Citation: Yoshihisa Kaga, Shinya Okabe. A remark on the first p-buckling eigenvalue with an adhesive constraint[J]. Mathematics in Engineering, 2021, 3(4): 1-15. doi: 10.3934/mine.2021035
[1] | Maurizio Garrione . Beams with an intermediate pier: Spectral properties, asymmetry and stability. Mathematics in Engineering, 2021, 3(2): 1-21. doi: 10.3934/mine.2021016 |
[2] | Stefano Biagi, Serena Dipierro, Enrico Valdinoci, Eugenio Vecchi . A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators. Mathematics in Engineering, 2023, 5(1): 1-25. doi: 10.3934/mine.2023014 |
[3] | Antonio Iannizzotto, Giovanni Porru . Optimization problems in rearrangement classes for fractional $ p $-Laplacian equations. Mathematics in Engineering, 2025, 7(1): 13-34. doi: 10.3934/mine.2025002 |
[4] | Lorenzo Brasco . Convex duality for principal frequencies. Mathematics in Engineering, 2022, 4(4): 1-28. doi: 10.3934/mine.2022032 |
[5] | Pengfei Guan . A weighted gradient estimate for solutions of $ L^p $ Christoffel-Minkowski problem. Mathematics in Engineering, 2023, 5(3): 1-14. doi: 10.3934/mine.2023067 |
[6] | Delyan Zhelyazov . Numerical spectral analysis of standing waves in quantum hydrodynamics with viscosity. Mathematics in Engineering, 2024, 6(3): 407-424. doi: 10.3934/mine.2024017 |
[7] | Emilio N. M. Cirillo, Giuseppe Saccomandi, Giulio Sciarra . Compact structures as true non-linear phenomena. Mathematics in Engineering, 2019, 1(3): 434-446. doi: 10.3934/mine.2019.3.434 |
[8] | Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021 |
[9] | Manuel Friedrich . Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials. Mathematics in Engineering, 2020, 2(1): 75-100. doi: 10.3934/mine.2020005 |
[10] | Francesco Maddalena, Danilo Percivale, Franco Tomarelli . Signorini problem as a variational limit of obstacle problems in nonlinear elasticity. Mathematics in Engineering, 2024, 6(2): 261-304. doi: 10.3934/mine.2024012 |
In this paper we are interested in a fourth order nonlinear eigenvalue problem
$ \begin{equation} \left\{ \begin{alignedat}{2} & \Delta(|\Delta u|^{p-2}\Delta u) = -\lambda \nabla \cdot (|\nabla u|^{p-2}\nabla u) \quad &{\rm in} \quad & \Omega, \\ & u = \partial_\nu u = 0\quad &{\rm on} \quad & \partial \Omega, \end{alignedat} \right. \end{equation} $ | (1.1) |
with the adhesive constraint
$ \begin{equation} |\mathcal{O}(u)| = \omega_0, \end{equation} $ | (1.2) |
where $ p > 1 $, $ 0 < \omega_0 < |\Omega| $ and $ \mathcal{O}(u): = \{x \in \Omega \mid u(x)\not = 0 \} $. Here $ \Omega $, $ \nu $ and $ |\Omega| $ denote a smooth bounded domain in $ \mathbb{R}^N $, the unit outer normal of $ \partial \Omega $ and the Lebesgue measure of $ \Omega $, respectively. The eigenvalue problem (1.1) is regarded as a generalization of the buckling eigenvalue problem with the clamped boundary condition
$ \begin{equation} \left\{ \begin{alignedat}{2} & \Delta^2 u = -\lambda \Delta u \quad &{\rm in} \quad & \Omega, \\ & u = \partial_\nu u = 0\quad &{\rm on} \quad & \partial \Omega. \end{alignedat} \right. \end{equation} $ | (1.3) |
The first eigenvalue of (1.3) with $ N = 2 $ is called the buckling load of a clamped plate and characterized by
$ \begin{equation*} \mu_1(\Omega) = \inf\limits_{H^2_0(\Omega) \setminus \{0\}} \dfrac{ \int_\Omega |\Delta u|^2 \, dx}{ \int_\Omega |\nabla u|^2 \, dx}. \end{equation*} $ |
In 1951, Polya and Szegö [9] conjectured that the disk minimizes the buckling load $ \mu_1 $ among domains of given measure. The conjecture has been attracted a great interest and studied by many researchers (e.g., see [2,10], [6,Section 3.2] and references therein). In particular, recently Stollenwerk [10] considered problem (1.3) with constraint (1.2) to study the Polya-Szegö conjecture for $ N = 2, 3 $. Although nonlinear eigenvalue problems for the $ p $-biharmonic operator of the type
$ \begin{equation*} \Delta (|\Delta u|^{p-2} \Delta u) = \lambda |u|^{p-2}u \quad {\rm in} \quad \Omega \end{equation*} $ |
have been well studied in the mathematical literature (e.g., see [3,5,7] and references therein), to the best of our knowledge, there is few result on the eigenvalue problem of the type (1.1).
The purpose of this paper is to study the first eigenvalue of (1.1) with constraint (1.2) for $ N = 1 $:
$ \begin{equation} \left\{ \begin{alignedat}{2} & (|u''|^{p-2}u'')'' = -\lambda (|u'|^{p-2}u')' \quad &{\rm in} \quad & I, \\ & u = u' = 0\quad &{\rm on} \quad & \partial I, \end{alignedat} \right. \end{equation} $ | (1.4) |
with
$ \begin{equation} |\mathcal{O}(u)| = \omega_0, \end{equation} $ | (1.5) |
where
$ \begin{equation*} \mathcal{O}(u): = \{x \in I \mid u(x)\not = 0 \}. \end{equation*} $ |
Here $ I \subset \mathbb{R} $ denotes a bounded open interval and $ 0 < \omega_0 < |I| $ is a given constant.
One of our motivations is to prove the existence of the first eigenvalue and corresponding eigenfunctions of problem (1.4) with (1.5). To this end, we consider the minimization problem
$ \begin{equation} \min\limits_{v \in \mathcal{A}_{\omega_0}} E(v), \end{equation} $ | (P) |
where
$ \begin{align*} E(v) &: = \frac{ \int_I |v''|^p dx}{ \int_I |v'|^p dx}, \\ \mathcal{A}_{\omega_0} &: = \{ v \in W^{2, p}_0(I) \mid |\mathcal{O}(v)| = \omega_0 \}. \end{align*} $ |
As we prove in Lemma 3.2, solutions to problem $({\rm{P}})$ satisfy problem (1.4) with (1.5) in a weak sense. Thus problem $({\rm{P}})$ gives us the first $ p $-buckling eigenvalue and corresponding eigenfunctions.
