v)\in L^1( \Omega)\}. |
Theorem 3.1. Let s\in(0, 1), p > 1 and \mu\in (W^{s, p}_0(\Omega))^*. Then, there exists a minimizer u_ \mu of J in \mathbf{X}_G(\Omega). Furthermore, u_ \mu is a weak solution of J, in the sense of
\begin{align} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|u_ \mu(x)-u_ \mu(y)|^{p-2}(u_ \mu(x)-u_ \mu(y))( \zeta(x)- \zeta(y))K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_ \Omega g(u_ \mu) \zeta {{\mathrm{d}}} x = < \mu, \zeta > \end{align} | (3.1) |
for any \zeta\in W^{s, p}_0(\Omega)\cap L^\infty(\Omega).
If g is nondecreasing the solution u_ \mu is unique and the mapping \mu\mapsto u_ \mu is nondecreasing.
Proof. We adapt the argument used in the proof of [15, Theorem 5.1]. Let \{v_n\} be a minimizing sequence. Taking in to account that G(t)\geq0 for any t\in {\mathbb R} and the fractional Sobolev inequality, we can easily show the existence of a positive constant C = C(p, \Omega, \Lambda_K) such that
\begin{align} \left \|{v_n}\right \|_{W_0^{s,p}( \Omega)}^p\leq C(J(v_n)+\left \|{ \mu}\right \|_{(W_0^{s,p}( \Omega))^*}^{p'}),\qquad\forall n\in{\mathbb N}. \end{align} | (3.2) |
This implies that v_n is uniformly bounded in W_0^{s, p}(\Omega). Thus, by the fractional Sobolev embedding theorem (see e.g., [13, Corollary 7.2]) and the fact that W_0^{s, p}(\Omega) is a reflexive Banach space, we may prove the existence of a subsequence, still denoted by \{v_{n}\} and a function v\in W^{s, p}_0(\Omega) such that there hold:
(ⅰ) v_{n}\to v a.e. in {\mathbb R}^N.
(ⅱ) v_{n}\rightharpoonup v in W_0^{s, p}(\Omega) and v_{n}\rightarrow v in W^{h, q}({\mathbb R}^N) for any h\in(0, s) and q\in(1, p).
By Fatou's lemma, we obtain
\begin{align*} &\frac{1}{p}\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|v(x)-v(y)|^pK(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_{ \Omega}G(v){{\mathrm{d}}} x\\ &\qquad\qquad\leq\liminf\limits_{k\to \infty}\frac{1}{p}\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|v_k(x)-v_k(y)|^pK(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_{ \Omega}G(v_k){{\mathrm{d}}} x. \end{align*} |
Hence v is a minimizer. If g is nondecreasing, the uniqueness of the minimizer follows by the fact that J is strictly convex.
We next show (3.1). Let v_k be the minimizer of J associated with g_k = \max(-k, \min(g, k)). Then, in view of the proof of [11, Theorem 2.3], v_k satisfies
\begin{align} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|v_k(x)-v_k(y)|^{p-2}(v_k(x)-v_k(y))( \zeta(x)- \zeta(y))K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_ \Omega g_k(v_k) \zeta {{\mathrm{d}}} x = < \mu, \zeta > \end{align} | (3.3) |
for any \zeta\in W^{s, p}_0(\Omega). Taking v_k as test function, we have
\begin{align*} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|v_k(x)-v_k(y)|^{p}K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y&+ \int_ \Omega g(v_k)v_k {{\mathrm{d}}} x = < \mu, v_k > \\ &\leq \frac{1}{p}\left \|{v_k}\right \|_{W_0^{s,p}( \Omega)}^p+\frac{1}{p'}\left \|{ \mu}\right \|_{(W_0^{s,p}( \Omega))^*}^{p'}, \end{align*} |
which implies
\begin{align} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|v_k(x)-v_k(y)|^{p}}{|x-y|^{N+sp}}{{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_ \Omega g_k(v_k)v_k {{\mathrm{d}}} x\leq C( \Lambda_K,p)\left \|{ \mu}\right \|_{(W_0^{s,p}( \Omega))^*}^{p'} = : M. \end{align} | (3.4) |
By the above inequality, we may deduce that there exists a subsequence, still denoted by \{v_{k}\} and a function v\in W^{s, p}_0(\Omega) such that they satisfy statements (ⅰ) and (ⅱ).
Let \zeta\in L^\infty(\Omega) with \left \|{ \zeta}\right \|_{L^\infty(\Omega)} = N and E\subset \Omega be a Borel set. Then, for any \lambda > 0, we have
\int_{E\cap\{|v_k| > \lambda\}}| \zeta g_k(v_k)|{{\mathrm{d}}} x\leq\frac{1}{ \lambda} \int_{E\cap\{v_k > \lambda\}}| \zeta| |v_k g_k(v_k)|{{\mathrm{d}}} x\leq \frac{N}{ \lambda}\int_{ \Omega} v_k g_k(v_k){{\mathrm{d}}} x\leq \frac{MN}{ \lambda}. |
Also,
\int_{E\cap\{|u_k|\leq \lambda\}}| \zeta g_k(v_k)|{{\mathrm{d}}} x\leq |E|N\sup\{|g(t)|:|t|\leq \lambda\}. |
Let \varepsilon > 0, \lambda = \frac{2MN}{ \varepsilon} and \delta = \frac{ \varepsilon}{2N\sup\{|g(t)|:|t|\leq\frac{2MN}{ \varepsilon}\}+1} . Then for any Borel set E\subset \Omega with |E| < \delta , we have
\int_{E}| \zeta g_k(v_k)|{{\mathrm{d}}} x < \varepsilon. |
Thus, by Vitali's theorem, we conclude
\begin{align} \int_ \Omega g_{k}(v_{k}) \zeta {{\mathrm{d}}} x\to \int_ \Omega g(v) \zeta {{\mathrm{d}}} x. \end{align} | (3.5) |
Combining all above, we obtain that v satisfies (3.1).
Now for any u\in \mathbf{X}_G(\Omega), we have that u\in \mathbf{X}_{G_{k}}(\Omega), G_{k}(u)\leq G(u) and
\begin{align*} &\frac{1}{p}\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|v_{k}(x)-v_{k}(y)|^pK(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_{ \Omega}G_{k}(v_{k}){{\mathrm{d}}} x- < \mu, v_{k} > \\ &\qquad\leq \frac{1}{p}\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|u(x)-u(y)|^pK(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_{ \Omega}G_{k}(u){{\mathrm{d}}} \sigma- < \mu, u > , \end{align*} |
where G_{k}(r) = \int_0^rg_{k}(s){{\mathrm{d}}} s. By the above inequality and Fatou's Lemma, we deduce that v is a minimizer of J in \mathbf{X}_G(\Omega).
Let g be nondecreasing and u_ \nu be the minimizer of J associated with \nu\in (W^{s, p}_0(\Omega))^*, such that \nu\leq \mu. Then, using v_k = \min\{(u_ \nu-u_ \mu)_+, k\} as test function, we have that
\begin{align*} &\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|u_ \nu(x)-u_ \nu(y)|^{p-2}(u_ \nu(x)-u_ \nu(y))(v_k(x)-v_k(y))K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y\\ &\qquad-\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|u_ \mu(x)-u_ \mu(y)|^{p-2}(u_ \mu(x)-u_ \mu(y))(v_k(x)-v_k(y))K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y\\ &\qquad\qquad = - \int_ \Omega (g(u_ \nu)-g(u_ \mu))v_k {{\mathrm{d}}} x+ < \nu- \mu,v_k > \leq0. \end{align*} |
Letting k\to\infty in the above inequality and then proceeding as in the proof of [23, Lemma 6], we obtain that u_ \nu\leq u_ \mu a.e. in {\mathbb R}^N.
When \mu\in L^{p'}(\Omega), we derive the following result which will be useful in the next subsection.
Lemma 3.2. Let \mu\in L^{p'}(\Omega), g\in C({\mathbb R}^N) be a nondecreasing function with g(0) = 0 and u\in W^{s, p}_0(\Omega) satisfy (3.1). Then there holds,
\begin{align} \int_ \Omega |g(u)|{{\mathrm{d}}} x\leq \int_{ \Omega}| \mu|{{\mathrm{d}}} x. \end{align} | (3.6) |
In addition, if we assume that \mu\geq0, then u\geq0 a.e. in {\mathbb R}^N.
Proof. Let k > 0. Using \phi_k = \tanh(ku) as test function in (3.1), we obtain
\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}|u(x)-u(y)|^{p-2}(u(x)-u(y))( \phi_k(x)- \phi_k(y))K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y+ \int_ \Omega g(u) \phi_k {{\mathrm{d}}} x = \int_{ \Omega} \mu \phi_k {{\mathrm{d}}} x. |
If \infty > u(x) > u(y) > -\infty, then there exists \xi\in (u(y), u(x)) such that
\phi_k(x)- \phi_k(y) = (1-\tanh^2(k\xi))(u(x)-u(y))\geq c(\xi,k)(u(x)-u(y)). |
Combining the last two displays, we can easily obtain that
\int_ \Omega g(u) \phi_k {{\mathrm{d}}} x\leq\int_{ \Omega}| \mu| {{\mathrm{d}}} x. |
Since g(u) \phi_k\geq 0 a.e. in \Omega, by Fatou's lemma and the above inequality, we can easily deduce (3.6).
In this subsection, we always assume that s\in(0, 1), 1 < p < \frac{N}{s} and g\in C({\mathbb R}) is nondecreasing such that g(0) = 0.
