Loading [MathJax]/jax/output/SVG/jax.js
Mini review Special Issues

The Parathyroid Hormone Family of Ligands and Receptors

  • Received: 28 May 2015 Accepted: 03 July 2015 Published: 24 July 2015
  • The PTH family of ligands and receptors have a wide range of vital functions from calcium homeostasis to tissue and bone development from the embryo to adult. This family has undergone whole genome duplication events predating vertebrate evolution, indicating more primitive and ancient functions other than skeletal development. The N-terminal region of the ligands, have been widely studied by biophysical and functional analysis, resulting in the discovery of key characteristics essential for ligand-receptor activation being elucidated. Multi-substituted amino acid analogs with differential binding affinities and either antagonistic or agonistic signalling potencies have been created based on these findings allowing for improvement on potential therapies affected by the PTH system in skeletal and embryonic development. The PTH family has diversely evolved to cover a wide range of pivotal pathways crucial to growth and development throughout all animal life.

    Citation: Damian G. D'Souza. The Parathyroid Hormone Family of Ligands and Receptors[J]. AIMS Medical Science, 2015, 2(3): 118-130. doi: 10.3934/medsci.2015.3.118

    Related Papers:

    [1] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [2] Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403
    [3] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [4] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [5] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322
    [6] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [7] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [8] Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299
    [9] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [10] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
  • The PTH family of ligands and receptors have a wide range of vital functions from calcium homeostasis to tissue and bone development from the embryo to adult. This family has undergone whole genome duplication events predating vertebrate evolution, indicating more primitive and ancient functions other than skeletal development. The N-terminal region of the ligands, have been widely studied by biophysical and functional analysis, resulting in the discovery of key characteristics essential for ligand-receptor activation being elucidated. Multi-substituted amino acid analogs with differential binding affinities and either antagonistic or agonistic signalling potencies have been created based on these findings allowing for improvement on potential therapies affected by the PTH system in skeletal and embryonic development. The PTH family has diversely evolved to cover a wide range of pivotal pathways crucial to growth and development throughout all animal life.


    In [1,pp. 42 and 55], we find the Maclaurin power series expansions

    $ cosx=k=0(1)kx2k(2k)!=1x22+x424x6720+x840320,xR $

    and

    $ lncosx=k=122k1(22k1)k(2k)!|B2k|x2k=x22x412x64517x82520 $ (1)

    for $ x^2 < \frac{\pi^2}4 $, where $ B_{2k} $ denotes the Bernoulli numbers which can be generated by

    $ zez1=k=0Bkzkk!=1z2+k=1B2kz2k(2k)!,|z|<2π. $

    Let

    $ F(x)={ln2(1cosx)x2,0<|x|<2π;0,x=0 $ (2)

    and

    $ R(x)={ln2(1cosx)x2lncosx,0<|x|<π2;16,x=0;0,x=±π2. $ (3)

    In the recent paper [2], Li and Qi obtained the following two results:

    1. The function $ F(x) $ defined by (2) can be expanded into the Maclaurin power series expansion

    $ F(x)=n=1E2n(2n)!x2n=x212x41440x690720x84838400 $ (4)

    for $ |x| < 2\pi $, where

    $ E2n=|A2n1,1B2n1,2n1ωnC1,2n+1|,n1,ωk=(1)k(k+1)(2k+1),k0,A2n1,1=(0ω10ω20ωn10)=(ai,j)1i2n1j=1,n1,ai,1={0,1i=2k12n1;ωk,2i=2k2n2,B2n1,2n1=|(00)ω00000(11)ω000(20)ω10(22)ω000(31)ω100(2n40)ωn20(2n42)ωn300(2n31)ωn200(2n20)ωn10(2n22)ωn1(2n22n2)ω0|=(bi,j)1i,j2n1,n1,bi,j={0,1i<j2n1;(ij)ωk,0ij=2k2n2;0,1ij=2k12n3,C1,2n1=(0(2n11)ωn10(2n13)ωn20(2n12n3)ω10)=(ci,j)i=11j2n1,n1,c1,j={0,1j=2k12n1;(2n12k1)ωnk,2j=2k2n2. $

    2. The function $ R(x) $ defined by (3) decreasingly maps $ \bigl[0, \frac{\pi}2\bigr] $ onto $ \bigl[0, \frac{1}{6}\bigr] $.

    We now introduce several new even functions as follows:

    1. The first function is

    $ F0(x)=lncosx,xk=0(±2kππ2,±2kπ+π2). $ (5)

    2. The second function is

    $ F1(x)={ln2(1cosx)x2,xR{±2kπ,k=1,2,};0,x=0. $ (6)

    It is clear that $ F_1(x) = F(x) $ on $ (-2\pi, 2\pi) $.

    3. Generally, the third function we are introducing is

    $ Fn(x)={ln((1)n(2n)!x2n[cosxn1k=0(1)kx2k(2k)!]),x00,x=0 $ (7)

    for $ n\ge2 $.

    Since the double inequality

    $ 0<(1)n[cosxn1k=0(1)kx2k(2k)!]<x2n(2n)! $ (8)

    is valid for $ n\ge2 $ and $ x\in\mathbb{R}\setminus\{0\} $, see [3,p. 326], the function $ F_n(x) $ is significantly defined for $ n\ge2 $ and $ x\in\mathbb{R} $.

    As a stronger version of the double inequality (8), the following positive, nonnegative, decreasing, and concave properties of the normalized tail

    $ CosRn(x)={(1)n(2n)!x2n[cosxn1k=0(1)kx2k(2k)!],x01,x=0 $ (9)

    for $ x\in(0, \infty) $ and $ n\ge1 $ were discovered in the paper [4]:

    (a) the normalized tail $ {\rm{CosR}}_1(x) $ is nonnegative on $ (0, \infty) $ and is decreasing on $ [0, 2\pi] $;

    (b) the normalized tail $ {\rm{CosR}}_n(x) $ for $ n\ge2 $ is decreasing and positive on $ (0, \infty) $;

    (c) the normalized tail $ {\rm{CosR}}_1(x) $ is concave on $ (0, x_0) $, where $ x_0\in\bigl(\frac{\pi}{2}, \pi\bigr) $ is the first positive zero of the equation

    $ (x22)sinx+2xcosx=0 $

    and the normalized remainder $ {\rm{CosR}}_n(x) $ for $ n\ge2 $ is concave on $ (0, \pi) $.