The second motivation is to show a property of the eigenfunction corresponding to the first $ p $-buckling eigenvalue. In 2014, Watanabe [12] studied the $ p $-elastic curves which are critical points of the $ p $-elastic energy
$ \begin{equation*} \int_\gamma |\kappa|^p \, ds, \end{equation*} $ |
where $ \gamma $, $ \kappa $ and $ s $ respectively denote a planar curve, the curvature of $ \gamma $ and the arc length parameter of $ \gamma $, and proved the existence of solutions with 'flat core'. Here, we say that $ u: I \to \mathbb{R} $ has 'flat core' if the graph $ (x, u(x)) $ contains a part where the graph is parallel to the $ x $-axis (more precisely, see [11,12]). In order to state our second motivation precisely, we define
$ \begin{equation*} \mathcal{J}^0 : = \{ x \in \partial \mathcal{O}(u) \mid u'(x) = 0 \}, \qquad \mathcal{J}^1 : = \{ x \in \partial \mathcal{O}(u) \mid |u'(x)| \gt 0 \}, \end{equation*} $ |
and
$ \begin{equation*} \mathcal{I}(u): = \mathcal{O}(u) \cup \mathcal{J}^1. \end{equation*} $ |
We say that $ u : I \to \mathbb{R} $ has flat core of adhesion type if the set $ \mathcal{I}(u) $ is not connected. Our second motivation is to ask whether constraint (1.5) can induce the eigenfunction corresponding to the first $ p $-buckling eigenvalue to have flat core of adhesion type or not.
The main result of this paper is stated as follows:
Theorem 1.1. Let $ I \subset \mathbb{R} $ be an open interval. Let $ p > 1 $ and $ 0 < \omega_0 < |I| $. Then problem $({\rm{P}})$ possesses a solution $ u \in \mathcal{A}_{\omega_0} $. Moreover, $ \mathcal{I}(u) $ is connected.
We deduce from Theorem 1.1 that the eigenfunction corresponding to the first $ p $-buckling eigenvalue does not have flat core of adhesion type. Due to adhesive constraint (1.5), it is difficult to solve problem $({\rm{P}})$ by the direct method of calculus of variations. To overcome the difficulty, we employ an idea by Alt and Caffarelli [1] as in [10]. More precisely, considering a penalized problem, once we remove adhesive constraint (1.5) from $({\rm{P}})$. Studying the regularity of the penalized solution $ u_\varepsilon $, we prove the relation $ |\mathcal{O}(u_\varepsilon)| = \omega_0 $ for sufficiently small $ \varepsilon > 0 $. Then we obtain a minimizer of problem $({\rm{P}})$. We note that, if we employ the same strategy to find the first $ p $-buckling eigenvalue for $ N \ge 2 $, then one of the arising difficulties is the lack of regularity of the penalized solution $ u_\varepsilon $.
This paper is organized as follows: In Section 2, we collect notations and inequalities which are used in this paper; In Section 3, we define a penalized problem and prove the existence and the regularity of the penalized solutions; In Section 4, we prove Theorem 1.1.
In this section, we collect function spaces and inequalities used in this paper.
The space $ W^{2, p}_0(I) $ is the closure of $ C^{\infty}_{\rm c}(I) $ in $ W^{2, p}(I) $. In this paper, we employ $ \| v \|_{2, p}: = \| v''\|_{L^p(I)} $ as the norm in $ W^{2, p}_0(I) $. Here we note that the norm $ \| \cdot \|_{2, p} $ is equivalent to the standard $ W^{2, p} $ norm. Indeed, by the Poincaŕe inequality we find a positive constant $ C $ such that
$ \begin{equation*} \|v \|_{L^p(I)}+\|v' \|_{L^p(I)} +\|v'' \|_{L^p(I)} \leq C \| v \|_{2, p} \quad {\rm for\, \, all} \quad v \in W^{2, p}_0(I). \end{equation*} $ |
This clearly implies that the norm $ \| \cdot \|_{2, p} $ is equivalent to the standard $ W^{2, p} $ norm.
In order to treat $ L^p $ norms, we employ the following inequality (see [8]):
$ \begin{align} |b|^p \ge |a|^p + p \langle|a|^{p-2}a, b-a \rangle \quad \text{for all} \quad a, b \in \mathbb{R}^N \quad \text{and} \quad p\geq 1, \end{align} $ | (2.1) |
which expresses the convexity of the function $ x \mapsto |x|^p $ for $ p \ge 1 $.
In this section we consider a penalized problem. We define the function $ f_\varepsilon $ and the functional $ E_\varepsilon $ by
$ \begin{align} f_\varepsilon(s) &: = \begin{cases} \frac{s-\omega_0}{\varepsilon} \quad &{\rm if} \quad s \ge \omega_0, \\ \quad \, \, 0 &{\rm otherwise}, \end{cases} \end{align} $ | (3.1) |
$ \begin{align} E_\varepsilon(u)&: = E(u) + f_\varepsilon(|\mathcal{O}(u)|), \end{align} $ | (3.2) |
for $ \varepsilon > 0 $. Then the penalized problem corresponding to $({\rm{P}})$ is written as follows$ : $
$ \begin{align*} \min\limits_{v\in W^{2, p}_0(I)} E_\varepsilon(v). \end{align*} $ | (${\rm P}_\varepsilon$) |
To begin with, we prove the existence of solutions of penalized problem $({\rm P}_\varepsilon)$.
Lemma 3.1. Problem $({\rm P}_\varepsilon)$ possesses a nontrivial solution for each $ \varepsilon > 0 $.
Proof. Let $ \{u_k\}_{k \in \mathbb{N}} \subset W^{2, p}_0(I) $ be a minimizing sequence for $ E_\varepsilon $, i.e.,
$ \begin{align*} \lim\limits_{k\to \infty} E_\varepsilon(u_k) = \inf\limits_{v \in W^{2, p}_0(I)}E_\varepsilon(v). \end{align*} $ |
We note that $ E_\varepsilon $ is nonnegative. Extracting a subsequence, we find a constant $ C > 0 $ such that
$ \begin{equation} E_\varepsilon(u_k) \le C \quad \text{for all} \quad k \in \mathbb{N}, \end{equation} $ | (3.3) |
where we denote by $ \{u_k \} $ this subsequence, for short. Since $ E_\varepsilon $ is homogeneous of degree $ 0 $, we are able to normalize the minimizing sequence $ \{u_k\}_{k \in \mathbb{N}} $ as follows:
$ \begin{align} \int_I |u_k^\prime(x)|^p \, dx = 1 \quad \text{for all} \quad k \in \mathbb{N}. \end{align} $ | (3.4) |
Then problem $({\rm P}_\varepsilon)$ is reduced into
$ \begin{equation*} \min\limits_{v \in \mathcal{A}} E_\varepsilon (v), \end{equation*} $ |
where
$ \begin{align*} \mathcal{A} : = \{v\in W^{2, p}_0(I) \mid \|v^\prime\|_{L^p(I)}^p = 1\}. \end{align*} $ |
By (3.1), (3.2), (3.3) and (3.4) we have
$ \|u_k\|_{2, p}^p = E(u_k) \le E_\varepsilon(u_k) \le C \quad \text{for all} \quad u_k \in \mathcal{A}. $ |
Thus we find a function $ u_\varepsilon \in W^{2, p}_0(I) $ such that
$ \begin{align} u_{k} \rightharpoonup u_\varepsilon\quad \text{weakly} \quad \text{in}\quad W^{2, p}_0(I) \quad \text{as} \quad k \to \infty, \end{align} $ | (3.5) |
up to a subsequence. Since the embedding $ W^{2, p}_0(I) \subset C^{1, \alpha}(\bar{I}) $ is compact for each $ \alpha \in (0, 1-1/p) $, it follows from (3.5) that
$ \begin{equation} u_{k} \rightarrow u_\varepsilon \quad \text{in} \quad C^{1, \alpha}(\bar{I})\quad \text{as} \quad k \to \infty. \end{equation} $ | (3.6) |
This together with $ \{ u_k \} \subset \mathcal{A} $ implies that
$ \int_I |u_\varepsilon^\prime(x)|^pdx = 1, $ |
and then $ u_\varepsilon \in \mathcal{A} $. Moreover, this clearly implies that $ u_\varepsilon $ is nontrivial.