Lemma 3.3. Let g\in L^\infty({\mathbb R}) and \lambda_i\in \mathfrak{M}_b^+(\Omega) ( i = 1, 2 ). Then there exist very weak solutions u, u_i ( i = 1, 2 ) to problems
\begin{align} \left\{ \begin{aligned} Lu +g(u)& = \lambda_{1}- \lambda_{2},\quad&&\mathit{\text{in}}\;\; \Omega,\\ u& = 0,\quad &&\mathit{\text{in}}\;{\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align} | (3.7) |
\begin{align} \left\{ \begin{aligned} L u_1 +g(u_1)& = \lambda_{1},\quad&&\mathit{\text{in}}\;\; \Omega,\\ u& = 0,\quad &&\mathit{\text{in}}\;{\mathbb R}^N\setminus \Omega \end{aligned}\right. \end{align} | (3.8) |
and
\begin{align} \left\{ \begin{aligned} L u_{2}-g(-u_2)& = \lambda_{2},\quad&&\mathit{\text{in}}\;\; \Omega,\\ u& = 0,\quad &&\mathit{\text{in}}\;{\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align} | (3.9) |
such that there hold
\begin{align} u_1,u_2\geq0\quad\mathit{\text{and}}\quad-u_2\leq u\leq u_1,\quad\mathit{\text{a.e. in}}\;\;{\mathbb R}^N. \end{align} | (3.10) |
In addition, for any q\in(0, \frac{N(p-1)}{N-s}) and h\in(0, s), there exists a positive constant c = c(N, p, s, \Lambda_K, q, h, | \Omega|) such that
\begin{align} \begin{aligned} \left(\int_ \Omega |g(u)|{{\mathrm{d}}} x\right)^\frac{1}{p-1}&+\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|u(x)-u(y)|^q}{|x-y|^{N+hq}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^\frac{1}{q}\leq c( \lambda_1( \Omega)+ \lambda_2( \Omega))^\frac{1}{p-1} \end{aligned} \end{align} | (3.11) |
and
\begin{align} \begin{aligned} \left(\int_ \Omega |g((-1)^{i+1}u_i)|{{\mathrm{d}}} x\right)^\frac{1}{p-1} &+\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|u_i(x)-u_i(y)|^q}{|x-y|^{N+hq}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^\frac{1}{q}\leq c \lambda_i( \Omega)^\frac{1}{p-1}. \end{aligned} \end{align} | (3.12) |
Finally, there exist very weak solutions v_i to (2.2) with \mu = \lambda_i (i = 1, 2) such that
\begin{align} 0\leq u_i\leq v_i\leq C_i W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \lambda_i],\quad\mathit{\text{a.e. in}}\;\; \Omega, \end{align} | (3.13) |
where C_i is a positive constant depending only on p, s, \Lambda_K and N.
Proof. Let \{ \rho_n\}_{1}^\infty be a sequence of mollifiers and \lambda_{n, i} = \rho_n* \lambda_i. Then \lambda_{n, i}\in C_0^\infty({\mathbb R}^N). By Proposition 3.1, there exist unique solutions u_n, u_{n, i}, v_{n, i}\in W^{s, p}_0(\Omega) to the following problems
\begin{align*} \left\{ \begin{aligned} L u_n +g(u_n)& = \lambda_{n,1}- \lambda_{n,2},\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
\begin{align*} \left\{ \begin{aligned} L u_{n,1} +g(u_{n,1})& = \lambda_{n,1},\quad\text{in}\;\; \Omega,\\ u& = 0,\quad\quad \text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
\begin{align*} \left\{ \begin{aligned} L u_{n,2} -g(-u_{n,2})& = \lambda_{n,2},\quad\text{in}\;\; \Omega,\\ u& = 0,\quad\quad \text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
and
\begin{align*} \left\{ \begin{aligned} L v_{n,i}& = \lambda_{n,i}\quad&&\text{in}\;\; \Omega\\ u& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
such that there holds
\begin{align} -v_{n,2}\leq-u_{n,2}\leq u_n\leq u_{n,1}\leq v_{n,1},\quad\text{a.e. in} \;\;{\mathbb R}^N. \end{align} | (3.14) |
By Lemma 3.2 and Proposition 2.7, for any q\in(0, \frac{N(p-1)}{N-s}) and h\in(0, s), there exists a positive constant c = c(N, p, s, \Lambda_K, q, h, | \Omega|) such that
\begin{align} \begin{aligned} \left(\int_ \Omega |g(u_n)|{{\mathrm{d}}} x\right)^\frac{1}{p-1}+\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|u_n(x)-u_n(y)|^q}{|x-y|^{N+hq}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^\frac{1}{q}\leq c\bigg(\int_ \Omega \lambda_{n,1}+ \lambda_{n,2}{{\mathrm{d}}} x\bigg)^\frac{1}{p-1}, \end{aligned} \end{align} | (3.15) |
\begin{align} \begin{aligned} \left(\int_ \Omega |g(u_{n,1})|{{\mathrm{d}}} x\right)^\frac{1}{p-1}+\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|u_{n,1}(x)-u_{n,1}(y)|^q}{|x-y|^{N+hq}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^\frac{1}{q}\leq c\bigg(\int_ \Omega \lambda_{n,1}{{\mathrm{d}}} x\bigg)^\frac{1}{p-1}, \end{aligned} \end{align} | (3.16) |
\begin{align} \begin{aligned} \left(\int_ \Omega |g(-u_{n,2})|{{\mathrm{d}}} x\right)^\frac{1}{p-1}+\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|u_{n,2}(x)-u_{n,2}(y)|^q}{|x-y|^{N+hq}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^\frac{1}{q}\leq c\bigg(\int_ \Omega \lambda_{n,2}{{\mathrm{d}}} x\bigg)^\frac{1}{p-1} \end{aligned} \end{align} | (3.17) |
and
\begin{align} \left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|v_{n,i}(x)-v_{n,i}(y)|^q}{|x-y|^{N+hq}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^\frac{1}{q} \leq c\bigg(\int_ \Omega \lambda_{n,i}{{\mathrm{d}}} x\bigg)^\frac{1}{p-1}. \end{align} | (3.18) |
Furthermore, in view of the proof of (2.16), we have that T_k(u_n), T_k(u_{n, i}), T_k(v_{n, i})\in W^{s, p}_0(\Omega) and satisfy (2.19) with \mu = \lambda_1+ \lambda_2.
Since the sequences \{ \lambda_{n, i}\}_{n} are uniformly bounded in \mathfrak{M}_b(\Omega), as in the proof of Proposition 2.8, we may show that there exist subsequences, still denoted by the same index, such that u_n\to u, u_{n, i}\to u_i v_{n, i}\to v_i in W^{h, q}({\mathbb R}^N) and a.e. in {\mathbb R}^N. In addition, we may prove that T_k(u), T_k(u_{i}), T_k(v_{i})\in W^{s, p}_0(\Omega) for any k > 0. Finally, by dominated convergence theorem, we deduce that g(u_{n})\to g(u), g(u_{n, 1})\to g(u_{1}), g(-u_{n, 2})\to g(-u_{2}) in L^1(\Omega) . Hence, combining all above, we can easily show that u, u_i are very weak solutions of problems (3.7)–(3.9) respectively and v_i are very weak solutions of problem (2.2) with \mu = \lambda_i (i = 1, 2). By proceeding as in the proof of Proposition 2.10 and using (3.14), we derive (3.13).
Estimates (3.11) and (3.12) follow by (3.15), (3.16) and Fatou's lemma.
Lemma 3.4. Let \lambda_i\in \mathfrak{M}_b^+(\Omega) for i = 1, 2. We also assume that g((-1)^{1+i} C W_{s, p}^{2R}[ \lambda_i])\in L^1(\Omega), where C is the constant in Proposition 2.10. Then the conclusion of Lemma 3.3 holds true.
Proof. Let T_n(t) = \max(-n, \min(t, n)) for any n\in{\mathbb N}. By Lemma 3.3, there exist very weak solutions u_n, u_{n, i}, v_{n, i}\in W^{s, p}_0(\Omega) of the following problems
\begin{align*} \left\{ \begin{aligned} L u_n +T_nog(u_n)& = \lambda_1- \lambda_2\quad&&\text{in}\;\; \Omega\\ u& = 0\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
\begin{align*} \left\{ \begin{aligned} L u_{n,1} +T_nog(u_{n,1})& = \lambda_1,\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad&&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
\begin{align*} \left\{ \begin{aligned} L u_{n,2} -T_nog(-u_{n,2})& = \lambda_2,\quad &&\text{in}\;\; \Omega,\\ u& = 0,\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega \end{aligned}\right. \end{align*} |
and
\begin{align*} \left\{ \begin{aligned} L v_{i}& = \lambda_{i},\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
such that there holds
\begin{align*} -C W_{1,p}^{2 \mathrm{diam}\,( \Omega)}[ \lambda_2]\leq-v_{2}\leq-u_{n,2}\leq u_n\leq u_{n,1}\leq v_{1}\leq C W_{1,p}^{2 \mathrm{diam}\,( \Omega)}[ \lambda_1],\quad\text{a.e. in}\;\; {\mathbb R}^N \end{align*} |
and for any n\in {\mathbb N}. The rest of the proof can proceed similarly to the proof of Lemma 3.3 and we omit it.
Proposition 3.5. Assume
\begin{align} \Lambda_{g}: = \int_1^\infty s^{-\tilde q-1} (g(s)-g(-s)) {{\mathrm{d}}} s < \infty \end{align} | (3.19) |
for \tilde q > 0. Let v be a measurable function defined in \Omega. For s > 0 , set
E_s(v): = \{x\in \Omega:| v(x)| > s\} \quad \mathit{\text{and}} \quad e(s): = |E_s(v)|. |
Assume that there exists a positive constant C_0 such that
\begin{align} e(s) \leq C_0s^{-\tilde q}, \quad \forall s\geq1. \end{align} | (3.20) |
Then for any s_0\geq1, there hold
\begin{align*} \left \|{g(|v|)}\right \|_{L^1(\Omega)}&\leq \int_{\Omega \setminus E_{s_0}(v)} g(|v|)d x+\tilde q C_0\int_{s_0}^\infty s^{-\tilde q-1} g(s) {{\mathrm{d}}} s, \\ \left \|{g(-|v|)}\right \|_{L^1(\Omega)}&\leq -\int_{\Omega \setminus E_{s_0}(v)} g(-|v|){{\mathrm{d}}} x-\tilde q C_0\int_{s_0}^\infty s^{-\tilde q-1}g(-s) {{\mathrm{d}}} s. \end{align*} |
Proof. The proof is very similar to the one of [16, Lemma 5.1] and we omit it.