    Comparing the definition in (9) with those in (6) and (7) leads to the following conclusions:

    (a) the function $ F_1(x) $ is decreasing and negative on $ (0, 2\pi) $, and is concave on $ (0, x_0) $;

    (b) the function $ F_n(x) $ for $ n\ge2 $ is decreasing and negative on $ (0, \infty) $, and is concave on $ (0, \pi) $.

    4. The fourth function $ R_{m, n}(x) $ for $ n > m\ge0 $ is defined

    (a) when $ n > m = 0 $, by

    $ R0,n(x)={Fn(x)F0(x),0<|x|<π2;1(n+1)(2n+1),x=0;0,x=±π2, $ (10)

    (b) when $ n > m = 1 $, by

    $ R1,n(x)={Fn(x)F1(x),xR{±2kπ,k=1,2,};6(n+1)(2n+1),x=0;0,x{±2kπ,k=1,2,}, $

    (c) when $ n > m\ge2 $, by

    $ Rm,n(x)={Fn(x)Fm(x),x0;(m+1)(2m+1)(n+1)(2n+1),x=0. $

    It is easy to see that $ R_{0, 1}(x) = R(x) $.

    We now propose the following three problems:

    1. Is the function $ F_n(x) $ for $ n\ge0 $ decreasing and concave?

    2. What is the Maclaurin power series expansion of $ F_n(x) $ for $ n\ge0 $ around the origin $ x = 0 $?

    3. Is the function $ R_{m, n}(x) $ for $ n > m\ge0 $ decreasing?

    The first problem for the case $ n = 0 $ is immediate: the even function $ F_0(x) = \ln\cos x $ is decreasing and, by virtue of the series expansion (1), is concave in $ x\in\bigl(0, \frac{\pi}{2}\bigr) $. The first problem for the case $ n\ge1 $ was solved in the paper [4], as mentioned above. In a word, the first problem has been thoroughly solved.

    The second problem for $ n = 0 $ is just the Maclaurin power series expansion (1). The second problem for $ n = 1 $ was solved by the Maclaurin series expansion (4), which was established in [2,Section 3].

    The third problem for $ (m, n) = (0, 1) $ was solved in [2,Section 4], as mentioned above.

    In this paper, we will give a full answer to the second problem for all cases $ n\ge2 $, solve the first problem on the interval $ \bigl(0, \frac{\pi}{2}\bigr) $ once again, and discuss the third problem for the case $ n\ge2 $.

    In this section, we solve the second problem: what is the Maclaurin power series expansion of $ F_n(x) $ for $ n\ge0 $ around the origin $ x = 0 $?

    Theorem 1. For $ n\ge0 $, let

    $ ei,j(n)={(1)i/21+(1)i21(2n+i2n),1i2m,j=1(1)(ij+1)/21+(1)ij+12(i1j2)(2n+ij+12n),1i2m,2j2m $

    and

    $ D2m(n)=|ei,j(n)|(2m)×(2m). $

    Then the even function $ F_n(x) $ for $ n\ge0 $ can be expanded into

    $ Fn(x)=m=1D2m(n)(2m)!x2m,|x|<{π2,n=0;2π,n=1;,n2. $ (11)

    Proof. Let $ u(x) $ and $ v(x)\ne0 $ be two $ n $-time differentiable functions on an interval $ I $ for a given integer $ n\ge0 $. Then the $ n $th derivative of the ratio $ \frac{u(x)}{v(x)} $ is

    $ dndxn[u(x)v(x)]=(1)n|W(n+1)×(n+1)(x)|vn+1(x),n0, $ (12)

    where the matrix

    $ W(n+1)×(n+1)(x)=(U(n+1)×1(x)V(n+1)×n(x))(n+1)×(n+1), $

    the matrix $ U_{(n+1)\times1}(x) $ is an $ (n+1)\times1 $ matrix whose elements satisfy $ u_{k, 1}(x) = u^{(k-1)}(x) $ for $ 1\le k\le n+1 $, the matrix $ V_{(n+1)\times n}(x) $ is an $ (n+1)\times n $ matrix whose elements are $ v_{\ell, j}(x) = \binom{\ell-1}{j-1}v^{(\ell-j)}(x) $ for $ 1\le \ell\le n+1 $ and $ 1\le j\le n $, and the notation $ |W_{(n+1)\times(n+1)}(x)| $ denotes the determinant of the $ (n+1)\times(n+1) $ matrix $ W_{(n+1)\times(n+1)}(x) $. This is a slight reformulation of [5,p. 40,Exercise 5].

    Let

    $ un(x)=k=0(1)k+1(2k+2n+22n)x2k+1(2k+1)!andvn(x)=k=0(1)k(2k+2n2n)x2k(2k)!. $

    Then, straightforward differentiation yields

    $ u(2+1)n(0)=limx0k=0(1)k+1(2k+2n+22n)2k+12+1x2k2(2k+1)!=(1)+1(2+2n+22n),v(2)n(0)=limx0k=0(1)k(2k+2n2n)2k2x2k2(2k)!=(1)(2+2n2n),u(2)n(0)=0,v(2+1)n(0)=0 $

    for $ \ell\ge0 $. Considering Expression (14) and applying the derivative formula (12) for the ratio of two differentiable functions, we acquire