Next we show that $ u_\varepsilon \in \mathcal{A} $ is the desired minimizer of $ E_\varepsilon $. First it follows from (3.5) that
$ \begin{align} E(u_\varepsilon) = \|u_\varepsilon \|_{2, p}^p \le \liminf\limits_{k \to \infty}\|u_{k} \|_{2, p}^p = \liminf\limits_{k \to \infty} E(u_k). \end{align} $ | (3.7) |
We can prove the relation
$ \begin{equation} f_\varepsilon(|\mathcal{O}(u_\varepsilon)|) \le \liminf\limits_{k \to \infty} f_\varepsilon(|\mathcal{O}(u_k)|) \end{equation} $ | (3.8) |
along the same line as in [10,Theorem 2.1]. Indeed, since $ f_\varepsilon $ is non-decreasing, it suffices to prove the relation
$ \begin{equation} |\mathcal{O}(u_\varepsilon)| \le \liminf\limits_{k \to \infty}|\mathcal{O}(u_k)|. \end{equation} $ | (3.9) |
By the Banach–Alaoglu theorem we find a function $ \rho \in L^\infty(I) $ with $ 0 \le \rho(x)\le 1 $ for a.e. $ x \in I $ such that
$ \begin{equation} \lim\limits_{k \to \infty} \int_I \chi_{\mathcal{O}(u_k)} \varphi \, dx = \int_I \rho \varphi \, dx \end{equation} $ | (3.10) |
for all $ \varphi \in L^1(I) $ up to a subsequence, where
$ \begin{align*} \chi_{\mathcal{O}(u_k)}(x): = \begin{cases} 1 \quad & \text{if} \quad x \in \mathcal{O}(u_k), \\ 0 \quad & \text{if} \quad x \in I \setminus \mathcal{O}(u_k). \end{cases} \end{align*} $ |
Then we observe from (3.6) and (3.10) that
$ \begin{align*} 0 & = \lim\limits_{k \to \infty} \Bigl[ \int_I u^+_k \bigl[ 1 - \chi_{\mathcal{O}(u_k)} \bigr] \, dx + \int_I u^-_k \bigl[ 1 - \chi_{\mathcal{O}(u_k)} \bigr] \, dx \Bigr] \\ & = \int_I u^+_\varepsilon \bigl[ 1 - \rho \bigr] \, dx + \int_I u^-_\varepsilon \bigl[ 1 - \rho \bigr] \, dx, \end{align*} $ |
where $ g^+: = \max\{ g, 0 \} $ and $ g^-: = \max\{-g, 0\} $. This together with $ 0 \le \rho \le 1 $ implies that $ \rho = 1 $ a.e. in $ \mathcal{O}(u_\varepsilon) $. Thus we obtain (3.8) as follows:
$ \begin{equation*} |\mathcal{O}(u_\varepsilon)| = \int_{\mathcal{O}(u_\varepsilon)} 1 \, dx \le \int_I \rho \, dx = \liminf\limits_{k \to \infty} \int_I \chi_{\mathcal{O}(u_k)} \, dx = \liminf\limits_{k \to \infty}|\mathcal{O}(u_k)|. \end{equation*} $ |
Combining (3.7) with (3.8), we obtain
$ \begin{align*} E_\varepsilon(u_\varepsilon) = E(u_\varepsilon)+f_\varepsilon(|\mathcal{O}(u_\varepsilon)|) &\le \liminf\limits_{k \to \infty}E(u_{k}) + \liminf\limits_{k \to \infty} f_\varepsilon(|\mathcal{O}(u_{k})|)\\ &\le \liminf\limits_{k \to \infty} [ E(u_{k}) + f_\varepsilon(|\mathcal{O}(u_{k})|) ] = \liminf\limits_{k \to \infty} E_\varepsilon(u_{k}). \end{align*} $ |
Therefore Lemma 3.1 follows.
From now on, we set
$ \begin{equation} \Lambda_\varepsilon : = \int_I |u_\varepsilon^{\prime\prime}|^p dx. \end{equation} $ | (3.11) |
Moreover, we define
$ \begin{equation*} \mathcal{J}^0_\varepsilon : = \{ x \in \partial \mathcal{O}(u_\varepsilon) \mid u'_\varepsilon(x) = 0 \}, \qquad \mathcal{J}^1_\varepsilon : = \{ x \in \partial \mathcal{O}(u_\varepsilon) \mid |u'_\varepsilon(x)| \gt 0 \}, \end{equation*} $ |
and
$ \begin{equation*} \mathcal{I}(u_\varepsilon): = \mathcal{O}(u_\varepsilon) \cup \mathcal{J}^1_\varepsilon. \end{equation*} $ |
Lemma 3.2. Let $ u_\varepsilon $ be a solution of $({\rm P}_\varepsilon)$. Then $ (u_\varepsilon, \Lambda_\varepsilon) $ satisfies the following eigenvalue problem in the weak sense$ \colon $
$ \begin{equation*} \left\{ \begin{alignedat}{2} & (|u''_\varepsilon|^{p-2}u''_\varepsilon)'' = -\Lambda_\varepsilon(|u'_\varepsilon|^{p-2}u'_\varepsilon)' \quad &{\rm in} \quad & \mathcal{I}(u_\varepsilon), \\ & u_\varepsilon = u'_\varepsilon = 0\quad &{\rm on} \quad & \partial \mathcal{I}(u_\varepsilon). \end{alignedat} \right. \end{equation*} $ |
Proof. It suffices to prove that $ (u_\varepsilon, \Lambda_\varepsilon) \in W^{2, p}_0(I) \times \mathbb{R} $ satisfies
$ \begin{equation} \int_I \bigr[ |u''_\varepsilon|^{p-2} u''_\varepsilon \varphi'' - \Lambda_\varepsilon |u'_\varepsilon|^{p-2} u'_\varepsilon \varphi' \bigr] \, dx = 0 \quad \text{for all} \quad \varphi\in W^{2, p}_0(\mathcal{I}(u_\varepsilon)). \end{equation} $ | (3.12) |
Fix $ \varphi \in W^{2, p}_0(\mathcal{I}(u_\varepsilon)) $ arbitrarily. Since $ u_\varepsilon+\delta \varphi_{\varepsilon} \in W^{2, p}_0(\mathcal{I}(u_\varepsilon)) $, we deduce from the minimality of $ u_\varepsilon $ that
$ \frac{d}{d\delta}E_\varepsilon (u_\varepsilon + \delta \varphi_{\varepsilon}) \Big|_{\delta = 0} = 0. $ |
Moreover, it follows from $ |\mathcal{O}(u_\varepsilon+ \delta \varphi_{\varepsilon})| = |\mathcal{O}(u_\varepsilon)| $ that
$ \begin{equation*} f_\varepsilon(|\mathcal{O}(u_\varepsilon+ \delta \varphi_{\varepsilon})|) = f_\varepsilon(|\mathcal{O}(u_\varepsilon)|) \end{equation*} $ |
for sufficiently small $ \delta $, and then
$ \begin{equation} \frac{d}{d\delta} E(u_\varepsilon+ \delta \varphi_{\varepsilon}) \Big|_{\delta = 0} = \frac{d}{d\delta} E_\varepsilon(u_\varepsilon+ \delta \varphi_{\varepsilon}) \Big|_{\delta = 0} = 0. \end{equation} $ | (3.13) |
By a direct calculation we have
$ \begin{align*} \frac{d}{d\delta} E(u_\varepsilon+ \delta \varphi_{\varepsilon}) \Big|_{\delta = 0} = \frac{p \int_I |u''_\varepsilon|^{p-2} u''_\varepsilon \varphi'' \, dx \int_I |u'_\varepsilon|^p \, dx - p \int_I |u''_\varepsilon|^p dx \int_I |u'_\varepsilon|^{p-2} u'_\varepsilon \varphi' \, dx} { \Bigl[ \int_I |u'_\varepsilon|^p \, dx \Bigr]^2}. \end{align*} $ |
Recalling that $ \|u'_\varepsilon\|_{L^p(I)} = 1 $ and $ \|u^{\prime\prime}_\varepsilon\|^p_{L^p(I)} = \Lambda_\varepsilon $, we obtain
$ \begin{align*} \frac{d}{d\delta} E(u_\varepsilon+ \delta \varphi_{\varepsilon}) \Big|_{\delta = 0} = p \int_I \bigl[ |u''_\varepsilon|^{p-2} u''_\varepsilon \varphi'' - p \Lambda_\varepsilon |u'_\varepsilon|^{p-2} u'_\varepsilon \varphi' \bigr] dx. \end{align*} $ |
This together with (3.13) implies (3.12). Therefore Lemma 3.2 follows.