Proof of Theorem 1.2. Let \lambda_1 = \mu^+ and \lambda_2 = \mu^-. By Lemma 3.3, there exist very weak solutions u_n, v_{i} of the following problems
\begin{align*} \left\{ \begin{aligned} L u_n +T_nog(u_n)& = \lambda_1- \lambda_2,\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega \end{aligned}\right. \end{align*} |
and
\begin{align*} \left\{ \begin{aligned} L v_{i}& = \lambda_{i},\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
such that there holds
\begin{align*} -v_{2}\leq u_n\leq v_{1},\quad\text{a.e. in}\;\; {\mathbb R}^N\;\;\text{and}\;\;\forall n\in {\mathbb N}. \end{align*} |
Also, taking into consideration that g in nondecreasing with g(0) = 0 , we may show that T_k(u_n), T_k(v_i) satisfy (2.19) with \mu = \lambda_1+ \lambda_2. In addition, by (2.15), there holds
\left \|{v_1^{p-1}}\right \|^{*}_{L^{\frac{N}{N-sp}}_w({\mathbb R}^N)}+ \left \|{v_2^{p-1}}\right \|^{*}_{L^{\frac{N}{N-sp}}_w({\mathbb R}^N)}\leq C_1(N,p,s, \Lambda_K)( \lambda_1( \Omega)+ \lambda_2( \Omega)). |
By (2.7) and Proposition 3.5, we have that |T_nog(u_n)|\leq g(v_1)-g(-v_2) and
\begin{align*} \left \|{T_nog(u_n)}\right \|_{L^1(\Omega)}&\leq \left \|{g(v_1)}\right \|_{L^1(\Omega)}+\left \|{g(-v_2)}\right \|_{L^1(\Omega)}\\ & \leq (g(s_0)-g(s_0))| \Omega|\\ & +\tilde q C_1(N,p,s, \Lambda_K, \Lambda_g)( \lambda_1( \Omega)+ \lambda_2( \Omega))^\frac{N(p-1)}{N-sp}\int_{s_0}^\infty s^{-\tilde q-1} (g(s)-g(-s) {{\mathrm{d}}} s,\quad\forall n\in {\mathbb N}, \end{align*} |
where \tilde q = \frac{N(p-1)}{N-sp}. The desired result follows by proceeding as in the proof of Lemma 3.3.
In order to prove Theorem 1.3, we need to introduce some notations concerning the Bessel capacities, we refer the reader to [1] for more detail. For {\alpha}\in{\mathbb R} we define the Bessel kernel of order {\alpha} by G_{{\alpha}}(\xi) = {{\mathcal F}}^{-1}(1+|.|^2)^{-\frac{{\alpha}}{2}}(\xi) , where {{\mathcal F}} is the Fourier transform of moderate distributions in {\mathbb R}^N . For any \beta > 1, the Bessel space L_{{\alpha}, \beta}({\mathbb R}^N) is given by
L_{{\alpha}, \beta}({\mathbb R}^N): = \{f = G_{\alpha} \ast g:g\in L^{ \beta}({\mathbb R}^N)\}, |
with norm
\|f\|_{L_{ \alpha, \beta}({\mathbb R}^N)}: = \|g\|_{L^ \beta({\mathbb R}^N)} = \|G_{-{\alpha}}\ast f\|_{L^ \beta({\mathbb R}^N)}. |
The Bessel capacity is defined as follows.
Definition 3.6. Let \alpha > 0, 1 < \beta < \infty and E\subset{\mathbb R}^N. Set
\mathcal{S}_E: = \{g\in L^ \beta({\mathbb R}^N):\;g\geq0,\;G_{\alpha} \ast g(x)\geq 1\;\;\text{for any}\;x\in E\}. |
Then
\begin{align} \mathrm{Cap}_{{{\alpha}, \beta}}(E): = \inf\{\|g\|^ \beta_{L^ \beta({\mathbb R}^N)}; g\in \mathcal{S}_E \}. \end{align} | (3.21) |
If \mathcal{S}_E = \emptyset, we set \mathrm{Cap}_{{{\alpha}, \beta}}(E) = \infty.
In the sequel, we denote by L_{- \alpha, \beta'}({\mathbb R}^N) the dual of L_{ \alpha, \beta}({\mathbb R}^N) and we set
{\mathbb G}_{{\alpha}}[ \mu](x) = \int_{{\mathbb R}^N}G_{{\alpha}}(x,y){{\mathrm{d}}} \mu(y),\quad\forall \mu\in \mathfrak{M}(\mathbb{R}^N). |
Proof of Theorem 1.3. Since \mu is absolutely continuous with respect to the capacity \mathrm{Cap}_{{sp, \frac{ \kappa}{ \kappa-p+1}}}, the measures \mu^+, \mu^- have the same property. Thus, by [5, Theorem 2.5] (see also [3]), there are nondecreasing sequences \{ \mu_{n}^\pm\}_n\subset L^{-sp, \frac{ \kappa}{p-1}}({\mathbb R}^N)\cap\mathfrak{M}^+_b({\mathbb R}^N) with compact support in \Omega, such that they converge to \mu^\pm in the narrow topology. Furthermore, by [5, Theorem 2.3] (see also [1, Corollary 3.6.3]),
\left \|{ W^{2 \mathrm{diam}\,( \Omega)}_{ \alpha, p}[{\mu}_n^\pm]}\right \|_{L^{ \kappa}({\mathbb R}^N)}^{ \kappa}\approx \left \|{{\mathbb G}_{sp}[ \mu_n^\pm]}\right \|_{L^{\frac{ \kappa}{p-1}}({\mathbb R}^N)}^{\frac{ \kappa}{p-1}} < \infty. |
By Lemma 3.4, there exist solutions u_n, u_{n, i}, v_i to the problems
\begin{align} \left\{ \begin{aligned} Lu_n +|u_n|^{ \kappa-1}u_n& = \lambda_{n,1}- \lambda_{n,2},\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align} | (3.22) |
\begin{align} \left\{ \begin{aligned} L u_{n,1} +|u_{n,1}|^{ \kappa-1}u_{n,1}& = \lambda_{n,1},\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align} | (3.23) |
\begin{align} \left\{ \begin{aligned} L u_{n,2} +|u_{n,2}|^{ \kappa-1}u_{n,2}& = \lambda_{n,2},\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align} | (3.24) |
and
\begin{align*} \left\{ \begin{aligned} L v_{n,i}& = \lambda_{n,i},\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
such that there holds
\begin{align} \begin{aligned} -v_{n,2}\leq-u_{n,2}&\leq u_n\leq u_{n,1}\leq v_{n,1},\quad\text{a.e. in}\;\;{\mathbb R}^N. \end{aligned} \end{align} | (3.25) |
Furthermore, in view of the proof of Lemmas 3.3 and 3.4, the sequences \{u_{n, i}\}, \{v_{n, i}\} satisfy (3.15)–(3.18) with g(t) = |t|^ \kappa \mathrm{sign}(t), \lambda_{n, 1} = \mu_n^+ and \lambda_{n, 2} = \mu_n^-, as well as they can be constructed such that
\begin{align} u_{n,i}\leq u_{n+1,i}\quad\text{and}\quad v_{n,i}\leq v_{n+1,i},\quad \text{a.e. in}\;{\mathbb R}^N, \forall n\in{\mathbb N}\;\text{and}\;i = 1,2. \end{align} | (3.26) |
By (3.15) and (3.16) with g(t) = |t|^ \kappa \mathrm{sign}(t), \lambda_{n, 1} = \mu_n^+ and \lambda_{n, 2} = \mu_n^-, we have
\int_ \Omega |u_{n,1}|^ \kappa{{\mathrm{d}}}\leq \mu^+( \Omega)\quad\text{and}\quad \int_ \Omega |u_{n,2}|^ \kappa{{\mathrm{d}}}\leq \mu^-( \Omega),\quad\forall n\in{\mathbb N}. |
By (3.15)–(3.18) with g(t) = |t|^ \kappa \mathrm{sign}(t), \lambda_{n, 1} = \mu_n^+ and \lambda_{n, 2} = \mu_n^-, there are subsequences, still denoted by the same index, such that u_n\to u, u_{n, i}\to u_i v_{n, i}\to v in W^{h, q}({\mathbb R}^N) and a.e. in {\mathbb R}^N. In addition, T_k(u), T_k(u_i), T_k(v_i)\in W^{s, p}_0({\mathbb R}^N) and
\int_ \Omega |u_1|^k{{\mathrm{d}}} x\leq \mu^+( \Omega),\quad\text{and}\quad \int_ \Omega |u_2|^k{{\mathrm{d}}} x\leq \mu^-( \Omega). |
Therefore, by dominated convergence theorem, we obtain that |u_{n}|^ \kappa\to |u|^ \kappa, |u_{n, 1}|^ \kappa\to |u_{1}|^ \kappa, |u_{n, 2}|^ \kappa\to |u_{2}|^ \kappa in L^1(\Omega) . This, implies that u, u_i are very weak solutions of problems (3.7)–(3.9) respectively and v_i are very weak solution of problem (2.2) with \mu = \lambda_i, where \lambda_1 = \mu^+ and \lambda_2 = \mu^-.
Estimate (1.13) follows by (3.25) and (3.13). Estimate (1.14) follows by (3.15) with g(t) = |t|^ \kappa \mathrm{sign}(t), \lambda_{n, 1} = \mu_n^+, \lambda_{n, 2} = \mu_n^- and Fatou's lemma.
In this subsection, we investigate the existence of solutions to the following problem
\begin{align} \left\{ \begin{aligned} L v& = g(v)+ \rho\tau,\quad&&\text{in}\;\; \Omega,\\ v& = 0,\quad &&\text{in}\;\;{\mathbb R}^N\setminus \Omega, \end{aligned} \right. \end{align} | (4.1) |
where \rho > 0, g\in C({\mathbb R}) is a nondecreasing function and
\begin{align} |g(t)|\leq a|t|^d \quad \text{for some } a > 0,\; d > p-1 \text{ and for any } |t|\leq 1. \end{align} | (4.2) |
Let us state the first existence result.