    $ F(2m)n(0)=limx0[k=0(1)k+1(2k+2n+22n)x2k+1(2k+1)!k=0(1)k(2k+2n2n)x2k(2k)!](2m1)=limx0[un(x)vn(x)](2m1)=(1)2m1v2mn(0)|un(0)vn(0)00un(0)vn(0)(11)vn(0)0un(0)vn(0)(21)vn(0)0u(3)n(0)v(3)n(0)(31)vn(0)0u(4)n(0)v(4)n(0)(41)v(3)n(0)0u(2m1)n(0)v(2m1)n(0)(2m11)v(2m2)n(0)(2m12m2)vn(0)|=|0(00)0001(2n+22n)0(11)000(20)(2n+22n)0(22)01(2n+42n)0(31)(2n+22n)0(33)0(40)(2n+42n)0(42)(2n+22n)0(1)m1(2n+2m22n)0(1)m2(2m31)(2n+2m42n)0(1)m3(2m33)(2n+2m62n)0(1)m1(2m20)(2n+2m22n)0(1)m2(2m22)(2n+2m42n)0(1)m(2n+2m2n)0(1)m1(2m11)(2n+2m22n)0(1)m2(2m13)(2n+2m42n)000000000000000000000000000000(2m32m7)(2n+42n)0(2m32m5)(2n+22n)0(2m32m3)00(2m22m6)(2n+42n)0(2m22m4)(2n+22n)0(2m22m2)(2m12m7)(2n+62n)0(2m12m5)(2n+42n)0(2m12m3)(2n+22n)0| $

    for $ m\ge1 $. In other words, for $ m\ge1 $,

    $ F(2m)n(0)=D2m(n)=|ei,j(n)|(2m)×(2m). $

    Consequently, the even function $ F_n(x) $ can be expanded into

    $ Fn(x)=k=0F(k)nxkk!=m=1F(2m)nx2m(2m)!=m=1D2m(n)(2m)!x2m. $

    The proof of Theorem 1 is completed.

    Remark 1. When $ n = 0 $, a direct computation gives

    $ D4(0)=|0(00)0010(11)00(20)0(22)10(31)0|=2andD2(0)=|0(00)10|=1. $

    Then, the first two terms of the Maclaurin power series expansion of the function $ \ln\cos x $ are

    $ D2(0)2!x2D4(0)4!x4=12!x224!x4=12x2112x4, $

    which coincide with the first two terms in the series expansion (1).

    When $ n = 1 $, straightforward computation shows

    $ D4(1)=|0(00)001(42)0(11)00(20)(42)0(22)1(62)0(31)(42)0|=160andD2(1)=|0(00)1(42)0|=16. $

    Then, the first two terms of the Maclaurin power series expansion of the function $ F(x) $ defined by (2) are

    $ D2(1)2!x2D4(1)4!x4=112x211440x4, $

    which coincide with the first two terms in the series expansion (4).

    Remark 2. Comparing the Maclaurin series expansions (1) and (4) with the series expansion (11) reveals

    $ |B2m|=m22m1(22m1)D2m(0)andE2m=D2m(1) $ (13)

    for $ m\ge1 $. The first formula in (13) is a new determinantal expression for the Bernoulli numbers $ B_{2m} $ with $ m\ge1 $.

    Additionally, we point out that, in the papers [2,6,7,8,9,10], there have been many related results, but different from and more complicated than the first one in (13), and plenty of closely-related references on closed-form formulas and determinantal expressions for the Bernoulli numbers and polynomials $ B_{2m} $ and $ B_{m}(x) $ with $ m\in\mathbb{N} $.

    In this section, we give an alternative and united proof of a modification of the first problem: is the function $ F_n(x) $ for $ n\ge0 $ decreasing and concave on $ \bigl(0, \frac{\pi}{2}\bigr) $?

    Theorem 2. For $ n = 0 $ and $ n\ge2 $, the even function $ F_n(x) $ defined by (5) and (7) is decreasing and concave on $ \bigl(0, \frac{\pi}{2}\bigr) $. The even function $ F_1(x) $ defined in (6) is decreasing on $ (0, 2\pi) $ and $ (x_k, 2(k+1)\pi) $ for $ k\in\mathbb{N} $, while it is increasing on $ (2k\pi, x_k) $ for $ k\in\mathbb{N} $, where $ x_k\in(2k\pi, 2(k+1)\pi) $ for $ k\in\mathbb{N} $ is the zero of the equation $ \tan\frac{x}{2} = \frac{x}{2} $ on $ (0, \infty) $.

    Proof. In the first section of this paper, it has been immediately verified that the function $ F_0(x) = \ln\cos x $ is decreasing and concave on $ \bigl(0, \frac{\pi}{2}\bigr) $.

    The derivative of $ F_1(x) $ can be written as

    $ F1(x)=1tanx21x2,x±2kπ,kN. $

    Therefore, the derivative $ F_1'(x) $ is negative on $ (0, 2\pi) $, is positive on $ (2k\pi, x_k) $, and is negative on $ (x_k, 2(k+1)\pi) $ for $ k\in\mathbb{N} $, where $ x_k\in(2k\pi, 2(k+1)\pi) $ for $ k\in\mathbb{N} $ is the zero of the equation $ \tan\frac{x}{2} = \frac{x}{2} $ on $ (0, \infty) $. Accordingly, the function $ F_1(x) $ is decreasing on $ (0, 2\pi) $ and $ (x_k, 2(k+1)\pi) $, while it is increasing on $ (2k\pi, x_k) $ for $ k\in\mathbb{N} $.

    On the interval $ \bigl(0, \frac{\pi}{2}\bigr) $ and for $ n\ge2 $, the function $ F_n(x) $ can be written as

    $ Fn(x)=lnk=n(1)kn(2n)!(2k)!x2k2n=lnk=0(1)k(2k+2n2n)x2k(2k)!. $

    Its first derivative is

    $ Fn(x)=k=0(1)k+1(2k+2n+22n)x2k+1(2k+1)!k=0(1)k(2k+2n2n)x2k(2k)!. $ (14)

    By virtue of [11,Theorem 7.6], or in view of the results at the site https://math.stackexchange.com/a/477549 (accessed on 18 January 2024), we derive the integral representation

    $ cosxn1k=0(1)kx2k(2k)!=(1)nx2nk=0(1)k(2n+2k)!x2k=(1)n(2n2)!x0(xt)2n2sintdt $ (15)

    for $ n\ge1 $ and $ x\in\mathbb{R} $. From the integral representation (15), it follows that

    $ (1)n(2n)!x2n[cosxn1k=0(1)k(2k)!x2k]=k=0(1)k(2k+2n2n)x2k(2k)!=2n(2n1)x2nx0(xt)2n2sintdt=2n(2n1)10(1u)2n2sin(ux)xdu>0,0<x<π $ (16)

    and

    $ [k=0(1)k(2k+2n2n)x2k(2k)!]=k=0(1)k+1(2k+2n+22n)x2k+1(2k+1)!=2n(2n1)10(1u)2n2ddx[sin(ux)x]du=2n(2n1)10(1u)2n2cos(ux)(ux)tan(ux)x2du<0,0<x<π2 $

    for $ n\ge1 $, where we used the inequalities $ \cos x > 0 $ and $ x-\tan x < 0 $ in $ x\in\bigl(0, \frac{\pi}{2}\bigr) $. This means that

    $ Fn(x)=10(1u)2n2cos(ux)(ux)tan(ux)x2du10(1u)2n2sin(ux)xdu<0,0<x<π2 $

    for $ n\ge1 $. In conclusion, the function $ F_n(x) $ for $ n\ge1 $ is decreasing on $ \bigl(0, \frac{\pi}{2}\bigr) $.