We prove the regularity of the minimizer $ u_\varepsilon $. To begin with, we show some properties of the support of $ u_\varepsilon. $
Lemma 3.3. Let $ u_\varepsilon $ be a solution of $({\rm P}_\varepsilon)$. Then
$ \begin{equation} |\mathcal{O}(u_\varepsilon)| \ge \omega_0 \quad \mathit{\text{for all}} \quad\varepsilon \gt 0. \end{equation} $ | (3.14) |
Proof. Assume that (3.14) does not hold. Then we find $ \varepsilon_* > 0 $ such that
$ \begin{equation} |\mathcal{O}(u_{\varepsilon_*})| \lt \omega_0. \end{equation} $ | (3.15) |
Then there exist $ x_0 \in I $ and $ 0 < r < 1 $ such that
$ \begin{equation} \left\{ \begin{alignedat}{1} & B(x_0, r) \subset I, \\ & B(x_0, r) \cap \mathcal{O}(u_{\varepsilon_*}) = \emptyset, \\ & |\mathcal{O}(u_{\varepsilon_*}) \cup B(x_0, r)| \le \omega_0, \end{alignedat} \right. \end{equation} $ | (3.16) |
where $ B(y, \rho): = \{ x \in I \mid |x-y| < \rho\} $. Fix $ v \in C_{\rm c}^{\infty}(B(0, 1)) $ arbitrarily. We define $ v_r : B(x_0, r)\to\mathbb{R} $ by $ v_r(x) : = v(x_0 + rx). $ Since
$ \begin{align*} u_{\varepsilon_*} + v_r \in W^{2, p}_0(B(x_0, r)\cup \mathcal{I}(u_{\varepsilon_*})) \subset W^{2, p}_0(I) \end{align*} $ |
and
$ \begin{equation} |\mathcal{O}(u_{\varepsilon_*} + v_r)| \leq \omega_0, \end{equation} $ | (3.17) |
we observe from (3.15) and (3.17) that
$ \begin{equation*} f_{\varepsilon_*}(|\mathcal{O}(u_{\varepsilon_*})|) = f_{\varepsilon_*} (|\mathcal{O}(u_{\varepsilon_*} + v_r)|) = 0. \end{equation*} $ |
This together with the minimality of $ u_{\varepsilon_*} $ implies that
$ \begin{align} E(u_{\varepsilon_*}) = E_{\varepsilon_*} (u_{\varepsilon_*}) \le E_{\varepsilon_*}(u_{\varepsilon_*} + v_r) = E(u_{\varepsilon_*} + v_r). \end{align} $ | (3.18) |
Recalling the definition of $ \Lambda_\varepsilon $, we deduce from (3.18) that
$ \begin{align} \Lambda_{\varepsilon_*} \int_{B(x_0, r)\cup \mathcal{O}(u_{\varepsilon_*})}|(u_{\varepsilon_*} + v_r)'|^p \, dx \le \int_{B(x_0, r) \cup \mathcal{O}(u_{\varepsilon_*})} |(u_{\varepsilon_*}+v_r)''|^p \, dx. \end{align} $ | (3.19) |
Thanks to (3.16), we reduce (3.19) into
$ \begin{equation} \Lambda_{\varepsilon_*} \Bigl[ \int_{\mathcal{O}(u_{\varepsilon_*})} |u'_{\varepsilon_*}|^p \, dx +\int_{B(x_0, r)} |v'_r|^p \, dx \Bigr] \le \int_{\mathcal{O}(u_{\varepsilon_*})} |u''_{\varepsilon_*}|^p \, dx + \int_{B(x_0, r)} |v''_r|^p \, dx. \end{equation} $ | (3.20) |
Since
$ \begin{align*} \int_{B(x_0, r)} |v'_r|^p \, dx = r^{p-1} \int_{B(0, 1)} |v'|^p \, dx, \qquad \int_{B(x_0, r)} |v''_r|^p \, dx = r^{2p-1} \int_{B(0, 1)} |v''|^p \, dx, \end{align*} $ |
recalling that $ \|u_\varepsilon^\prime\|_{L^p(I)}^p = 1 $ and $ \|u_\varepsilon^{\prime\prime}\|_{L^p(I)}^p = \Lambda_\varepsilon $ for all $ \varepsilon > 0 $, we observe from (3.20) that
$ \begin{equation} \Lambda_{\varepsilon_*} \le \frac{\|v'' \|_{L^p(B(0, 1))}^p}{\|v' \|^p_{L^p(B(0, 1))}} r^p. \end{equation} $ | (3.21) |
On the other hand, combining $ \|u'_\varepsilon\|_{L^p(I)}^p = 1 $ and $ \|u''_\varepsilon\|_{L^p(I)}^p = \Lambda_\varepsilon $ with Poincaré's inequality, we find a constant $ C > 0 $ being independent of $ r $ such that
$ \begin{equation*} 0 \lt \frac{1}{C} \le \Lambda_\varepsilon \quad \text{for all} \quad \varepsilon \gt 0, \end{equation*} $ |
This together with (3.21) implies that
$ \begin{align*} 0 \lt \frac{1}{C} \le \frac{\|v^{\prime\prime} \|_{L^p(B(0, 1))}^p}{\|v^\prime\|^p_{L^p(B(0, 1))}} r^p. \end{align*} $ |
Taking $ 0 < r < 1 $ small enough, we lead a contradiction. Thus Lemma 3.3 follows.