Lemma 4.1. Let 1 < p < \frac{N}{s} and \tau \in C_0^\infty({\mathbb R}^N) be such that \left \|{{\tau}}\right \|_{L^1({\mathbb R}^N)}\leq 1. Assume that g \in L^\infty(\Omega) \cap C({\mathbb R}) satisfies (3.19) for
\tilde q = \frac{N(p-1)}{N-sp}. |
In addition, we assume that g is nondecreasing and satisfies (4.2).
Then there exists a positive constant \rho_0 depending on N, \Omega, {\Lambda}_{g}, \Lambda_K, a, d, p, s such that for every \rho \in (0, \rho_0), problem (4.1) admits a weak solution v\in W^{s, p}_0(\Omega) satisfying
\begin{align} \||v|^{p-1}\|_{L_w^{\frac{N}{N-sp}}({\Omega})} \leq t_0, \end{align} | (4.3) |
where t_0 > 0 depends on N, \Omega, {\Lambda}_{g}, \Lambda_K, a, d, p, s .
Proof. We shall use Schauder fixed point theorem to show the existence of a positive weak solution of (4.1).
Let 1 < \kappa < \min\{\frac{N}{N-sp}, \frac{d}{p-1}\} and v\in L^1(\Omega). Since g\in L^\infty(\Omega), we can easily show that the following problem
\begin{align} \left\{ \begin{aligned} Lu& = g(|v|^{\frac{1}{p-1}} \mathrm{sign}(v))+ \rho\tau,\quad&&\text{in}\;\; \Omega,\\ u& = 0,\quad&&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned} \right. \end{align} | (4.4) |
admits a unique weak solution {\mathbb T}(v)\in W_0^{s, p}(\Omega). We define the operator {\mathbb S} by
\begin{equation} {\mathbb S}(v): = |{\mathbb T}(v)|^{p-1} \mathrm{sign}({\mathbb T}(v)),\quad \forall v \in L^{1}({\Omega}). \end{equation} | (4.5) |
By (2.8), we obtain
\begin{align} \begin{aligned} \|{\mathbb S}(v)\|_{L_w^{\frac{N}{N-sp}}({\Omega})} &\leq C(s,p,N, \Lambda_K) \left( \rho\int_ \Omega|\tau|{{\mathrm{d}}} x+\int_{ \Omega}|g(|v|^{\frac{1}{p-1}} \mathrm{sign}(v))|{{\mathrm{d}}} x\right)\\ &\leq C(s,p,N, \Lambda_K)\left( \rho+\int_{ \Omega}g(|v|^{\frac{1}{p-1}})-g(-|v|^{\frac{1}{p-1}}){{\mathrm{d}}} x\right). \end{aligned} \end{align} | (4.6) |
Let v \in L_w^{\frac{N}{N-sp}}({\Omega}) . For any \lambda > 0 , we set E_ \lambda: = \{x\in \Omega: |v(x)|^{\frac{1}{p-1}} > \lambda\} and e(\lambda) = \int_{E_ \lambda}{{\mathrm{d}}} x . By (2.4) and (2.6), we can easily show that
e( \lambda)\leq C(N,s,p)\left \|{v}\right \|_{L_w^{\frac{N}{N-sp}}({\Omega})}^{\frac{N}{N-sp}} \lambda^{-\frac{N(p-1)}{N-sp}}. |
By the above inequality and Lemma 3.5 with \lambda_0 = 1 and \tilde q = \frac{N(p-1)}{N-sp}, we deduce
\int_{ \Omega}g(|v|^{\frac{1}{p-1}})-g(-|v|^{\frac{1}{p-1}}){{\mathrm{d}}} x \leq 2a \int_{ \Omega} |v|^{ \kappa}{{\mathrm{d}}} x +C(p,s,N)\left \|{v}\right \|_{L_w^{\frac{N}{N-sp}}({\Omega})}^\frac{N}{N-sp} \Lambda_g. |
Let \lambda = \left \|{v}\right \|_{L_w^{\frac{N}{N-sp}}({\Omega})} . By (2.6), we have that
\begin{align*} \int_{ \Omega} |v|^{ \kappa}{{\mathrm{d}}}& = \int_0^\infty |\{x\in \Omega:\;|v|\geq t\}|{{\mathrm{d}}} t^ \kappa\\ & = \int_0^ \lambda |\{x\in \Omega:\;|v|\geq t\}|{{\mathrm{d}}} t^ \kappa+\int_ \lambda^\infty |\{x\in \Omega:\;|v|\geq t\}|{{\mathrm{d}}} t^ \kappa\\ &\leq | \Omega| \lambda^ \kappa+ \kappa \lambda^{\frac{N}{N-sp}}\int_{ \lambda}^\infty t^{ \kappa-\frac{N}{N-sp}-1} {{\mathrm{d}}} t \leq C( \Omega, \kappa,s,p,N) \lambda^k. \end{align*} |
Combining all above, we may prove that
\|{\mathbb S}(v)\|_{L_w^{\frac{N}{N-sp}}({\Omega})} \leq C(p,N, \kappa,| \Omega|, \Lambda_{g}, \Lambda_K,a) \bigg( \rho+\left \|{v}\right \|_{L_w^{\frac{N}{N-sp}}({\Omega})}^\frac{N}{N-sp}+\left \|{v}\right \|_{L_w^{\frac{N}{N-sp}}({\Omega})}^ \kappa\bigg). |
Therefore, if \left \|{v}\right \|_{L_w^{\frac{N}{N-sp}}({\Omega})}\leq t then
\begin{align} \|{\mathbb S}(v)\|_{L_w^{\frac{N}{N-sp}}({\Omega})} \leq C\left(t^{\frac{N}{N-sp}}+t^{ \kappa} + \rho\right). \end{align} | (4.7) |
Since 1 < \kappa < \frac{N}{N-sp} , there exist t_0 > 0 and \rho_0 > 0 depending on |{\Omega}|, {\Lambda}_g, p, \kappa, N, a such that for any t\in(0, t_0] and \rho \in (0, \rho_0), the following inequality holds
C\left(t^{\frac{N}{N-sp}}+t^{ \kappa}+ \rho\right) \leq t_0, |
where C is the constant in (4.7). Hence,
\begin{equation} \label{{ul11}} \|v\|_{L_w^{\frac{N}{N-sp}}({\Omega})} \leq t_0 \Longrightarrow \|{\mathbb S}(v)\|_{L_w^{\frac{N}{N-sp}}({\Omega})}\leq t_0. \end{equation} | (4.8) |
Next, we apply Schauder fixed point theorem to our setting.
We claim that {\mathbb S} is continuous. First we assume that v_n\rightarrow v in L^1({\Omega}) and {\mathbb T}(v_n)\to {\mathbb T}(v) in W^{1, p}_0(\Omega), then by fractional Sobolev inequality, we have
\begin{align} \begin{aligned} \int_ \Omega |{\mathbb T}(v_n)-{\mathbb T}(v)| {{\mathrm{d}}} x&\leq | \Omega|^{\frac{pN-N+sp}{N p}}\left \|{{\mathbb T}(v_n)-{\mathbb T}(v)}\right \|_{L^{\frac{Np}{N-sp}}( \Omega)}\\ &\leq C| \Omega|^{\frac{pN-N+sp}{N p}}\left \|{{\mathbb T}(v_n)-{\mathbb T}(v)}\right \|_{W^{1,p}_0( \Omega)}\to 0. \end{aligned} \end{align} | (4.9) |
Let k > 0 and \varepsilon > 0, then
\begin{align} \begin{aligned} \int_ \Omega |{\mathbb S}(v_n)-{\mathbb S}(v)| {{\mathrm{d}}} x& = \int_{\{x\in \Omega:\;|{\mathbb S}(v_n)(x)|\leq k\}\cap\{x\in \Omega:\;|{\mathbb S}(v)(x)|\leq k\}}\left|{\mathbb S}(v_n)-{\mathbb S}(v)\right|{{\mathrm{d}}} x\\ &+\int_{ \Omega\setminus(\{x\in \Omega:\;|{\mathbb S}(v_n)(x)|\leq k\}\cap\{x\in \Omega:\;|{\mathbb S}(v)(x)|\leq k\})}\left|{\mathbb S}(v_n)(x)-{\mathbb S}(v)(x)\right|{{\mathrm{d}}} x. \end{aligned} \end{align} | (4.10) |
By (4.6) and the fact that g\in L^\infty({\mathbb R}), we have that {\mathbb S}(v_n)\in L^{ \beta}(\Omega) and \{{\mathbb S}(v_n)\} is uniformly bounded in L^{ \beta}(\Omega) for any \beta\in (1, \frac{N}{N-sp}). Hence, there exists k_0\in{\mathbb N}, such that
\begin{align} \begin{aligned} \int_{ \Omega\setminus(\{x\in \Omega:\;|{\mathbb S}(v_n)(x)|\leq k\}\cap\{x\in \Omega:\;|{\mathbb S}(v)(x)|\leq k\})}\left|{\mathbb S}(v_n)-{\mathbb S}(v)\right|{{\mathrm{d}}} x\leq \frac{ \varepsilon}{3}\quad\forall k\geq k_0,\quad\text{and}\quad n\in{\mathbb N}. \end{aligned} \end{align} | (4.11) |
Now, we set
A_{k_0,n} = \{x\in \Omega:\;|{\mathbb T}(v_n)(x)|\leq k^{\frac{1}{p-1}}_0\}\cap\{x\in \Omega:\;|{\mathbb T}(v)(x)|\leq k^{\frac{1}{p-1}}_0\} |
and B_{ \delta, n} = \{x\in \Omega:\; |{\mathbb T}(v)(x)-{\mathbb T}(v_n)(x)|\leq \delta\}. Then, we have that
\begin{align} \begin{aligned} &\int_{ \Omega\cap\{x\in \Omega:\;|{\mathbb S}(v_n)|\leq k_0\}\cap\{x\in \Omega:\;|{\mathbb S}(v)|\leq k_0\}}\left|{\mathbb S}(v_n)-{\mathbb S}(v)\right|{{\mathrm{d}}} x\\ & = \int_{A_{k_0,n}\cap B_{ \delta,n}}\left||{\mathbb T}(v_n)|^{p-1} \mathrm{sign}({\mathbb T}(v_n))-|{\mathbb T}(v)|^{p-1} \mathrm{sign}({\mathbb T}(v))\right|{{\mathrm{d}}} x\\ &+\int_{A_{k_0,n}\setminus B_{ \delta,n}}\left||{\mathbb T}(v_n)|^{p-1} \mathrm{sign}({\mathbb T}(v_n))-|{\mathbb T}(v)|^{p-1} \mathrm{sign}({\mathbb T}(v))\right|{{\mathrm{d}}} x. \end{aligned} \end{align} | (4.12) |
Since h(t) = t^{p-1} \mathrm{sign}(t) is uniformly continuous in [-k_0, k_0], there exists \delta_0 > 0 independent of n such that
\begin{align} \begin{aligned} \int_{A_{k_0,n}\cap B_{ \delta_0,n}}\left||{\mathbb T}(v_n)|^{p-1} \mathrm{sign}({\mathbb T}(v_n))-|{\mathbb T}(v)|^{p-1} \mathrm{sign}({\mathbb T}(v))\right|{{\mathrm{d}}}x\leq \frac{ \varepsilon}{3}. \end{aligned} \end{align} | (4.13) |
Moreover, by (4.9), there exists n_0 = n_0(\delta_0, k_0, p)\in {\mathbb N} such that
\begin{align} \int_{A_{k_0,n_0}\setminus B_{ \delta_0,n_0}}\left||{\mathbb T}(v_{n_0})|^{p-1} \mathrm{sign}({\mathbb T}(v_{n_0}))-|{\mathbb T}(v)|^{p-1} \mathrm{sign}({\mathbb T}(v))\right|{{\mathrm{d}}}x\leq \frac{ \varepsilon}{3}. \end{align} | (4.14) |
Hence, combining (4.9)–(4.14), we obtain that {\mathbb S}(v_n)\to{\mathbb S}(v) in L^1(\Omega).