    It is known that

    $ sinxx=k=0(1)kx2k(2k+1)!,|x|<. $

    Straightforward differentiating and simplifying give

    $ (sinxx)=k=0(1)k+1(2k+2)(2k+1)(2k+3)!x2k=k=0(4k+4)(4k+3)(4k+5)![(4k+1)(4k+2)(4k+5)(4k+3)x2]x4k<0,x(0,103)(0,π2]. $

    Therefore, a direct differentiation and simplification yield

    $ Fn(x)=[10(1u)2n2ddx(sin(ux)x)du10(1u)2n2sin(ux)xdu]=1[10(1u)2n2sin(ux)xdu]2[(10(1u)2n2ddx(sin(ux)x)du)210(1u)2n2d2dx2(sin(ux)x)du10(1u)2n2sin(ux)xdu]=1[10(1u)2n2sin(ux)xdu]2[(10u(1u)2n2ddx(sin(ux)ux)du)210u(1u)2n2d2dx2(sin(ux)ux)du10u(1u)2n2sin(ux)uxdu]<0 $

    on $ \bigl(0, \frac{\pi}{2}\bigr) $ for $ n\ge1 $. Accordingly, the function $ F_n(x) $ for $ n\ge1 $ is concave on $ \bigl(0, \frac{\pi}{2}\bigr) $. The proof of Theorem 2 is thus complete.

    Remark 3. We note that a concave function must be a logarithmically concave function, but the converse is not true. However, a logarithmically convex function must be a convex function, but the converse is not true.

    In [2,Section 4], the function $ R_{0, 1}(x) = R(x) $ defined by (3) or (10) for $ n = 1 $ was proved to be decreasing on $ \bigl[0, \frac{\pi}2\bigr] $ onto $ \bigl[0, \frac{1}{6}\bigr] $.

    Theorem 3. The even function $ R_{0, 2}(x) $ defined by (10) for the case $ n = 2 $ is decreasing on $ \bigl[0, \frac{\pi}2\bigr] $.

    Proof. For $ n\ge2 $, direct differentiation gives

    $ Fn(x)F0(x)=[lnCosRn(x)](lncosx)=CosRn(x)CosRn(x)cosxsinx $

    and

    $ [Fn(x)F0(x)]=[CosRn(x)CosRn(x)cosxsinx]=(CosRn(x)CosRn(x)[CosRn(x)]2)cosxsinxCosRn(x)CosRn(x)[CosRn(x)sinx]2. $

    Taking $ n = 2 $ and simplifying lead to

    $ [F2(x)F0(x)]=72x10[CosR2(x)sinx]2[4x(x46x2+12)+4(7x216)xcosx+16xcos(2x)4x3cos(3x)+(3x4+4x216)sinx+2(x410x2+12)sin(2x)(x22x4)(x2+2x4)sin(3x)+4sin(4x)]=72x10[CosR2(x)sinx]2k=6(1)kQ(k)x2k+1(2k+1)!=72x10[CosR2(x)sinx]2k=3[Q(2k)Q(2k+1)(4k+3)!(4k+1)!x2]Q(2k+1)(4k+3)!x4k+1, $

    where

    $ Q(k)=42k+24(4k428k3+107k2+61k+324)32k3+(4k44k3+39k2+53k+64)22k+4(12k468k37k217k20),k6. $

    From the facts that

    $ 12k468k37k217k20=12(k6)4+220(k6)3+1361(k6)2+2923(k6)+490490,k6,4k44k3+39k2+53k+64=4(k6)4+92(k6)3+822(k6)2+3437(k6)+57825782,k6, $

    and, by induction,

    $ 42k+24(4k428k3+107k2+61k+324)32k3=16×32k[(43)2k4k428k3+107k2+61k+324108]>0,k7, $

    we conclude, together with $ Q(6) = 3871296 $, that $ Q(k)\ge3871296 $ for $ k\ge6 $.

    Let

    $ Q(k)=Q(2k)Q(2k+1)(4k+3)!(4k+1)!,k3. $

    The inequality

    $ Q(k+1)>Q(k),k3 $

    is equivalent to

    $ (2k+3)(4k+7)Q(2k+1)Q(2k+2)>(2k+1)(4k+3)Q(2k)Q(2k+3) $

    for $ k\ge3 $, that is,

    $ Q(k)=216[73728(k2)9+1508352(k2)8+13174784(k2)7+63787136(k2)6+185680928(k2)5+329304964(k2)4+345900612(k2)3+210339955(k2)2+94117995(k2)+42704050]+27×24k{(142293×24k+9+93239336)k5+4(228963×24k+7315163)k4+(1730269×24k+577141534)k3+(590587×24k+561162271)k2+31(39633×24k+3705961)k+72(32581×16k50315)+4096(57×24k+3+847)k8+2048(24k+7540k1635)k9+32k6[24k+6(3328k3377)+1151464k+2801469]}+27×212k+7[256k(24k+545k5)+9×24k+10+12352k5+24016k4+33804k3+78984k2+84261k+33915]+16×34k[159784960(k4)9+2908177408(k4)8+31203008512(k4)7+218332899456(k4)6+1039043941024(k4)5+3394763402820(k4)4+7477586709444(k4)3+10528669786283(k4)2+8416641010791(k4)+2806689073644]+8×38k+3(8192k9+9216k8+30720k7+148608k6+179232k5+77220k4+1027780k3+2247363k2+1992375k+751032)+64k[107481088(k4)9+1948553216(k4)8+20892092672(k4)7+146632542496(k4)6+702801488840(k4)5+2321298590084(k4)4+5179870312810(k4)3+7367488384493(k4)2+5849176490661(k4)+1817172122508]+28k+334k[313600(k13)6+20524992(k13)5+540906544(k13)4+7219464756(k13)3+49643220604(k13)2+151463526603(k13)+98734469508]>0,k3. $