Lemma 3.3 implies that the 'size' of the support of minimizer $ u_\varepsilon $ is uniformly bounded from below with respect to $ \varepsilon > 0 $. Next we prove that the support of $ u_\varepsilon $ is connected.
Lemma 3.4. Let $ u_\varepsilon $ be a solution of $({\rm P}_\varepsilon)$. Then $ \mathcal{I}(u_\varepsilon) $ is connected for all $ \varepsilon > 0 $.
Proof. Suppose not, we find $ \varepsilon_* > 0 $ such that $ \mathcal{I}(u_{\varepsilon_*}) $ is not connected. Then there exist an open interval $ I_1 $ and an open set $ I_2 $ such that $ I_1 \cap I_2 = \emptyset $ and
$ \begin{equation} \mathcal{I}(u_\varepsilon) = I_1 \cup I_2. \end{equation} $ | (3.22) |
We define $ U_i $ by
$ \begin{align} U_i : = \begin{cases} \dfrac{u_\varepsilon}{\| u'_\varepsilon \|_{L^p(I_i)}} \quad &\text{in}\quad I_i, \\ 0\quad &\text{in} \quad I\setminus I_i, \end{cases} \quad \text{for}\quad i = 1, 2. \end{align} $ | (3.23) |
Then it holds that $ U_i \in W^{2, p}_0(I) $ for $ i = 1, 2 $. If $ |I_1| \ge \omega_0 $, then we deduce from (3.22) that
$ E_\varepsilon(u_\varepsilon) = \Lambda_\varepsilon+f_\varepsilon(\mathcal{O}(u_\varepsilon)) = E(U_1)+E(U_2)+f_\varepsilon(\mathcal{O}(u_\varepsilon)) \gt E(U_1). $ |
This clearly contradicts to the minimality of $ u_\varepsilon $. If $ |I_1| < \omega_0 $, then Lemma 3.3 implies that
$ \begin{align} E_\varepsilon(u_\varepsilon) \lt E_\varepsilon(U_1). \end{align} $ | (3.24) |
Since it follows from $ |I_1| < \omega_0 $ that $ f_\varepsilon(U_1) = 0 $, we observe from (3.24) that $ \Lambda_\varepsilon < E(U_1) $, and then
$ \begin{align} \Lambda_\varepsilon \int_{I_1} |U'_1|^p \, dx \lt \int_{I_1} |U''_1|^p \, dx. \end{align} $ | (3.25) |
On the other hand, it follows from (3.23) that
$ \begin{equation} \int_{I_2} |U''_2|^p \, dx = \int_I |u''_\varepsilon|^p \, dx - \int_{I_1} |U''_1|^p \, dx = \Lambda_\varepsilon - \int_{I_1} |U''_1|^p \, dx. \end{equation} $ | (3.26) |
Plugging (3.25) into (3.26), we have
$ \begin{align} \begin{split} \int_{I_2} |U''_2|^p \, dx & \lt \Lambda_\varepsilon - \Lambda_\varepsilon \int_{I_1} |U'_1|^p \, dx \\ & = \Lambda_\varepsilon \Bigl( 1- \int_{I_1} |U'_1|^p \, dx \Bigr) = \Lambda_\varepsilon \Bigl( \int_I |u'_\varepsilon|^p \, dx - \int_{I_1} |U'_1|^p \, dx \Bigr) = \Lambda_\varepsilon \int_{I_2} |U'_2|^p \, dx, \end{split} \end{align} $ | (3.27) |
where we used (3.22) again in the last equality of (3.27). Then (3.27) implies that
$ \begin{equation} E(U_2) \lt \Lambda_\varepsilon = E(u_\varepsilon). \end{equation} $ | (3.28) |
Since $ f_\varepsilon(|\mathcal{O}(U_2)|)\leq f_\varepsilon(|\mathcal{O}(u_\varepsilon)|) $, we deduce form (3.28) that
$ E_\varepsilon(U_2) \lt E_\varepsilon(u_\varepsilon). $ |
This contradicts to the minimality of $ u_\varepsilon $. Therefore Lemma 3.4 follows.
Lemma 3.5. There exists a constant $ \Lambda_{\rm max} $ such that
$ \begin{equation*} \Lambda_\varepsilon \leq \Lambda_{\rm max} \quad \mathit{\text{for all}} \quad \varepsilon \gt 0. \end{equation*} $ |
Proof. Let $ r_0 : = \omega_0/4 $ and set $ x_0 \in I $ such that $ B(x_0, r_0) \subset I $, where $ B(y, \rho): = \{ x \in I \mid |x-y| < \rho\} $. We consider the problem
$ \begin{equation} \min\limits_{v \in W^{2, p}_0(B(x_0, r_0))} E(v). \end{equation} $ | (3.29) |
Along the same line as in the proof of Lemma 3.1, we find a solution $ \varphi_0 \in W^{2, p}_0(B(x_0, r_0)) $ of problem (3.29) satisfying the following:
$ \begin{equation} \int_{B(x_0, r_0)} |\varphi'_0|^p \, dx = 1. \end{equation} $ | (3.30) |
Since $ \varphi_0 \in W^{2, p}_0(B(x_0, r_0)) $, we can extend $ \varphi_0 $ as a function in $ W^{2, p}_0(I) $. Recalling that
$ |\mathcal{O}(\varphi_0)| \le |B(x_0, r_0)| \le \omega_0/2, $ |
we deduce from Lemma 3.3 that
$ E_\varepsilon(u_\varepsilon) \lt E_\varepsilon(\varphi_0) = E(\varphi_0). $ |
This together with (3.30) that
$ \Lambda_\varepsilon \lt \int_{B(x_0, r_0)} |\varphi''_0|^p \, dx = : \Lambda_{\rm max}. $ |
Therefore Lemma 3.5 follows.