Therefore, it is enough to show that {\mathbb T}(v_n)\to {\mathbb T}(v) in W^{s, p}_0(\Omega). In order to prove this, we will consider two cases.
Case 1. 1 < p < 2. Let M: = \sup_{t\in{\mathbb R}}|g(t)|. We will show that {\mathbb T}(v_n)\to {\mathbb T}(v) in W^{s, p}_0(\Omega). Since {\mathbb T}(v_n), {\mathbb T}(v)\in W_0^{s, p}(\Omega) are weak solutions of (4.4) with v_n and v respectively, we have
\begin{align} \begin{aligned} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N}&|{\mathbb T}(v_n)(x)-{\mathbb T}(v_n)(y)|^{p}K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y = \int_ \Omega{\mathbb T}(v_n)(g(|v_n|^{\frac{1}{p-1}} \mathrm{sign}(v_n)){{\mathrm{d}}} x+\int_ \Omega{\mathbb T}(v_n)\tau {{\mathrm{d}}} x\\ &\leq M| \Omega|^{\frac{p-1}{p}}\left(\int_ \Omega|{\mathbb T}(v_n)|^{p} {{\mathrm{d}}} x\right)^{\frac{1}{p}} +\left(\int_ \Omega|{\mathbb T}(v_n)|^{p} {{\mathrm{d}}} x\right)^{\frac{1}{p}}\left(\int_ \Omega|\tau|^{\frac{p}{p-1}} {{\mathrm{d}}} x\right)^{\frac{p-1}{p}}\\ &\leq C_1(M, \Omega,p,N,\tau,s) \left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|{\mathbb T}(v_n)(x)-{\mathbb T}(v_n)(y)|^{p}}{|x-y|^{N+sp}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^{\frac{1}{p}}. \end{aligned} \end{align} | (4.15) |
Therefore,
\begin{align} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N}&\frac{|{\mathbb T}(v_n)(x)-{\mathbb T}(v_n)(y)|^{p}}{|x-y|^{N+sp}}{{\mathrm{d}}} x{{\mathrm{d}}} y\leq C_1^{\frac{p-1}{p}}(M, \Omega,p,N,\tau,s, \Lambda_K). \end{align} | (4.16) |
Using \phi = {\mathbb T}(v_n)-{\mathbb T}(v) as test function, we have
\begin{align} \begin{aligned} I&: = \int_{{\mathbb R}^N}\int_{{\mathbb R}^N}| {\mathbb T}(v_n)(x)-{\mathbb T}(v_n)(y)|^{p-2}({\mathbb T}(v_n)(x)-{\mathbb T}(v_n)(y))\left( \phi(x)- \phi(y)\right)K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y\\ &-\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}| {\mathbb T}(v)(x)-{\mathbb T}(v)(y)|^{p-2} ({\mathbb T}(v)(x)-{\mathbb T}(v)(y))\left( \phi(x)- \phi(y)\right)K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y\\ & = \int_ \Omega \phi(g(|v_n|^{\frac{1}{p-1}} \mathrm{sign}(v_n))-g(|v|^{\frac{1}{p-1}} \mathrm{sign}(v))){{\mathrm{d}}} x = :II. \end{aligned} \end{align} | (4.17) |
We first treat I. On one hand, since
(|a|^{p-2}a-|b|^{p-2}b)(a-b)\geq C(p)\frac{|a-b|^2}{(|a|+|b|)^{2-p}} |
for any (a, b)\in{\mathbb R}^{2N}\setminus\{(0, 0)\} and p\in(1, 2), we have
\begin{align} I\geq C(p)\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\left| \phi(x)- \phi(y)\right|^2\left(|{\mathbb T}(v_n)(x)-{\mathbb T}(v_n)(y)|+|{\mathbb T}(v)(x)-{\mathbb T}(v)(y)|\right)^{p-2}K(x,y){{\mathrm{d}}} x{{\mathrm{d}}} y. \end{align} | (4.18) |
On the other hand, by Hölder inequality, we obtain
\begin{align} \begin{aligned} &\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{\left| \phi(x)- \phi(y)\right|^p}{|x-y|^{N+sp}} {{\mathrm{d}}} x {{\mathrm{d}}} y\leq \Lambda_K\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\left| \phi(x)- \phi(y)\right|^pK(x,y) {{\mathrm{d}}} x {{\mathrm{d}}} y\\ &\leq C(p, \Lambda_K)\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\left(|{\mathbb T}(v_n)(x)-{\mathbb T}(v_n)(y)|+|{\mathbb T}(v)(x)-{\mathbb T}(v)(y)|\right)^{p} K(x,y){{\mathrm{d}}} x {{\mathrm{d}}} y\right)^{\frac{2-p}{2}} I^\frac{p}{2}\\ &\leq C(p,C_1, \Omega, \Lambda_K)I^\frac{p}{2}, \end{aligned} \end{align} | (4.19) |
where C_1 is the constant in (4.16). Hence, by (4.18) and (4.19), we obtain
\begin{align} C\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{\left| \phi(x)- \phi(y)\right|^p}{|x-y|^{N+sp}} {{\mathrm{d}}} x {{\mathrm{d}}} y\right)^{\frac{2}{p}}\leq I. \end{align} | (4.20) |
Next we treat II. Let r = \frac{N p}{N-sp}, proceeding as in the proof of (4.15), we have
\begin{align} \begin{aligned} II&\leq \left(\int_ \Omega| \phi|^{r}{{\mathrm{d}}}\right)^{\frac{1}{r}} \left(\int_ \Omega|g(|v_n|^{\frac{1}{p-1}} \mathrm{sign}(v_n))-g(|v|^{\frac{1}{p-1}} \mathrm{sign}(v))|^{r'}{{\mathrm{d}}}\right)^{\frac{1}{r'}}\\ &\leq C(N,p,s) \left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{\left| \phi(x)- \phi(y)\right|^p}{|x-y|^{N+sp}} {{\mathrm{d}}} x {{\mathrm{d}}} y\right)^{\frac{1}{p}} \\ & \times\left(\int_ \Omega|g(|v_n|^{\frac{1}{p-1}} \mathrm{sign}(v_n))-g(|v|^{\frac{1}{p-1}} \mathrm{sign}(v))|^{r'}{{\mathrm{d}}}\right)^{\frac{1}{r'}}, \end{aligned} \end{align} | (4.21) |
where in the last inequality we used the fractional Sobolev inequality.
Combining (4.17), (4.20) and (4.21), we obtain
\begin{align} \begin{aligned} &\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{\left| \phi(x)- \phi(y)\right|^p}{|x-y|^{N+sp}} {{\mathrm{d}}} x {{\mathrm{d}}} y\right)^{\frac{1}{p}}\\ &\qquad\qquad\qquad\leq C(p,C_1, \Omega,s, \Lambda_K)\left(\int_ \Omega|g(|v_n|^{\frac{1}{p-1}} \mathrm{sign}(v_n))-g(|v|^{\frac{1}{p-1}} \mathrm{sign}(v))|^{r'}{{\mathrm{d}}} \right)^{\frac{1}{r'}}. \end{aligned} \end{align} | (4.22) |
Since g\circ(|\cdot|^{p-1} \mathrm{sign}(\cdot)) is uniformly continuous in {\mathbb R}, bounded and v_n\to v in L^1(\Omega), we obtain
\lim\limits_{n\to\infty}\int_{ \Omega}|g(|v|^{\frac{1}{p-1}} \mathrm{sign}(v))-g(|v_n|^{\frac{1}{p-1}} \mathrm{sign}(v_n))|^{r'}{{\mathrm{d}}} x = 0, |
which, together with (4.22), implies the desired result.
Case 2. p\geq 2. We note here that
(|a|^{p-2}a-|b|^{p-2}b)(a-b)\geq C(p)|a-b|^p |
for any (a, b)\in{\mathbb R}^{2N} and p\geq2. Thus,
I\geq C(N,p, \Lambda_K)\left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{\left| \phi(x)- \phi(y)\right|^p}{|x-y|^{N+sp}} {{\mathrm{d}}} x {{\mathrm{d}}} y\right). |
By using a similar argument to the one in Case 1, we may show that {\mathbb T}(v_n)\to {\mathbb T}(v) in W^{s, p}_0(\Omega).