    By virtue of the above expression for $ \mathfrak{Q}(k) $, we see that the sequence $ \mathfrak{Q}(k) $ is positive for $ k\ge13 $. On the other hand, it is straightforward that

    $ Q(3)=352780960860822574080,Q(4)=249398534923066892200578048,Q(5)=61305423558540152150473900185600,Q(6)=8665426549135034591879376586377676800,Q(7)=896760345938903204692495757195177830886400,Q(8)=77679040214402381392287613848479095562672133120,Q(9)=6092826722565745296376115137707251410869680486780928,Q(10)=453017430243005416828735039714559150312936188925226332160,Q(11)=32749134150707011053456859834163170645192635726524315359872000,Q(12)=2332073744679555396812875864144181190554219273032749874293655526400. $

    Consequently, the sequence $ \mathfrak{Q}(k) $ is positive for all $ k\ge3 $. As a result, the sequence $ \mathcal{Q}(k) $ is increasing in $ k\ge3 $. It is immediate that $ \mathcal{Q}(3) = \frac{423}{115} = 3.678\dotsc $. Hence, we acquire

    $ Q(k)423115=3.678,k3. $

    Accordingly, when

    $ 0<xπ2=1.570<423115=3.678, $

    the derivative $ \Bigl[\frac{F_2'(x)}{F_0'(x)}\Bigr]' $ is negative, and then the derivative ratio $ \frac{F_2'(x)}{F_0'(x)} $ is decreasing in $ x\in\bigl(0, \frac{\pi}{2}\bigr] $.

    In [12,pp. 10-11,Theorem 1.25], a monotonicity rule for the ratio of two functions was established as follows.

    For $ a, b\in\mathbb{R} $ with $ a < b $, let $ p(x) $ and $ q(x) $ be continuous on $ [a, b] $, differentiable on $ (a, b) $, and $ q'(x)\ne 0 $ on $ (a, b) $. If the ratio $ \frac{p'(x)}{q'(x)} $ is increasing on $ (a, b) $, then both $ \frac{p(x)-p(a)}{q(x)-q(a)} $ and $ \frac{p(x)-p(b)}{q(x)-q(b)} $ are increasing in $ x\in(a, b) $.

    With the help of this monotonicity rule and in view of the decreasing property of the derivative ratio $ \frac{F_2'(x)}{F_0'(x)} $ in $ x\in\bigl(0, \frac{\pi}{2}\bigr] $, we derive that the ratio $ \frac{F_2(x)}{F_0(x)} = R_{0, 2}(x) $ is decreasing in $ x\in\bigl(0, \frac{\pi}{2}\bigr] $. The required proof of Theorem 3 is completed.

    Remark 4. How to verify the decreasing property of the function $ R_{0, n}(x) $ for $ n\ge3 $ on $ \bigl(0, \frac{\pi}{2}\bigr] $, of the function $ R_{1, n}(x) $ on $ (0, 2\pi) $, and of the function $ R_{m, n}(x) $ for $ n > m\ge2 $ on $ (0, \infty) $? The ideas, approaches, techniques, and methods used in the proof of Theorem 3 should not be valid again, so we need to discover new ideas, approaches, techniques, and methods for verifying the decreasing property mentioned above.

    Remark 5. Let

    $ fα(x)=10(1u)αcos(ux)du,αR. $

    Prove that the function $ f_\alpha(x) $ is positive in $ x\in(0, \infty) $ if and only if $ \alpha > 1 $, while it is decreasing in $ x\in(0, \infty) $ if and only if $ \alpha\ge2 $.

    This paper and the articles [2,13,14] are siblings, because some results in [2] have been generalized in this paper, and the results in [13,14] are about the Maclaurin power series expansions of logarithmic expressions involving normalized tails of the tangent and sine functions.

    In this paper, we presented the following results.

    1. The function $ F_n(x) $ for $ n\ge0 $ was expanded into the Maclaurin power series expansion (11) in Theorem 1.

    2. The function $ F_n(x) $ defined by (7) for $ n\ge0 $ was proved in Theorem 2 to be decreasing and concave on $ \bigl(0, \frac{\pi}{2}\bigr) $.

    3. A new determinantal expression (13) of the Bernoulli numbers $ B_{2m} $ for $ m\ge1 $ was derived.

    4. The ratio $ R_{0, 2}(x) $ was proved in Theorem 3 to be decreasing in $ x\in\bigl[0, \frac{\pi}2\bigr] $.

    In order to verify the decreasing property of the function $ R_{0, n}(x) $ for $ n\ge3 $ on $ \bigl(0, \frac{\pi}{2}\bigr) $, of the function $ R_{1, n}(x) $ on $ (0, 2\pi) $, and of the function $ R_{m, n}(x) $ for $ n > m\ge2 $ on $ (0, \infty) $, we need new ideas, novel approaches, creative techniques, and innovative methods.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported in part by the National Natural Science Foundation of China (Grant No. 12061033).

    The authors declare there is no conflicts of interest.