Here we employ the idea in [4,Proof of Theorem 3.9]:
Lemma 3.6. Let $ a_1, a_2 \in I $ with $ a_1 < a_2 $. Fix $ \eta \in C_{\rm c}^{\infty}((a_1, a_2)) $ and set
$ \begin{align} \varphi_1(x) &: = \int_{a_1}^x \int_{a_1}^y \eta(s) \, ds dy + \alpha(x-a_1)^2 + \beta(x-a_1)^3, \end{align} $ | (3.31) |
$ \begin{align} \alpha &: = \frac{1}{a_2-a_1} \int_{a_1}^{a_2} \eta(y) \, dy - \frac{3}{(a_2-a_1)^2} \int_{a_1}^{a_2} \int_{a_1}^y \eta(s) \, ds dy , \end{align} $ | (3.32) |
$ \begin{align} \beta &: = -\frac{\alpha}{a_2-a_1}-\frac{1}{(a_2-a_1)^3} \int_{a_1}^{a_2} \int_{a_1}^y \eta(s) \, ds dy. \end{align} $ | (3.33) |
Then $ \varphi_1 \in W^{2, p}_0((a_1, a_2)) $ and there exist $ C_1, C_2, C_3 > 0 $ depending only on $ a_1 $ and $ a_2 $ such that
$ \begin{equation*} \| \varphi_1 \|_{W^{1, \infty}((a_1, a_2))} \le C_1 \| \eta \|_{L^1((a_1, a_2))}, \, \, |\alpha| \le C_2 \| \eta \|_{L^1((a_1, a_2))}, \, \, |\beta| \le C_3 \| \eta \|_{L^1((a_1, a_2))}. \end{equation*} $ |
Proof. By (3.31), (3.32) and (3.33) we have $ \varphi_1(a_1) = \varphi_1(a_2) = 0 $. Since
$ \begin{align*} \varphi'_1(x) = \int_{a_1}^x \eta(s) \, ds +2\alpha(x-a_1) + 3 \beta (x-a_1)^2, \end{align*} $ |
it follows from (3.32) and (3.33) that $ \varphi'_1(a_1) = \varphi'_1(a_2) = 0 $. Thus we see that $ \varphi_1 \in W^{2, p}_0((a_1, a_2)) $. Moreover, we have
$ \begin{align*} |\alpha| & \le \dfrac{1}{a_2-a_1} \|\eta\|_{L^1((a_1, a_2))} + \dfrac{3}{(a_2-a_1)^2} \int_{a_1}^{a_2} \int_{a_1}^{a_2} |\eta(s)| \, ds dy = \dfrac{4}{a_2-a_1} \| \eta\|_{L^1((a_1, a_2))}, \\ |\beta| & \le \dfrac{|\alpha|}{a_2-a_1} + \dfrac{1}{(a_2-a_1)^3} \int_{a_1}^{a_2} \int_{a_1}^{a_2} |\eta(s)| \, ds dy \le \dfrac{5}{(a_2-a_1)^2} \| \eta \|_{L^1((a_1, a_2))}. \end{align*} $ |
Similarly we obtain
$ \begin{align*} \|\varphi_1\|_{L^{\infty}((a_1, a_2))} &\le (a_2-a_1) \int_{a_1}^{a_2} |\eta(s)| \, ds + |\alpha|(a_2-a_1) + |\beta|(a_2-a_1)^2 \le 10(a_2-a_1) \|\eta \|_{L^1((a_1, a_2))}, \\ \|\varphi'_1\|_{L^{\infty}((a_1, a_2))} &\le \| \eta \|_{L^1((a_1, a_2))} + 2|\alpha|(a_2-a_1) + 3|\beta|(a_2-a_1)^2 \le 24 \|\eta \|_{L^1((a_1, a_2))}. \end{align*} $ |
Thus Lemma 3.6 follows.
Theorem 3.7. Let $ u_\varepsilon\in W^{2, p}_0(I) $ be a solution to $({\rm P}_\varepsilon)$. Then there exists a constant $ M > 0 $ such that
$ \begin{align*} \|u_\varepsilon^{\prime\prime}\|_{L^{\infty}(\mathcal{I}(u_\varepsilon))} \leq M \quad \mathit{\text{for all}}\quad \varepsilon \gt 0. \end{align*} $ |
Proof. Fix $ \varepsilon > 0 $ arbitrarily. Since $ u_\varepsilon \in W^{2, p}_0(I) $ is a solution to $({\rm P}_\varepsilon)$, by Lemma 3.2 we have
$ \begin{equation} \int_{\mathcal{I}(u_\varepsilon)} \bigl[|u''_\varepsilon|^{p-2} u''_\varepsilon \varphi'' - \Lambda_\varepsilon |u'_\varepsilon|^{p-2} u'_\varepsilon \varphi' \bigr] \, dx = 0 \quad \text{for all} \quad \varphi \in W^{2, p}_0(\mathcal{I}(u_\varepsilon)), \end{equation} $ | (3.34) |
where the constant $ \Lambda_\varepsilon $ is defined by (3.11). By Lemmas 3.3 and 3.4 we find $ a^\varepsilon_1, a^\varepsilon_2 \in I $ such that
$ \begin{equation} \mathcal{I}(u_\varepsilon) = (a^\varepsilon_1, a^\varepsilon_2), \quad \omega_0 \le |a^\varepsilon_2-a^\varepsilon_1| \le |I|, \quad \text{for all} \quad \varepsilon \gt 0. \end{equation} $ | (3.35) |
Fix $ \eta \in C^\infty_{\rm c}(\mathcal{I}(u_\varepsilon)) $ arbitrarily. Taking $ (a^\varepsilon_1, a^\varepsilon_2) $ as $ (a_1, a_2) $ in Lemma 3.6, we observe from (3.35) that the constants $ C_1 $, $ C_2 $ and $ C_3 $ in Lemma 3.6 depends only on $ \omega_0 $ and $ I $. Taking $ \varphi = \varphi_1 $ in (3.34), where $ \varphi_1 $ is the function defined in Lemma 3.6, we have
$ \begin{align*} \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-2} u''_\varepsilon \eta \, dx & = \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-2} u''_\varepsilon [-2\alpha -6\beta (x-a_1)] \, dx + \Lambda_\varepsilon \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u'_\varepsilon|^{p-2} u'_\varepsilon \varphi'_1 \, dx. \end{align*} $ |
This together with Lemma 3.6 implies that
$ \begin{equation} \begin{split} \Bigl| \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-2} u''_\varepsilon \eta \, dx \Bigr| & = \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-1} [ 2|\alpha|+6|\beta| |I| ] \, dx + \Lambda_\varepsilon \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u'_\varepsilon|^{p-1} |\varphi'_1| \, dx \\ & \le \bigl[ 2C_2 \|\eta\|_{L^1(\mathcal{I}(u_\varepsilon))} + 6 C_3|I|\|\eta\|_{L^1(\mathcal{I}(u_\varepsilon))}\bigr] \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-1} \, dx\\ & \quad + C_1 \|\eta\|_{L^1(\mathcal{I}(u_\varepsilon))} \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u'_\varepsilon|^{p-1} \, dx. \end{split} \end{equation} $ | (3.36) |
By Hölder's inequality we have
$ \begin{align} \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-1} \, dx \le \Bigl( \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p} \, dx \Bigr)^{\frac{p-1}{p}} (a^\varepsilon_2 - a^\varepsilon_1)^{\frac{1}{p}} \le \Lambda_\varepsilon^\frac{p-1}{p} |I|^\frac{1}{p}. \end{align} $ | (3.37) |
Similarly we obtain
$ \begin{align} \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u'_\varepsilon|^{p-1} \, dx \le \Bigl(\int_I |u'_\varepsilon|^p \, dx \Bigr)^\frac{p-1}{p} |I|^\frac{1}{p} \le C \Lambda_\varepsilon^\frac{p-1}{p} |I|^\frac{1}{p}. \end{align} $ | (3.38) |
Plugging (3.37) and (3.38) into (3.36) we see that
$ \begin{align*} \Bigl| \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-2} u''_\varepsilon \eta \, dx \Bigr| \le C \Lambda_\varepsilon^{\frac{p-1}{p}} \|\eta\|_{L^1{(\mathcal{I}(u_\varepsilon)})}, \end{align*} $ |
where the constant $ C > 0 $ depends only on $ \omega_0 $ and $ I $. This together with Lemma 3.5 implies that
$ \begin{equation} \Bigl| \int^{a^\varepsilon_2}_{a^\varepsilon_1} |u''_\varepsilon|^{p-2} u''_\varepsilon \eta \, dx \Bigr| \le C \|\eta\|_{L^1{(\mathcal{I}(u_\varepsilon)})}, \end{equation} $ | (3.39) |
where $ C > 0 $ depends only on $ \omega_0 $ and $ I $. Using the fact that $ (L^1(\mathcal{I}(u_\varepsilon)))^* = L^{\infty}(\mathcal{I}(u_\varepsilon)) $ and Riesz's representation theorem, we deduce from (3.39) that
$ \begin{align*} \| |u_\varepsilon^{\prime\prime}|^{p-1} \|_{L^{\infty}(\mathcal{I}(u_\varepsilon))} \le C. \end{align*} $ |
Therefore Theorem 3.7 follows.