Next we claim that {\mathbb S} is compact. Indeed, let \{v_n\} be a sequence in L^1({\Omega}) then by (4.16), we obtain that {\mathbb T}(v_n) is uniformly bounded in W^{s, p}_0(\Omega). Hence there exists a subsequence still denoted by \{{\mathbb T}(v_n)\} such that {\mathbb T}(v_n)\rightharpoonup \psi in W^{s, p}_0(\Omega) and {\mathbb T}(v_n)\to \psi a.e. in {\mathbb R}^N. Furthermore, in view of (4.6), we can easily show that {\mathbb S}(v_n) = |{\mathbb T}(v_n)|^{p-1} \mathrm{sign}({\mathbb T}(v_n))\to |\psi|^{p-1} \mathrm{sign}(\psi) in L^1(\Omega).
Now set
\begin{equation} {{\mathcal O}}: = \{ v \in L^1({\Omega}):\; \left \|{v}\right \|_{L_w^{\frac{N}{N-sp}}({\Omega})} \leq t_0 \}. \end{equation} | (4.23) |
Then {{\mathcal O}} is a closed, convex subset of L^1({\Omega}) and by (4.8), {\mathbb S}({{\mathcal O}}) \subset {{\mathcal O}} . Thus we can apply Schauder fixed point theorem to obtain the existence of a function v \in {{\mathcal O}} such that {\mathbb S}(v) = v . This means that u = v^{\frac{1}{p-1}} \mathrm{sign}(v) is a solution of (4.1) satisfying (4.3).
Proof of Theorem 1.4. Let \{ \rho_n\}_{n = 1}^\infty be a sequence of mollifiers. Set \tau_n = \rho_n*\tau and g_n = \max(-n, \min(g, n)). Then g_n satisfies (1.9) with the same constant \Lambda_g. Thus, there exists a weak solution u_n\in W^{s, p}_0(\Omega) of
\begin{align*} \left\{ \begin{aligned} Lv& = g_n(v)+ \rho\tau_n,\quad&&\text{in}\;\; \Omega,\\ v& = 0,\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega. \end{aligned} \right. \end{align*} |
In addition, it satisfies
\begin{align} \||u_n|^{p-1}\|_{L_w^{\frac{N}{N-sp}}({\Omega})} \leq t_0, \end{align} | (4.24) |
where t_0 > 0 depends on N, {\Omega}, {\Lambda}_g, \Lambda_K, a, s, p, d.
By (4.24), we have that
|\{x\in \Omega:\;|u_n| > s\}|\leq t_0^{\frac{N}{N-sp}}s^{-\frac{N(p-1)}{N-sp}}. |
Hence by Proposition 3.5,
\int_ \Omega |g_n(u_n)|{{\mathrm{d}}} x\leq C,\quad\forall n\in {\mathbb N}, |
where C depends only on N, {\Omega}, {\Lambda}_g, \Lambda_K, a, s, p, d and t_0. This, together with Proposition 2.7, implies that for any q\in(p-1, \frac{N(p-1)}{N-s}) and h\in(0, s), there exists a positive constant c = c(N, s, p, \Lambda_K, s, h, q, | \Omega|) such that
\begin{align} \begin{aligned} \left(\int_{{\mathbb R}^N}\int_{{\mathbb R}^N}\frac{|u_n(x)-u_n(y)|^q}{|x-y|^{N+hq}}{{\mathrm{d}}} x{{\mathrm{d}}} y\right)^\frac{1}{q}\leq c(C+ \rho\int_ \Omega|\tau_n|{{\mathrm{d}}} x)^\frac{1}{p-1}. \end{aligned} \end{align} | (4.25) |
Therefore, in view of the proof of Proposition 2.8, we may show that there exists a subsequence, still denoted by the same notation, such that u_n\rightarrow u in W^{h, q}({\mathbb R}^N) and a.e. in {\mathbb R}^N. Now, we will show that g_n(u_n)\to g(u) in L^1(\Omega). We will prove it by using Vitali's convergence theorem. Let E\subset \Omega be a Borel set. Then, by Lemma 3.5 and (4.24), we have
\begin{align*} \int_E |g_n(u_n)|{{\mathrm{d}}} x&\leq \int_ \Omega |g(u_n)|{{\mathrm{d}}} x\\ &\leq (g(s_0)-g(-s_0))|E| + C(t_0,p, \Lambda_g,N)\int_{s_0}^\infty (g(s)-g(-s))s^{-1-\frac{(p-1)N}{N-sp}}{{\mathrm{d}}} s,\;\;\forall s_0\geq1. \end{align*} |
Let \varepsilon > 0, then there exists s_0 such that
C(t_0,p, \Lambda_g,N)\int_{s_0}^\infty (g(s)-g(-s))s^{-1-\frac{(p-1)N}{N-sp}}{{\mathrm{d}}} s\leq \frac{ \varepsilon}{2}. |
Set \delta = \frac{ \varepsilon}{2(1+g(s_0)-g(-s_0))} > 0. Then for any Borel set E with |E|\leq \delta, we have
g(s_0)|E|\leq \frac{ \varepsilon}{2}. |
Hence, by the last three inequalities, we may invoke Vitali's convergence theorem in order to prove that g_n(u_n)\to g(u) in L^1(\Omega).
In view of the proof of Proposition 2.8, we may deduce that u is a very weak solution of (1.16). Furthermore, by Fatou's lemma, we can easily show that u satisfies (1.17) and (1.18).
Proof of Proposition 1.5. Let w = ACW_{s, p}^{2 \mathrm{diam}\, (\Omega)}[ \rho\tau], where C is the constant in (2.29) and A > 1 is a constant that will be determined later. Set {{\mathrm{d}}} \nu = w^ \kappa {{\mathrm{d}}} x+ \rho {\mathrm{d}}\tau, then by (1.20), we obtain
\begin{align*} CW_{s,p}^{2( \mathrm{diam}\,( \Omega))}[ \nu]&\leq 2^{\frac{1}{p-1}}C(W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[w^ \kappa]+W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \rho {\mathrm{d}}\tau])\\ &\leq 2^{\frac{1}{p-1}}C((AC)^\frac{ \kappa}{p-1} \rho^{\frac{ \kappa}{(p-1)^2}}MW_{s,p}^{2 \mathrm{diam}\,( \Omega)}[\tau]+W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \rho {\mathrm{d}}\tau])\\ &\leq 2^{\frac{1}{p-1}}C((AC)^\frac{ \kappa}{p-1}M \rho^{\frac{ \kappa-p+1}{(p-1)^2}}+1)W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \rho {\mathrm{d}}\tau]. \end{align*} |
If we choose A = 2^{\frac{1}{p-1}+1} and \rho small enough such that (AC)^\frac{ \kappa}{p-1}M \rho^{\frac{ \kappa-p+1}{(p-1)^2}}+1 < 2, we deduce that
\begin{align} CW_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \nu]\leq w. \end{align} | (4.26) |
Now, let x_0\in \Omega be such that W_{s, p}^{2 \mathrm{diam}\, (\Omega)}[\tau](x_0) < \infty. If 0\leq v\leq c_0W_{s, p}^{2 \mathrm{diam}\, (\Omega)}[\tau] a.e. in {\mathbb R}^N, for some constant c_0 > 0, then we have
\left(\int_{ \Omega}|v|^ \kappa {{\mathrm{d}}} x\right)^{\frac{1}{p-1}} \leq\left(\int_{B_{ \mathrm{diam}\,( \Omega)}(x_0)}|v|^ \kappa {{\mathrm{d}}} x\right)^{\frac{1}{p-1}}\leq C( \Omega,N,s,p,M,K,c_0)W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[\tau](x_0) < \infty. |
Thus v\in L^ \kappa(\Omega).
Let u_0\geq0 be a very weak solution of
\begin{align*} \left\{ \begin{aligned} L u_0& = \rho\tau,\quad&&\text{in}\;\; \Omega,\\ v& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega, \end{aligned}\right. \end{align*} |
satisfying C^{-1} W_{s, p}^{\frac{d(x)}{8}}[ \mu_{n-1}](x)\leq u_0(x)\leq CW_{s, p}^{2 \mathrm{diam}\, (\Omega)}[ \rho\tau](x) a.e. in \Omega. We may construct a nondecreasing sequence \{u_n\}_{n\geq0}, such that u_n is a very weak solution to problem
\begin{align*} \left\{ \begin{aligned} L u_n& = u_{n-1}^ \kappa+ \rho\tau,\quad&&\text{in}\;\; \Omega,\\ v& = 0,\quad\quad &&\text{in}\;\; {\mathbb R}^N\setminus \Omega \end{aligned}\right. \end{align*} |
and satisfies
C^{-1} W_{s,p}^{\frac{d(x)}{8}}[ \mu_{n-1}](x)\leq u_n(x)\leq CW_{s,p}^{2 \mathrm{diam}\,( \Omega)}[ \mu_{n-1}](x),\quad \;\text{for a.e.}\;\;x\in \Omega, |
for any n\in{\mathbb N}, where {{\mathrm{d}}} \mu_{n-1} = u_{n-1}^ \kappa {{\mathrm{d}}} x+ \rho{{\mathrm{d}}}\tau. In addition, by (4.26) and the above inequality, there holds
\begin{align} C^{-1} W_{s,p}^{\frac{d(x)}{8}}[ \mu_{n-1}](x)\leq u_n(x)\leq w(x),\quad \;\text{for a.e.}\;\;x\in \Omega, \end{align} | (4.27) |
where the positive constant C^{-1} depends only on N, p, s, q. Finally, u_n satisfies (2.15)–(2.17) with {{\mathrm{d}}} \mu = w^ \kappa {{\mathrm{d}}} x+ \rho {\mathrm{d}}\tau.
Proceeding as in the proof of Proposition 2.8, we may show that there exists a subsequence, still denoted by \{u_n\}, such that u_n\to u a.e. in {\mathbb R}^N and u is a very weak solution of problem (1.19). By (4.27) and Fatou's Lemma, we obtain estimate (1.21). The proof is complete.
Proof of Theorem 1.6. We will first prove that (i) implies (ii) by using some ideas from [30]. Without loss of generality we assume that \rho = 1. Extend \mu to whole {\mathbb R}^N by setting \mu({\mathbb R}^N\setminus \Omega) = 0.
Let 0\leq g\in L^\frac{ \kappa}{p-1}({\mathbb R}^N; \mu). We set
M_ \mu g(x): = \sup\limits_{r > 0,\; \mu(B(x,r))\neq0} \mu(B(x,r))^{-1}\int_{B(x,r)}g(y){{\mathrm{d}}} \mu. |
It is well known that there exists a positive constant c_1 depending only on N, p, \kappa such that
\begin{align} \int_{{\mathbb R}^N} (M_ \mu g(x))^\frac{ \kappa}{p-1}{{\mathrm{d}}} \mu\leq c_1 \int_{{\mathbb R}^N} |g(x)|^\frac{ \kappa}{p-1}{{\mathrm{d}}} \mu \end{align} | (4.28) |
(see, e.g., [14]). Also,
\begin{align} \begin{aligned} \int_ \Omega \left(W_{s,p}^{\frac{d(x)}{8}}[g \mu](x)\right)^ \kappa{{\mathrm{d}}} x &\leq \int_ \Omega\left(W_{s,p}^{\frac{d(x)}{8}}[ \mu](x)\right)^ \kappa(M_ \mu g(x))^\frac{ \kappa}{p-1}{{\mathrm{d}}} x\\ &\leq C^ \kappa \int_{ \Omega}u^ \kappa(x) (M_ \mu g(x))^\frac{ \kappa}{p-1}{{\mathrm{d}}} x\\ &\leq C^ \kappa\int_ \Omega (M_ \mu g(x))^\frac{ \kappa}{p-1}{{\mathrm{d}}} \mu\\ &\leq c_2\int_{{\mathbb R}^N} |g(x)|^\frac{ \kappa}{p-1}{{\mathrm{d}}} \mu. \end{aligned} \end{align} | (4.29) |
Let K = \mathrm{supp}\, \tau. By the assumption, we have that r_0: = \mathrm{dist}\, (K, \partial \Omega) > 0. Set g = fanxiexian_myfh_K \tilde g, for any nonnegative \tilde g\in L^\frac{ \kappa}{p-1}({\mathbb R}^N; \mu_{\lfloor K}). We first note that B_{\frac{r_0}{8}}(x)\cap K = \emptyset if x\in \Omega with d(x) < \frac{r_0}{8} or if x\in{\mathbb R}^N\setminus \Omega, which implies
W_{s,p}^{\frac{d(x)}{24}}[\tilde g \mu_{\lfloor K}](x) = 0, |
if x\in \Omega with d(x) < \frac{r_0}{24} or if x\in{\mathbb R}^N\setminus \Omega. Therefore, by the above equality and (4.29), we have
\int_{{\mathbb R}^N}\left(W_{s,p}^{\frac{r_0}{24}}[\tilde g \mu_{\lfloor K}](x)\right)^ \kappa {{\mathrm{d}}} x\leq \int_ \Omega\left(W_{s,p}^{\frac{d(x)}{8}}[g \mu](x)\right)^ \kappa{{\mathrm{d}}} x\leq c_2\int_{{\mathbb R}^N} |\tilde g(x)|^\frac{ \kappa}{p-1}{{\mathrm{d}}} \mu_{\lfloor K}. |
Also, by [5, Theorem 2.3] (see also [1, Corollary 3.6.3]), we have
\begin{align} \int_{{\mathbb R}^N}\left(W_{s,p}^{\frac{r_0}{24}}[\tilde g \mu_{\lfloor K}](x)\right)^ \kappa{{\mathrm{d}}} x\approx\int_{{\mathbb R}^N}({\mathbb G}_{sp}[\tilde g \mu_{\lfloor K}])^\frac{ \kappa}{p-1}{{\mathrm{d}}} x, \end{align} | (4.30) |
where the implicit constant depends only on s, p, N, \kappa and r_0.
Hence, combining the last two displays, we may show that there exists a positive constant c_3 = c_3(N, p, s, \kappa, r_0) such that
\begin{align} \int_{{\mathbb R}^N}({\mathbb G}_{sp}[\tilde g \mu_{\lfloor K}])^\frac{ \kappa}{p-1}{{\mathrm{d}}} x \leq c_3\int_{{\mathbb R}^N} |\tilde g(x)|^\frac{ \kappa}{p-1}{{\mathrm{d}}} \mu_{\lfloor K}. \end{align} | (4.31) |
Let f\in L^{\frac{ \kappa}{ \kappa-p+1}}({\mathbb R}^N). Then, for any \tilde g\in L^\frac{ \kappa}{p-1}({\mathbb R}^N; \mu_{\lfloor K}), there holds
\left|\int_{{\mathbb R}^N} f(x) G_{sp}*(\tilde g \mu_{\lfloor K})(x) {{\mathrm{d}}} x\right| = \left|\int_{{\mathbb R}^N}\tilde g(y) G_{sp}*f(y){{\mathrm{d}}} \mu_{\lfloor K}\right| \leq C_1\left \|{f}\right \|_{L^{\frac{ \kappa}{ \kappa-p+1}}({\mathbb R}^N)}\left \|{\tilde g}\right \|_{L^\frac{ \kappa}{p-1}({\mathbb R}^N; \mu_{\lfloor K})}. |
The last inequality implies,
\int_{{\mathbb R}^N}|G_{sp}*f(x)|^{\frac{ \kappa}{ \kappa-p+1}}{{\mathrm{d}}} \mu_{\lfloor K}\leq c_4\int_{{\mathbb R}^N}|f|^{\frac{ \kappa}{ \kappa-p+1}}{{\mathrm{d}}} x\quad\forall f\in L^{\frac{ \kappa}{ \kappa-p+1}}({\mathbb R}^N). |
By [1, Theorem 7.2.1], the above inequality is equivalent to
\begin{align} \mu_{\lfloor K}(F)\leq c_5 \mathrm{Cap}_{{sp,\frac{ \kappa}{ \kappa-p+1}}}(F), \end{align} | (4.32) |
for any compact F\subset{\mathbb R}^N. (1.23) follows by the above inequality and the fact that \tau\leq \mu_{\lfloor K}.
Next, we prove that (ⅱ) implies (ⅲ). We note that proceeding as above, in the opposite direction, we may prove that (1.23) implies
\int_{{\mathbb R}^N}({\mathbb G}_{sp}[ \tilde g\tau])^\frac{ \kappa}{p-1}{{\mathrm{d}}} x \leq c_3\int_{{\mathbb R}^N} |\tilde g(x)|^\frac{ \kappa}{p-1}{{\mathrm{d}}} \tau,\quad\forall \tilde g\in L^\frac{ \kappa}{p-1}({\mathbb R}^N;\tau). |
By (4.30) and taking \tilde g = fanxiexian_myfh_B, we can easily show that there exists a positive constant C depending only on N, s, p, \Omega such that
\int_{{\mathbb R}^N} (W_{s,p}^{2 \mathrm{diam}\,( \Omega)}[\tau_{\lfloor B}])^ \kappa {{\mathrm{d}}} x \leq C\tau(B). |
We will show that (ⅲ) implies (ⅳ). Let R = 2 \mathrm{diam}\, (\Omega) and C_3 be the constant in (1.24). In the spirit of the proof of [31, Theorem 2.10], we need to prove that there exists a positive constant c_0 = c_0(N, p, \kappa, s, C_3, R, \tau(\Omega)) > 0 such that
\begin{align} \tau(B_t(x))\leq c_0t^{\frac{ \kappa(N-sp)-N(p-1)}{ \kappa-p+1}} \end{align} | (4.33) |
for any t\leq R and \forall x\in \Omega.
Concerning the proof of the above inequality, we first note that for any y\in B_t(x) and t\leq \frac{R}{4}, there holds
\begin{align*} W_{s,p}^{R}[\tau_{\lfloor B_t(x)}](y)& = \int_0^{R}\left(\frac{\tau(B_r(y)\cap B_t(x))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\geq \int_{2t}^{4t}\left(\frac{\tau(B_r(y)\cap B_t(x))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\\ &\geq C(N,p,s)\left(\frac{\tau(B_t(x))}{t^{N-sp}}\right)^{\frac{1}{p-1}}. \end{align*} |
By the above inequality, we deduce
\begin{align} \begin{aligned} t^NC^ \kappa(N,p,s)\left(\frac{\tau(B_t(x))}{t^{N-sp}}\right)^{\frac{ \kappa}{p-1}}&\leq \int_{B_t(x)}(W_{s,p}^{R}[\tau_{\lfloor B_t(x)}](y))^ \kappa {{\mathrm{d}}} y\\ &\leq C_3\tau(B_t(x)),\quad\forall t\in(0\frac{R}{4}], \end{aligned} \end{align} | (4.34) |
where in the last inequality we used (1.24). This implies (4.33).
For any x\in \Omega and t < R, we set
\nu_t(x): = \int_{B_t(x)}\bigg(\int_0^t\left(\frac{\tau(B_r(y))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\bigg)^ \kappa{{\mathrm{d}}} y |
and
\mu_t(x): = \int_{B_t(x)}\bigg(\int_t^{R}\left(\frac{\tau(B_r(y))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\bigg)^ \kappa{{\mathrm{d}}} y. |
Then we can easily prove that
\begin{align} W_{s,p}^{R}[(W_{s,p}^{R}[\tau])^ \kappa]\leq C(q,p)\bigg(\int_0^{R}\left(\frac{ \nu_t(x)}{t^{N-sp}}\right)^\frac{1}{p-1}\frac{{{\mathrm{d}}} t}{t} +\int_0^{R}\left(\frac{ \mu_t(x)}{t^{N-sp}}\right)^\frac{1}{p-1}\frac{{{\mathrm{d}}} t}{t}\bigg). \end{align} | (4.35) |
Now, we treat the first term on the right hand in (4.35). By (1.24), we have
\begin{align} \begin{aligned} \nu_t(x)& = \int_{B_t(x)}\bigg(\int_0^t\left(\frac{\tau(B_r(y)\cap B_{2t}(x))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\bigg)^ \kappa{{\mathrm{d}}} y\leq C\tau(B_{2t}(x)), \end{aligned} \end{align} | (4.36) |
which implies
\begin{align} \int_0^{R}\left(\frac{ \nu_t(x)}{t^{N-sp}}\right)^\frac{1}{p-1}\frac{{{\mathrm{d}}} t}{t}\leq CW_{s,p}^{2R}[\tau](x). \end{align} | (4.37) |
Next, we treat the second term on the right hand in (4.35). First we note that
\begin{align*} \mu_t(x)&\leq \int_{B_t(x)}\bigg(\int_t^{R}\left(\frac{\tau(B_{2r}(x))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\bigg)^ \kappa{{\mathrm{d}}} y\\ &\leq C(N) t^N\bigg(\int_t^{2R}\left(\frac{\tau(B_{r}(x))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\bigg)^ \kappa = :C(N)t^N \mu_{1,t}^ \kappa(x), \end{align*} |
which implies
\begin{align*} \int_0^{R}\left(\frac{ \mu_t(x)}{t^{N-sp}}\right)^\frac{1}{p-1}\frac{{{\mathrm{d}}} t}{t}&\leq C(N,p) \int_0^{R} \mu_{1,t}^\frac{ \kappa}{p-1}(x)t^{\frac{sp}{p-1}-1}{{\mathrm{d}}} t\\ & = C(N,p,s,q)\bigg( \mu_{1,R}^{\frac{ \kappa}{p-1}}(x)R^{\frac{sp}{p-1}}+ \int_0^{R}\left( \mu_{1,t}(x)\right)^{\frac{ \kappa}{p-1}-1}t^{\frac{sp}{p-1}} \left(\frac{\tau(B_t(x))}{t^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} t}{t}\bigg), \end{align*} |
where we have used integration by parts in the last equality. By (4.33), we have
\mu_{1,t}(x) = \int_t^{2R}\left(\frac{\tau(B_{r}(x))}{r^{N-sp}}\right)^{\frac{1}{p-1}}\frac{{{\mathrm{d}}} r}{r}\leq C t^{-\frac{sp}{ \kappa-p+1}}. |
Combining the last two displays, we obtain
\begin{align} \int_0^{R}\left(\frac{ \mu_t(x)}{t^{N-sp}}\right)^\frac{1}{p-1}\frac{{{\mathrm{d}}} t}{t}\leq C(N,p,s, \kappa,R)\bigg(\tau(B_{2R}(x))^{\frac{ \kappa}{(p-1)^2}}+W_{s,p}^{R}[\tau](x)\bigg). \end{align} | (4.38) |
The desired result follows by (4.35), (4.37), (4.38) and the fact that
\tau(B_{2R}(x))^{\frac{ \kappa}{(p-1)^2}} \leq \tau( \Omega)^{\frac{ \kappa-p+1}{(p-1)^2}}\tau(B_{\frac{R}{2}}(x))^{\frac{1}{p-1}}\leq C(R,N,p,\tau,s, \kappa)W_{s,p}^{R}[\tau](x),\quad\forall x\in \Omega. |
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The author wishes to thank Professor L. Véron for useful discussions. The author would like to thank the anonymous referee for a careful reading of the manuscript and helpful comments. The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers" (Project Number: 59).
The author declares no conflict of interest in this paper.
[1] | D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, Vol. 314, Springer, 1996. https://doi.org/10.1007/978-3-662-03282-4 |
[2] |
B. Abdellaoui, A. Attar, R. Bentifour, On the fractional p-laplacian equations with weights and general datum, Adv. Nonlinear Anal., 8 (2019), 144–174. https://doi.org/10.1515/anona-2016-0072 doi: 10.1515/anona-2016-0072
![]() |
[3] |
P. Baras, M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier, 34 (1984), 185–206. https://doi.org/10.5802/aif.956 doi: 10.5802/aif.956
![]() |
[4] |
M. F. Bidaut-Véron, Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. Nonlinear Stud., 3 (2003), 25–63. https://doi.org/10.1515/ans-2003-0102 doi: 10.1515/ans-2003-0102
![]() |
[5] |
M. F. Bidaut-Véron, Q. H. Nguyen, L. Véron, Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl., 102 (2014), 315–337. https://doi.org/10.1016/j.matpur.2013.11.011 doi: 10.1016/j.matpur.2013.11.011
![]() |
[6] |
L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149–169. https://doi.org/10.1016/0022-1236(89)90005-0 doi: 10.1016/0022-1236(89)90005-0
![]() |
[7] | H. Chen, P. Felmer, L. Véron, Elliptic equations involving general subcritical source nonlinearity and measures, arXiv, 2014. https://doi.org/10.48550/arXiv.1409.3067 |
[8] |
H. Chen, A. Quaas, Classification of isolated singularities of nonnegative solutions to fractional semilinear elliptic equations and the existence results, J. Lond. Math. Soc., 97 (2018), 196–221. https://doi.org/10.1112/jlms.12104 doi: 10.1112/jlms.12104
![]() |
[9] |
H. Chen, L. Véron, Semilinear fractional elliptic equations involving measures, J. Difer. Equations, 257 (2014), 1457–1486. https://doi.org/10.1016/j.jde.2014.05.012 doi: 10.1016/j.jde.2014.05.012
![]() |
[10] | G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 28 (1999), 741–808. |
[11] |
A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279–1299. https://doi.org/10.1016/j.anihpc.2015.04.003 doi: 10.1016/j.anihpc.2015.04.003
![]() |
[12] |
A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807–1836. https://doi.org/10.1016/j.jfa.2014.05.023 doi: 10.1016/j.jfa.2014.05.023
![]() |
[13] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
![]() |
[14] |
R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math., 103 (1981), 33–40. https://doi.org/10.2307/2374188 doi: 10.2307/2374188
![]() |
[15] |
K. T. Gkikas, Quasilinear elliptic equations involving measure valued absorption terms and measure data, JAMA, 2023. https://doi.org/10.1007/s11854-023-0321-0 doi: 10.1007/s11854-023-0321-0
![]() |
[16] |
K. Gkikas, P. T. Nguyen, Semilinear elliptic Schrödinger equations involving singular potentials and source terms, Nonlinear Anal., 238 (2024), 113403. https://doi.org/10.1016/j.na.2023.113403 doi: 10.1016/j.na.2023.113403
![]() |
[17] | J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, Oxford Science Publications, 1993. |
[18] |
A. Iannizzotto, S. Mosconi, M. Squassina, Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1353–1392. https://doi.org/10.4171/rmi/921 doi: 10.4171/rmi/921
![]() |
[19] |
T. Kilpeläinen, J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137–161. https://doi.org/10.1007/BF02392793 doi: 10.1007/BF02392793
![]() |
[20] | T. Kilpeläinen, J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 591–613. |
[21] |
M. Kim, K. A. Lee, S. C. Lee, The Wiener criterion for nonlocal Dirichlet problems, Commun. Math. Phys., 400 (2023), 1961–2003. https://doi.org/10.1007/s00220-023-04632-w doi: 10.1007/s00220-023-04632-w
![]() |
[22] |
J. Korvenpää, T. Kuusi, E. Lindgren, Equivalence of solutions to fractional p-Laplace type equations, J. Math. Pures Appl., 132 (2019), 1–26. https://doi.org/10.1016/j.matpur.2017.10.004 doi: 10.1016/j.matpur.2017.10.004
![]() |
[23] |
J. Korvenpää, T. Kuusi, G. Palatucci, Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations, Math. Ann., 369 (2017), 1443–1489. https://doi.org/10.1007/s00208-016-1495-x doi: 10.1007/s00208-016-1495-x
![]() |
[24] |
J. Korvenpää, T. Kuusi, G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var. PDEs, 55 (2016), 63. https://doi.org/10.1007/s00526-016-0999-2 doi: 10.1007/s00526-016-0999-2
![]() |
[25] | T. Kuusi, G. Mingione, Y. Sire, Regularity issues involving the fractional p-Laplacian, In: Recent developments in nonlocal theory, Berlin: De Gruyter, 2017,303–334. https://doi.org/10.1515/9783110571561-010 |
[26] |
T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data, Commun. Math. Phys., 337 (2015), 1317–1368. https://doi.org/10.1007/s00220-015-2356-2 doi: 10.1007/s00220-015-2356-2
![]() |
[27] |
E. Lindgren, P. Lindqvist, Perron's method and Wiener's theorem for a nonlocal equation, Potential Anal., 46 (2017), 705–737. https://doi.org/10.1007/s11118-016-9603-9 doi: 10.1007/s11118-016-9603-9
![]() |
[28] |
E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. PDEs, 49 (2014), 795–826. https://doi.org/10.1007/s00526-013-0600-1 doi: 10.1007/s00526-013-0600-1
![]() |
[29] |
G. Palatucci, The dirichlet problem for the p-fractional laplace equation, Nonlinear Anal., 177 (2018), 699–732. https://doi.org/10.1016/j.na.2018.05.004 doi: 10.1016/j.na.2018.05.004
![]() |
[30] |
N. C. Phuc, I. E. Verbitsky, Singular quasilinear and Hessian equations and inequalities, J. Funct. Anal., 256 (2009), 1875–1906. https://doi.org/10.1016/j.jfa.2009.01.012 doi: 10.1016/j.jfa.2009.01.012
![]() |
[31] | N. C. Phuc, I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. Math., 168 (2008), 859–914. |
[32] | L. Véron, Local and global aspects of quasilinear degenerate elliptic equations, Quasilinear elliptic singular problems, World Scientific Publishing Co. Pte. Ltd., 2017. https://doi.org/10.1142/9850 |
1. | Zhaoyue Sui, Feng Zhou, Pointwise potential estimates for solutions to a class of nonlinear elliptic equations with measure data, 2025, 10, 2473-6988, 8066, 10.3934/math.2025370 |