    [1] Gardella TJ, Juppner H (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 12(5): p. 210-217.
    [2] Gensure RC, Gardella TJ, Juppner H (2005) Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 328(3): p. 666-678.
    [3] Guerreiro PM, Renfro JL, DM Power, et al. (2007) The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am J Physiol Regul Integr Comp Physiol 292(2): p. R679-696.
    [4] Jerome CP, DB Burr, Bibber TV, et al. (2001) Treatment with human parathyroid hormone (1-34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28(2): p. 150-159.
    [5] Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937): p. 332-336.
    [6] Philbrick WM, Wysolmerski J J, Galbraith S, et al. (1996) Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 76(1): p. 127-173.
    [7] On JS, Chow BK, Lee LT (2015) Evolution of parathyroid hormone receptor family and their ligands in vertebrate. Front Endocrinol (Lausanne) 6: p. 28.
    [8] John MR, Arai M, Rubin DA, et al. (2002) Identification and characterization of the murine and human gene encoding the tuberoinfundibular peptide of 39 residues. Endocrin 143(3): p. 1047-1057.
    [9] Papasani MR, Robert CG, John HB, et al. (2004) Identification and characterization of the zebrafish and fugu genes encoding tuberoinfundibular peptide 39. Endocrin 145(11): p. 5294-5304.
    [10] Gensure RC, Cooper WC, Nickols GA, et al. (2004) Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Endocrin 145(4): p. 1634-9.
    [11] Shoemaker JM, Riley LG, Hirano T, et al. (2005) Differential expression of tuberoinfundibular peptide 38 and glucose-6-phosphatase in tilapia. Gen Comp Endocrinol 146(2): p. 186-94.
    [12] Bhattacharya P, Yan Y-L, David AR, et al. (2001) Evolution of the vertebrate pth2 (tip39) gene family and the regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol 211(2): p. 187-200.
    [13] Brommage R, Lees CG, Hotchkiss CE, et al. (1999) Daily treatment with human recombinant parathyroid hormone-(1-34), LY333334, for 1 year increases bone mass in ovariectomized monkeys. J Clin Endocrinol Metab 84(10): p. 3757-3763.
    [14] Brown EM (1999) Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am J Med 106(2): p. 238-253.
    [15] Gunther T, Chen ZF, Kim G, et al. (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406(6792): p. 199-203.
    [16] Tucci J, Russell A, Senior SV, et al. (1996) The expression of parathyroid hormone and parathyroid hormone-related protein in developing rat parathyroid glands. J Mol Endocrinol 17(2): p. 149-157.
    [17] Harvey S, Hayer S, Sloley BD (1993) Dopaminergic actions of parathyroid hormone in the rat medial basal hypothalamus in vitro. Regul Pept 43(1-2): p. 49-56.
    [18] Henriksen K, Neutzsky-Wulff AV, Bonewald LF, et al. (2009) Local communication on and within bone controls bone remodeling. Bone 44(6): p. 1026-1033.
    [19] Hayden RS, Fortin JP, Harwood B, et al. (2014) Cell-tethered ligands modulate bone remodeling by osteoblasts and osteoclasts. Adv Funct Mater 24(4): p. 472-479.
    [20] Sims NA, Vrahnas C (2014) Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys 561: p. 22-28.
    [21] Chen H, Senda T, Kubo KY (2015) The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 48(2): p. 61-68.
    [22] Danks JA, Damian GD, Gunn HJ, et al. (2011) Evolution of the parathyroid hormone family and skeletal formation pathways. Gen Comp Endocrinol 170(1): p. 79-91.
    [23] Han SW, Kim SJ, Lee DJ, et al. (2014) The Relationship between Serum 25-Hydroxyvitamin D, Parathyroid Hormone and the Glomerular Filtration Rate in Korean Adults: The Korea National Health and Nutrition Examination Survey between 2009 and 2011. Korean J Fam Med 35(2): p. 98-106.
    [24] Steingrimsdottir L, Gunnarsson O, Indridason OS, et al. (2005) Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake. Jama 294(18): p. 2336-2341.
    [25] Stewart AF, Horst R, Deftos LJ, et al. (1980) Biochemical evaluation of patients with cancer-associated hypercalcemia: evidence for humoral and nonhumoral groups. N Engl J Med 303(24): p. 1377-1383.
    [26] de la Mata J, Mundy GR, Guise TA, et al. (1995) Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Invest 95(6): p. 2846-2852.
    [27] Schipani E, Provot S (2003) PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res C Embryo Today 69(4): p. 352-362.
    [28] Lanske B, Pajevic PD, Kovacs CS, et al. (1998) The parathyroid hormone (PTH)/PTH-related peptide receptor mediates actions of both ligands in murine bone. Endocrin 139(12): p. 5194-5204.
    [29] Karaplis AC, Kronenberg HM, Mulligan RC, et al. (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8(3): p. 277-289.
    [30] Ongkeko WM, Burton D, Kiang A, et al. (2014) Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PLoS One 9(1): p. e85803.
    [31] Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6): p. 442-454.
    [32] Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1-2): p. 15-33.
    [33] McCauley LK, Martin TJ (2012) Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 27(6): p. 1231-1239.
    [34] Agouni A, Sourbier C, Danilin S, et al. (2007) Parathyroid hormone-related protein induces cell survival in human renal cell carcinoma through the PI3K Akt pathway: evidence for a critical role for integrin-linked kinase and nuclear factor kappa B. Carcinogenesis 28(9): p. 1893-1901.
    [35] Clemens TL, Cormier S, Eichinger A, et al. (2001) Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 134(6): p. 1113-1136.
    [36] Goomer RS, Shen X, Falzon M, et al. (2000) The tetrabasic KKKK(147-150) motif determines intracrine regulatory effects of PthrP 1-173 on chondrocyte PPi metabolism and matrix synthesis. Endocrin 141(12): p. 4613-4622.
    [37] Watson PH, Hodsman AB, Fraher LJ, et al. (2000) Nuclear localization of the type 1 PTH/PTHrP receptor in rat tissues. J Bone Miner Res 15(6): p. 1033-1044.
    [38] Juppner H, Kronenberg HM, Segre GV, et al. (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254(5034): p. 1024-1026.
    [39] Pilz P, Meyer-Marcotty P, Eigenthaler M, et al. (2014) Differential diagnosis of primary failure of eruption (PFE) with and without evidence of pathogenic mutations in the PTHR1 gene. J Orofac Orthop 75(3): p. 226-239.
    [40] Piserchio A, Usdin T, Mierke DF (2000) Structure of tuberoinfundibular peptide of 39 residues. J Biol Chem 275(35): p. 27284-27290.
    [41] Jonsson KB, John MR, Gensure R, et al. (2001) Tuberoinfundibular peptide 39 binds to the parathyroid hormone (PTH)/PTH-related peptide receptor, but functions as an antagonist. Endocrin 142(2): p. 704-709.
    [42] Gardella TJ, et al. (1996) Converting parathyroid hormone-related peptide (PTHrP) into a potent PTH-2 receptor agonist. J Biol Chem 271(33): p. 19888-93.
    [43] Tenne M, McGuigan F, Jansson L, et al. (2008) Genetic variation in the PTH pathway and bone phenotypes in elderly women: evaluation of PTH, PTHLH, PTHR1 and PTHR2 genes. Bone 42(4): p. 719-727.
    [44] Usdin TB, Gruber C, Bonner TI (1995) Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 270(26): p. 15455-15458.
    [45] Usdin TB, Hoare SR, Wang T, et al. (1999) TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 2(11): p. 941-943.
    [46] Usdin TB (1997) Evidence for a parathyroid hormone-2 receptor selective ligand in the hypothalamus. Endocrin 138(2): p. 831-834.
    [47] Usdin TB, Modi W, Bonner TI (1996) Assignment of the human PTH2 receptor gene (PTHR2) to chromosome 2q33 by fluorescence in situ hybridization. Genomics 37(1): p. 140-141.
    [48] Gardella TJ, Vilardaga JP (2015) International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors-family B G protein-coupled receptors. Pharmacol Rev 67(2): p. 310-337.
    [49] Dobolyi A, Palkovits M, Usdin TB (2003) Expression and distribution of tuberoinfundibular peptide of 39 residues in the rat central nervous system. J Comp Neurol 455(4): p. 547-566.
    [50] Dobolyi A, Dimitiov E, Palkovits M, et al. (2012) The neuroendocrine functions of the parathyroid hormone 2 receptor. Front Endocrinol (Lausanne) 3: p. 121.