In order to prove Theorem 1.1, it suffices to show the following:
Theorem 4.1. Let $ u_\varepsilon $ be a solution to $({\rm P}_\varepsilon)$ obtained by Lemma 3.1. Then there exists a constant $ \varepsilon_0 > 0 $ such that
$ \begin{equation} |\mathcal{O}(u_\varepsilon)| = \omega_0 \quad \mathit{\text{for all}} \quad 0 \lt \varepsilon \lt \varepsilon_0. \end{equation} $ | (4.1) |
Proof. Assume that (4.1) does not hold. Then, by Lemma 3.3 we find a sequence $ \{ \varepsilon_j\}_{j\in \mathbb{N}} $ such that $ \varepsilon_j \to 0 $ as $ j \to \infty $ and
$ \begin{equation} |\mathcal{I}(u_{\varepsilon_j})| = |\mathcal{O}(u_{\varepsilon_j})| \gt \omega_0 \quad \text{for all} \quad j \in \mathbb{N}. \end{equation} $ | (4.2) |
Fix $ j\in \mathbb{N} $ arbitrarily, and set $ \varepsilon_j = \varepsilon $ for short. By (4.2) we find $ x_{\varepsilon}\in \mathcal{I}(u_{\varepsilon}) $ such that
$ \begin{equation*} |\mathcal{I}(u_{\varepsilon})|-|B(x_{\varepsilon}, r_\varepsilon)| \gt \omega_0, \end{equation*} $ |
where
$ r_{\varepsilon} : = \frac{1}{2}\text{dist}(x_{\varepsilon}, \partial \mathcal{I}(u_{\varepsilon})). $ |
Let $ \eta \in C_{\rm c}^{\infty}(B(x_\varepsilon, 2 r_\varepsilon)) $ be a cut-off function with
$ \begin{equation} \left\{ \begin{alignedat}{1} &0 \leq \eta \leq 1 \quad \text{in} \quad I, \\ &\eta \equiv 1\quad \text{in} \quad B(x_\varepsilon, r_\varepsilon), \\ &\|\eta' \|_{L^\infty(I)} \le \frac{C}{r_{\varepsilon}}, \quad \|\eta''\|_{L^\infty(I)} \le \frac{C}{r_{\varepsilon}^2}, \end{alignedat} \right. \end{equation} $ | (4.3) |
where $ C $ is a positive constant. Let $ v_{\varepsilon} : = u_{\varepsilon} - \eta u_{\varepsilon} $. Then we see that $ v_\varepsilon\in W^{2, p}_0(I) $ and
$ \begin{align} v_{\varepsilon} = \begin{cases} u_{\varepsilon} \quad &\text{in} \quad I \setminus B(x_\varepsilon, 2r_\varepsilon), \\ 0 \quad & \text{in} \quad B(x_\varepsilon, r_\varepsilon). \end{cases} \end{align} $ | (4.4) |
Recalling that
$ \begin{align*} |\mathcal{O}(v_{\varepsilon})| = |\mathcal{I}(u_{\varepsilon})| - |B(x_\varepsilon, r_{\varepsilon})| \gt \omega_0, \end{align*} $ |
by the minimality of $ u_{\varepsilon} $ we have $ E_\varepsilon(u_\varepsilon) \le E_\varepsilon(v_\varepsilon) $, i.e.,
$ \begin{align} \Lambda_\varepsilon + f_\varepsilon(|\mathcal{O}(u_{\varepsilon})|) \le \frac{ \int_I |v''_{\varepsilon}|^p \, dx}{ \int_I |v'_{\varepsilon}|^p \, dx} + f_\varepsilon(|\mathcal{O}(v_{\varepsilon})|). \end{align} $ | (4.5) |
Since it follows from (3.1) that
$ \begin{equation} f_{\varepsilon}(|\mathcal{O}(u_{\varepsilon})|)-f_{\varepsilon}(|\mathcal{O}(v_{\varepsilon})|) = \frac{2r_{\varepsilon}}{\varepsilon}, \end{equation} $ | (4.6) |
plugging (4.6) into (4.5), we obtain
$ \begin{align} \Lambda_\varepsilon \int_I |v'_{\varepsilon}|^p \, dx + \frac{2r_{\varepsilon}}{\varepsilon} \int_I |v'_{\varepsilon}|^p \, dx \le \int_I |v''_{\varepsilon}|^p \, dx. \end{align} $ | (4.7) |
From (4.4) we see that
$ \begin{equation} \begin{split} \int_I |v'_{\varepsilon}|^p \, dx & = \int_{B(x_\varepsilon, 2r_{\varepsilon})} |((1-\eta) u_{\varepsilon})'|^p \, dx + \int_{I \setminus B(x_\varepsilon, 2r_{\varepsilon})} |u'_{\varepsilon}|^p \, dx \\ & = \int_{B(x_\varepsilon, 2r_{\varepsilon})} \bigl[ |((1-\eta) u_{\varepsilon})'|^p- |u'_{\varepsilon}|^p \bigr] \, dx + 1. \end{split} \end{equation} $ | (4.8) |
Similarly we have
$ \begin{equation} \int_I |v''_{\varepsilon}|^p \, dx = \int_{B(x_\varepsilon, 2r_{\varepsilon})} \bigl[ |((1-\eta) u_{\varepsilon})''|^p - |u''_{\varepsilon}|^p \bigr] \, dx + \Lambda_\varepsilon. \end{equation} $ | (4.9) |
Combining (4.7) with (4.8) and (4.9), we find
$ \begin{equation} \Lambda_\varepsilon \int_{B(x_\varepsilon, 2r_{\varepsilon})} \bigl[ |((1-\eta) u_{\varepsilon})'|^p- |u'_{\varepsilon}|^p \bigr] \, dx + \frac{2r_{\varepsilon}}{\varepsilon} \int_I |v'_{\varepsilon}|^p \, dx \le \int_{B(x_\varepsilon, 2r_{\varepsilon})} \bigl[ |((1-\eta) u_{\varepsilon})''|^p - |u''_{\varepsilon}|^p \bigr] \, dx. \end{equation} $ | (4.10) |
Since it follows from (2.1) that
$ \int_{B(x_\varepsilon, 2r_{\varepsilon})} \bigl[ |((1-\eta) u_{\varepsilon})'|^p- |u'_{\varepsilon}|^p \bigr] \, dx \ge -p \int_{B(x_\varepsilon, 2r_{\varepsilon})} |u'_{\varepsilon}|^{p-2} u'_{\varepsilon} (\eta u_{\varepsilon})^\prime \, dx $ |
and
$ \begin{align*} \int_{B(x_\varepsilon, 2r_{\varepsilon})} \bigl[ |((1-\eta) u_{\varepsilon})''|^p - |u''_{\varepsilon}|^p \bigr] \, dx \le p \int_{B(x_\varepsilon, 2r_{\varepsilon})} |((1-\eta) u_{\varepsilon})''|^{p-2} ((1-\eta)u_{\varepsilon})'' (\eta u_{\varepsilon})'' \, dx, \end{align*} $ |
we reduce (4.10) into
$ \begin{equation} \begin{split} \frac{2r_{\varepsilon}}{\varepsilon} \int_I |v'_{\varepsilon}|^p \, dx & \le p \Lambda_\varepsilon \int_{B(x_\varepsilon, 2r_{\varepsilon})} |u'_{\varepsilon}|^{p-2} u'_{\varepsilon} (\eta u_{\varepsilon})^\prime \, dx \\ & \qquad + p \int_{B(x_\varepsilon, 2r_{\varepsilon})} |((1-\eta) u_{\varepsilon})''|^{p-2} ((1-\eta)u_{\varepsilon})'' (\eta u_{\varepsilon})'' \, dx \\ & = : K_1 + K_2. \end{split} \end{equation} $ | (4.11) |
By Theorem 3.7 we have
$ \begin{equation} |u'_\varepsilon(x)| = |u'_\varepsilon(x) - u'_\varepsilon(y)| \le C|x-y| \le 2 C r_\varepsilon \quad \text{for all} \quad x \in \bar{B}(x_\varepsilon, 2r_{\varepsilon}), \end{equation} $ | (4.12) |
where $ y \in \partial \mathcal{I}(u_\varepsilon) $, and the constant $ C $ is independent of $ \varepsilon $. Moreover, we deduce from (4.12) that
$ \begin{equation} |u_\varepsilon(x)| = \Bigl| \int^x_y u'_\varepsilon(\xi) \, d\xi \Bigr| \le 2 C r_\varepsilon |x-y| \le 4 C r^2_\varepsilon, \end{equation} $ | (4.13) |
where $ y \in \partial \mathcal{I}(u_\varepsilon) $. It follows from (4.3), (4.12) and (4.13) that
$ \begin{equation} K_1 \le C \Lambda_\varepsilon r^{p}_\varepsilon |B(x_\varepsilon, 2r_{\varepsilon})| \le C \Lambda_\varepsilon r^{p+1}_\varepsilon, \end{equation} $ | (4.14) |
where $ C > 0 $ is independent of $ \varepsilon $. Similarly, we infer from (4.3), (4.12), (4.13) and Theorem 3.7 that
$ \begin{equation} K_2 \le C |B(x_\varepsilon, 2r_{\varepsilon})| \le C r_\varepsilon, \end{equation} $ | (4.15) |
where $ C > 0 $ is independent of $ \varepsilon $. Plugging (4.14) and (4.15) into (4.11), we obtain
$ \begin{equation} \frac{2r_{\varepsilon}}{\varepsilon} \int_I |v'_{\varepsilon}|^p \, dx \le C r_\varepsilon(1+r^p_\varepsilon), \end{equation} $ | (4.16) |
where $ C > 0 $ is independent of $ \varepsilon $. Since $ \| u'_\varepsilon\|_{L^p(I)} = 1 $, by (2.1) we have
$ \begin{align*} \int_I |v'_{\varepsilon}|^p \, dx = 1 + \int_I [ |v'_\varepsilon|^p - |u'_\varepsilon|^p ] \, dx \ge 1 - p \int_{B(x_\varepsilon, 2r_{\varepsilon})} |u'_\varepsilon|^{p-2} u'_\varepsilon (\eta u_\varepsilon)' \, dx \ge 1 - C r^{p+1}_\varepsilon. \end{align*} $ |
Taking $ x_\varepsilon \in \mathcal{I}(u_\varepsilon) $ sufficiently close to $ \partial \mathcal{I}(u_\varepsilon) $, we see that
$ \int_I |v'_{\varepsilon}|^p \, dx \ge \dfrac{1}{2}. $ |
This together with (4.16) implies that
$ \dfrac{1}{\varepsilon} \le C(1 + r^p_\varepsilon). $ |
Letting $ \varepsilon \to 0 $, we lead a contradiction. Therefore Theorem 4.1 follows.
We are in a position to prove Theorem 1.1:
proof of Theorem 1.1. By Lemma 3.1 we see that there exists a solution $ u_\varepsilon $ of $({\rm P}_\varepsilon)$ for each $ \varepsilon > 0 $. Thanks to Theorem 4.1, we find $ \varepsilon_0 > 0 $ such that
$ \begin{align*} |\mathcal{O}(u_\varepsilon)| = \omega_0 \quad \text{for all} \quad 0 \lt \varepsilon \lt \varepsilon_0. \end{align*} $ |
This implies that $ u_\varepsilon $ is a solution of problem $({\rm{P}})$, providing that $ \varepsilon > 0 $ is small enough. Moreover, it follows from Lemma 3.2 that $ (u_\varepsilon, \Lambda_\varepsilon) $ satisfies problem (1.4) in a weak sense. Finally, we deduce from Lemma 3.4 that $ \mathcal{I}(u_\varepsilon) $ is connected. Therefore Theorem 1.1 follows.
The second author was partially supported by the Grant-in-Aid for Scientific Research (S) (No. 19H05599). Moreover, the authors would like to thank the referee for useful comments.
The authors declare no conflict of interest.
[1] | Alt HW, Caffarelli LA (1981) Existence and regularity for a minimum problem with free boundary. J Reine Angew Math 325: 105-144. |
[2] |
Ashbaugh MS, Bucur D (2003) On the isoperimetric inequality for the buckling of a clamped plate. Z Angew Math Phys 54: 756-770. doi: 10.1007/s00033-003-3204-3
![]() |
[3] |
Benedikt J (2015) Estimates of the principle eigenvalue of the p-Laplacian and the p-biharmonic operator. Math Bohem 140: 215-222. doi: 10.21136/MB.2015.144327
![]() |
[4] | Dall'Acqua A, Deckelnick K, Grunau HC (2008) Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv Calc Var 1: 379-397. |
[5] | Drábek P, Ôtani M (2001) Global bifurcation result for the p-biharmonic operator. Electron J Differ Eq 48: 19. |
[6] | Gazzola F, Grunau HC, Sweers G (2010) Polyharmonic Boundary Value Problems, Berlin: Springer-Verlag. |
[7] | Parini E, Ruf B, Tarsi C (2014) The eigenvalue problem for the 1-biharmonic operator. Ann Scuola Norm Sci 13: 307-332. |
[8] | Lindqvist P (2017) Notes on the p-Laplace Equation, 2 Eds., University Jyväskylä, Department of Mathematics and Statics, Report 161. |
[9] | Polya G, Szegö G (1951) Isoperimetric Inequalities in Mathematical Physics, Princeton: Princeton University Press. |
[10] |
Stollenwerk K (2016) Optimal shape of a domain which minimizes the first buckling eigenvalue. Calc Var 55: 29. doi: 10.1007/s00526-016-0963-1
![]() |
[11] |
Takeuchi S (2012) Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian. J Math Anal Appl 385: 24-35. doi: 10.1016/j.jmaa.2011.06.063
![]() |
[12] |
Watanabe K (2014) Planar p-elastic curves and related generalized complete elliptic integrals. Kodai Math J 37: 453-474. doi: 10.2996/kmj/1404393898
![]() |