    [51] Hoare SR, Rubin DA, Jüppner H, et al. (2000) Evaluating the ligand specificity of zebrafish parathyroid hormone (PTH) receptors: comparison of PTH, PTH-related protein, and tuberoinfundibular peptide of 39 residues. Endocrin 141(9): p. 3080-3086.
    [52] Eichinger A (2002) Transcript expression of the tuberoinfundibular peptide (TIP)39/PTH2 receptor system and non-PTH1 receptor-mediated tonic effects of TIP39 and other PTH2 receptor ligands in renal vessels. Endocrin 143(8): p. 3036-3043.
    [53] Pinheiro PL, Cardoso JCR, Power DM, et al. (2012) Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol 12: p. 110.
    [54] Rubin DA, Juppner H (1999) Zebrafish express the common parathyroid hormone/parathyroid hormone-related peptide receptor (PTH1R) and a novel receptor (PTH3R) that is preferentially activated by mammalian and fugufish parathyroid hormone-related peptide. J Biol Chem 274(40): p. 28185-28190.
    [55] Rubin DA, Hellman P, Zon LI, et al. (1999) A G protein-coupled receptor from zebrafish is activated by human parathyroid hormone and not by human or teleost parathyroid hormone-related peptide. Implications for the evolutionary conservation of calcium-regulating peptide hormones. J Biol Chem 274(33): p. 23035-23042.
    [56] Rotllant J, Redruello B, Power DM, et al. (2006) Ligand binding and signalling pathways of PTH receptors in sea bream (Sparus auratus) enterocytes. Cell Tissue Res 323(2): p. 333-341.
    [57] Pinheiro PL, Gomes AS, Power DM, et al. (2010) Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken. BMC Evol Biol 10: p. 373.
    [58] Canario AV, Rotllant J, Power DM, et al. (2006) Novel bioactive parathyroid hormone and related peptides in teleost fish. FEBS Lett 580(1): p. 291-299.
    [59] Cardoso JC, Felix RC, Power DM (2014) Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs. PLoS One 9(3): p. e92220.
    [60] D'Souza DG, Rana K, Milley KM, et al. (2013) Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii). Gen Comp Endocrin 193: p. 1-9.
    [61] Hwang JI, Moon MJ, Park M, et al. (2013) Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evo 30(5): p. 1119-1130.
    [62] On JS, Duan C, Chow BK, et al. (2015) Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family. Mol Biol Evol
    [63] Cardoso JC, Pinto1 VC, Vieira1 FA, et al. (2006) Evolution of secretin family GPCR members in the metazoa. BMC Evol Biol 6: p. 108.
    [64] Mirabeau O, Joly JS (2013) Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci USA 110(22): p. E2028-2037.
    [65] Liu Y, Ibrahim AS, Walker TI, et al. (2010) Parathyroid hormone gene family in a cartilaginous fish, the elephant shark (Callorhinchus milii). J Bone Miner Res 25(12): p. 2613-2623.
    [66] Ingleton PM (2002) Parathyroid hormone-related protein in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol 132(1): p. 87-95.
    [67] Ingleton PM, Danks JA (1996) Distribution and functions of parathyroid hormone-related protein in vertebrate cells. Int Rev Cytol 166: p. 231-280.
    [68] Abbink W, Flik G (2007) Parathyroid hormone-related protein in teleost fish. Gen Comp Endocrinol 152(2-3): p. 243-251.
    [69] Barden JA, Cuthbertson RM (1993) Stabilized NMR structure of human parathyroid hormone(1-34). Eur J Biochem 215(2): p. 315-321.
    [70] Ray FR, Barden JA, Kemp BE (1993) NMR solution structure of the [Ala26] parathyroid-hormone-related protein(1-34) expressed in humoral hypercalcemia of malignancy. Eur J Biochem 211(1-2): p. 205-211.
    [71] Shimizu N, Petroni BD, Khatri A, et al. (2003) Functional evidence for an intramolecular side chain interaction between residues 6 and 10 of receptor-bound parathyroid hormone analogues. Biochem 42(8): p. 2282-2290.
    [72] Blind E, Raue F, Knappe F, et al. (1993) Cyclic AMP formation in rat bone and kidney cells is stimulated equally by parathyroid hormone-related protein (PTHrP) 1-34 and PTH 1-34. Exp Clin Endocrinol 101(3): p. 150-155.
    [73] Neer RM, Arnaud CD, Zanchetta JR, et al. (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19): p. 1434-1441.
    [74] Nutt RF, Caulfield MP, Levy JJ, et al. (1990) Removal of partial agonism from parathyroid hormone (PTH)-related protein-(7-34)NH2 by substitution of PTH amino acids at positions 10 and 11. Endocrin 127(1): p. 491-493.
    [75] Carter PH, Dean T, Gardella TJ, et al. (2015) Actions of the small molecule ligands SW106 and AH-3960 on the type-1 parathyroid hormone receptor. Mol Endocrinol. 29(2): p. 307-321.
    [76] Mann R, Wigglesworth MJ, Donnelly D (2008) Ligand-receptor interactions at the parathyroid hormone receptors: subtype binding selectivity is mediated via an interaction between residue 23 on the ligand and residue 41 on the receptor. Mol Pharmacol 74(3): p. 605-613.
    [77] Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci USA 105(13): p. 5034-5039.
    [78] Barbier JR, MacLean S, Whitfield JF, et al. (2001) Structural requirements for conserved arginine of parathyroid hormone. Biochemistry 40(30): p. 8955-8961.
    [79] Dean T, Khatri A, Gardella TJ, et al. (2006) Role of amino acid side chains in region 17-31 of parathyroid hormone (PTH) in binding to the PTH receptor. J Biol Chem 281(43): p. 32485-32495.
    [80] Weaver RE, Wigglesworth MJ, Donnelly D (2014) A salt bridge between Arg-20 on parathyroid hormone (PTH) and Asp-137 on the PTH1 receptor is essential for full affinity. Peptides 61: p. 83-87.
    [81] Pizurki L, Rizzoli R, Bonjour JP (1990) Inhibition by (D-Trp12,Tyr34)bPTH(7-34)amide of PTH and PTHrP effects on Pi transport in renal cells. Am J Physiol 259(2 Pt 2): p. F389-392.
    [82] Carter PH, Juppner H, Gardella TJ (1999) Studies of the N-terminal region of a parathyroid hormone-related peptide (1-36) analog: receptor subtype-selective agonists, antagonists, and photochemical cross-linking agents. Endocrin 140(11): p. 4972-4981.
    [83] Cohen FE, Strewler GJ, Bradley MS, et al. (1991) Analogues of parathyroid hormone modified at positions 3 and 6. Effects on receptor binding and activation of adenylyl cyclase in kidney and bone. J Biol Chem 266(3): p. 1997-2004.
    [84] Whitfield JF, Morley P (1995) Small bone-building fragments of parathyroid hormone: new therapeutic agents for osteoporosis. Trends Pharmacol Sci 16(11): p. 382-386.
    [85] Whitfield JF, Bringhurst FR (2000) Lactam formation increases receptor binding, adenylyl cyclase stimulation and bone growth stimulation by human parathyroid hormone (hPTH)(1-28)NH2. J Bone Miner Res 15(5): p. 964-970.
    [86] Luck MD, Carter PH, Gardella TJ (1999) The (1-14) fragment of parathyroid hormone (PTH) activates intact and amino-terminally truncated PTH-1 receptors. Mol Endocrinol 13(5): p. 670-680.
    [87] Shimizu M, Potts JT, Gardella TJ, et al. (2000) Minimization of parathyroid hormone. Novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J Biol Chem 275(29): p. 21836-21843.
    [88] Liu Y, Cai Y, Liu W, et al. (2015) Triblock peptide-linker-lipid molecular design improves potency of peptide ligands targeting family B G protein-coupled receptors. Chem Commun (Camb) 51(28): p. 6157-6160.
    [89] Neer M, Slovik DM, DalyM, et al. (1993) Treatment of postmenopausal osteoporosis with daily parathyroid hormone plus calcitriol. Osteoporos Int 3 Suppl 1: p. 204-205.
    [90] Reeve J, Hesp R, Williams D, et al. (1976) Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet 1(7968): p. 1035-1038.
    [91] Divieti P, Geller AI, Suliman G, et al. (2005) Receptors specific for the carboxyl-terminal region of parathyroid hormone on bone-derived cells: determinants of ligand binding and bioactivity. Endocrin 146(4): p. 1863-1870.
    [92] Inomata N, Akiyama M, Kubota N, et al. (1995) Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxyl-terminal region of PTH-(1-84). Endocrin 136(11): p. 4732-4740.
    [93] Venkatesh B, Lee AP, Ravi V, et al. (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505(7482): p. 174-179.
  • This article has been cited by:

    1. Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon, Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for $ s $-convex functions in the second sense with applications, 2021, 6, 2473-6988, 13327, 10.3934/math.2021771
    2. Shashi Kant Mishra, Ravina Sharma, Jaya Bisht, Hermite–Hadamard-type inequalities for strongly (α,m)-convex functions via quantum calculus, 2024, 70, 1598-5865, 4971, 10.1007/s12190-024-02135-y
    3. B. Bayraktar, S. I. Butt, J. E. Nápoles, F. Rabossi, Some New Estimates for Integral Inequalities and Their Applications, 2024, 76, 0041-5995, 169, 10.1007/s11253-024-02315-w
    4. Muhammad Latif, Ammara Nosheen, Khuram Ali Khan, Hafiza Bisma Ammara, Ndolane Sene, Y. S. Hamed, Novel inequalities involving exponentially ( α , m )-convex function and fractional integrals , 2024, 32, 2769-0911, 10.1080/27690911.2024.2422993
    5. B. Bayraktar, S. I. Butt, J. E. Nápoles, F. Rabossi, Some new estimates of integral inequalities and their applications, 2024, 76, 1027-3190, 159, 10.3842/umzh.v76i2.7266
    6. Khuram Ali Khan, Saeeda Fatima, Ammara Nosheen, Rostin Matendo Mabela, Kenan Yildirim, New Developments of Hermite–Hadamard Type Inequalities via s-Convexity and Fractional Integrals, 2024, 2024, 2314-4785, 1, 10.1155/2024/1997549
    7. Muhammad Tariq, Hijaz Ahmad, Asif Ali Shaikh, Sotiris K. Ntouyas, Evren Hınçal, Sania Qureshi, Fractional Hermite–Hadamard-Type Inequalities for Differentiable Preinvex Mappings and Applications to Modified Bessel and q-Digamma Functions, 2023, 28, 2297-8747, 108, 10.3390/mca28060108
    8. Butt Saad Ihsan, Bayraktar Bahtiyar , Nasir Jamshed , Novel Ostrowski type inequalities via exponentially (m1, m2)−convex functions and their applications, 2024, 51, 12236934, 488, 10.52846/ami.v51i2.1888
    9. Saad Ihsan Butt, Bahtiyar Bayraktar, Juan E. N´apoles Valdes, Some new inequalities of Hermite−Hadamard type via Katugampola fractional integral, 2023, 1016-2526, 269, 10.52280/pujm.2023.55(7-8)02
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5738) PDF downloads(989) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog