Survey

Survey of semi-tensor product method in robustness analysis on finite systems


  • Received: 02 February 2023 Revised: 23 March 2023 Accepted: 31 March 2023 Published: 28 April 2023
  • Recently, the theory of semi-tensor product (STP) method of matrices has received much attention from variety communities covering engineering, economics and industries, etc. This paper describes a detailed survey on some recent applications of the STP method in finite systems. First, some useful mathematical tools on the STP method are provided. Second, many recent developments about robustness analysis on the given finite systems are delineated, such as robust stable analysis of switched logical networks with time-delayed, robust set stabilization of Boolean control networks, event-triggered controller design for robust set stabilization of logical networks, stability analysis in distribution of probabilistic Boolean networks, and how to solve a disturbance decoupling problem by event triggered control for logical control networks. Finally, several research problems in future works are predicted.

    Citation: Guodong Zhao, Haitao Li, Ting Hou. Survey of semi-tensor product method in robustness analysis on finite systems[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11464-11481. doi: 10.3934/mbe.2023508

    Related Papers:

  • Recently, the theory of semi-tensor product (STP) method of matrices has received much attention from variety communities covering engineering, economics and industries, etc. This paper describes a detailed survey on some recent applications of the STP method in finite systems. First, some useful mathematical tools on the STP method are provided. Second, many recent developments about robustness analysis on the given finite systems are delineated, such as robust stable analysis of switched logical networks with time-delayed, robust set stabilization of Boolean control networks, event-triggered controller design for robust set stabilization of logical networks, stability analysis in distribution of probabilistic Boolean networks, and how to solve a disturbance decoupling problem by event triggered control for logical control networks. Finally, several research problems in future works are predicted.



    加载中


    [1] S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic net, J. Theor. Biol., 22 (1969), 437. https://doi.org/10.4327/jsnfs1949.22.437 doi: 10.4327/jsnfs1949.22.437
    [2] D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks, Springer London, 2011. https://doi.org/10.1007/978-0-85729-097-7
    [3] G. Zhao, Y. Wang, Formulation and optimization control of a class of networked evolutionary games with switched topologies, Nonlinear Anal. Hybrid Syst., 22 (2016), 98–107. https://doi.org/10.1016/j.nahs.2016.03.009 doi: 10.1016/j.nahs.2016.03.009
    [4] G. Zhao, Y. Wang, H. Li, Invertibility of higher order k-valued logical control networks and its application in trajectory control, J. Franklin Inst. Eng. Appl. Math., 353 (2016), 4667–4679. https://doi.org/10.1016/j.jfranklin.2016.07.004 doi: 10.1016/j.jfranklin.2016.07.004
    [5] G. Zhao, H. Li, T. Hou, Input-output dynamical stability analysis for cyber-physical systems via logical networks, IET Control Theory Appl., 14 (2020), 2566–2572. https://doi.org/10.1049/iet-cta.2020.0197 doi: 10.1049/iet-cta.2020.0197
    [6] B. Li, J. Lou, Y. Liu, Z. Wang, Robust invariant set analysis of Boolean networks, Complexity, 2019 (2019). https://doi.org/10.1155/2019/2731395
    [7] H. Li, Y. Wang, L. Xie, Output tracking control of Boolean control networks via state feedback, constant reference signal case, Automatica, 59 (2015), 54–59. https://doi.org/10.1016/j.automatica.2015.06.004 doi: 10.1016/j.automatica.2015.06.004
    [8] H. Li, Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints, SIAM J. Control Optim., 53 (2015), 2955–2979. https://doi.org/10.1137/120902331 doi: 10.1137/120902331
    [9] D. Cheng, H. Qi, Analysis and control of Boolean networks, a semi-tensor product approach, Acta Autom. Sin., 37 (2011), 529–540.
    [10] B. Li, J. Lu, Y. Liu, Z. Wu, The outputs robustness of Boolean control networks via pinning control, IEEE Trans. Control Network Syst., 7 (2019), 201–209. https://doi.org/10.1109/TCNS.2019.2913543 doi: 10.1109/TCNS.2019.2913543
    [11] H. Li, Y. Wang, Z. Liu, A semi-tensor product approach to pseudo-Boolean functions with application to Boolean control networks, Asian J. Control, 16 (2014), 1073–1081. https://doi.org/10.1002/asjc.767 doi: 10.1002/asjc.767
    [12] H. Li, Y. Wang, Lyapunov-based stability and construction of Lyapunov functions for Boolean networks, SIAM J. Control Optim., 55 (2017), 3437–3457. https://doi.org/10.1137/16M1092581 doi: 10.1137/16M1092581
    [13] H. Li, X. Ding, A control Lyapunov function approach to feedback stabilization of logical control networks, SIAM J. Control Optim., 57 (2019), 810–831. https://doi.org/10.1137/18M1170443 doi: 10.1137/18M1170443
    [14] H. Li, X. Xu, X. Ding, Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect, Appl. Math. Comput., 347 (2019), 557–565. https://doi.org/10.1016/j.amc.2018.11.018 doi: 10.1016/j.amc.2018.11.018
    [15] H. Li, Y. Zheng, F. E. Alsaadi, Algebraic formulation and topological structure of Boolean networks with state-dependent delay, J. Comput. Appl. Math., 350 (2019), 87–97. https://doi.org/10.1016/j.cam.2018.10.003 doi: 10.1016/j.cam.2018.10.003
    [16] J. Lu, M. Li, Y. Liu, D. W. C. Ho, J. Kurths, Nonsingularity of Grain-like cascade FSRs via semi-tensor product, Sci. China Inf. Sci., 61 (2018), 1–12. https://doi.org/10.1007/s11432-017-9269-6 doi: 10.1007/s11432-017-9269-6
    [17] J. Lu, M. Li, T. Huang, Y. Liu, J. Cao, The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices, Automatica, 96 (2018), 393–397. https://doi.org/10.1016/j.automatica.2018.07.011 doi: 10.1016/j.automatica.2018.07.011
    [18] H. K. Ji, Y. Y. Li, X. Y. Ding, J. Q. Lu, Stability analysis of Boolean networks with Markov jump disturbances and their application in apoptosis networks, Electron. Res. Arch., 30 (2022), 3422–3434. https://doi.org/10.3934/era.2022174 doi: 10.3934/era.2022174
    [19] D. Y. Zhong, Y. Y. Li, J. Q. Lu, Feedback stabilization of Boolean control networks with missing data, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022). https://doi.org/10.1109/TNNLS.2022.3146262
    [20] S. Liang, G. Zhao, H. Li, X. Ding, Structural stability analysis of gene regulatory networks modeled by Boolean networks, Math. Methods Appl. Sci., 42 (2019), 2221–2230. https://doi.org/10.1002/mma.5488 doi: 10.1002/mma.5488
    [21] X. Li, J. Lu, J. Qiu, X. Chen, X. Li, F. E. Alsaadi, Set stability for switched Boolean networks with open-loop and closed-loop switching signals, Sci. China Inf. Sci., 61 (2018), 092207.
    [22] X. Li, J. Lu, X. Chen, J. Qiu, J. Cao, F. E. Alsaadi, Robust output tracking of delayed Boolean networks under pinning control, IEEE Trans. Circuits Syst. II Express Briefs, 65 (2018), 1249–1253. https://doi.org/10.1109/TCSII.2018.2827931 doi: 10.1109/TCSII.2018.2827931
    [23] Y. Liu, B. Li, H. Chen, J. Cao, Function perturbations on singular Boolean networks, Automatica, 84 (2017), 36–42. https://doi.org/10.1016/j.automatica.2017.06.035 doi: 10.1016/j.automatica.2017.06.035
    [24] Y. Liu, Y. Zheng, H. Li, F. E. Alsaadi, B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327 (2018), 188–195. https://doi.org/10.1016/j.cam.2017.06.016 doi: 10.1016/j.cam.2017.06.016
    [25] Y. Li, B. Li, Y. Liu, J. Lu, Z. Wang, F. E. Alsaadi, Set stability and set stabilization of switched Boolean networks with state-based switching, IEEE Access, 6 (2018), 35624–35630. https://doi.org/10.1109/ACCESS.2018.2851391 doi: 10.1109/ACCESS.2018.2851391
    [26] Y. Li, J. Zhong, J. Lu, Z. Wang, On robust synchronization of drive-response Boolean control networks with disturbances, Math. Probl. Eng., 2018 (2018). https://doi.org/10.1155/2018/1737685
    [27] Y. Mao, L. Wang, Y. Liu, J. Lu, Z. Wang, Stabilization of evolutionary networked games with length-r information, Appl. Math. Comput., 337 (2018), 442–451. https://doi.org/10.1016/j.amc.2018.05.027 doi: 10.1016/j.amc.2018.05.027
    [28] L. Tong, Y. Liu, Y. Li, J. Lu, Z. Wang, F. E. Alsaadi, Robust control invariance of probabilistic Boolean control networks via event-triggered control, IEEE Access, 6 (2018), 37767–37774. https://doi.org/10.1109/ACCESS.2018.2828128 doi: 10.1109/ACCESS.2018.2828128
    [29] X. Xu, H. Li, Y. Li, F. E. Alsaadi, Output tracking control of Boolean control networks with impulsive effects, Math. Methods Appl. Sci., 41 (2018), 1554–1564. https://doi.org/10.1002/mma.4685 doi: 10.1002/mma.4685
    [30] X. Xu, Y. Liu, H. Li, F. E. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects, Nonlinear Anal. Modell. Control, 23 (2018), 553–567. https://doi.org/10.15388/NA.2018.4.6 doi: 10.15388/NA.2018.4.6
    [31] X. Xu, Y. Liu, H. Li, F. E. Alsaadi, Synchronization of switched Boolean networks with impulsive effects, Int. J. Biomath., 11 (2018), 1850080. https://doi.org/10.1142/S1793524518500808 doi: 10.1142/S1793524518500808
    [32] J. Yang, J. Lu, L. Li, Y. Liu, Z. Wang, F. E. Alsaadi, Event-triggered control for the synchronization of Boolean control networks, Nonlinear Dyn., 96 (2019), 1335–1344. https://doi.org/10.1007/s11071-019-04857-2 doi: 10.1007/s11071-019-04857-2
    [33] Q. Yang, H. Li, Y. Liu, Pinning control design for feedback stabilization of constrained Boolean control networks, Adv. Differ. Equations, 2016 (2016), 1–16. https://doi.org/10.1186/s13662-015-0739-5 doi: 10.1186/s13662-015-0739-5
    [34] Q. Yang, H. Li, P. Song, Y. Liu, Global convergence of serial Boolean networks based on algebraic representation, J. Differ. Equations Appl., 23 (2017), 633–647. https://doi.org/10.1080/10236198.2016.1270275 doi: 10.1080/10236198.2016.1270275
    [35] J. Zhong, Y. Liu, K. I. Kou, L. Sun, J. Cao, On the ensemble controllability of Boolean control networks using STP method, Appl. Math. Comput., 358 (2019), 51–62. https://doi.org/10.1016/j.amc.2019.03.059 doi: 10.1016/j.amc.2019.03.059
    [36] S. Zhu, J. Lou, Y. Liu, Y. Li, Z. Wang, Event-triggered control for the stabilization of probabilistic Boolean control networks, Complexity, 2018 (2018). https://doi.org/10.1155/2018/9259348
    [37] D. Cheng, F. He, H. Qi, T. Xu, Modeling, analysis and control of networked evolutionary games, IEEE Trans. Autom. Control, 60 (2015), 2402–2415. https://doi.org/10.1109/TAC.2015.2404471 doi: 10.1109/TAC.2015.2404471
    [38] H. Li, Y. Wang, Lyapunov-based stability and construction of Lyapunov functions for Boolean networks, SIAM J. Control Optim., 55 (2017), 3437–3457. https://doi.org/10.1137/16M1092581 doi: 10.1137/16M1092581
    [39] X. Kong, H. Li, X. Lu, Robust stability of switched delayed logical networks with all unstable modes, J. Franklin Inst., 359 (2021), 12–26. https://doi.org/10.1016/j.jfranklin.2020.12.036 doi: 10.1016/j.jfranklin.2020.12.036
    [40] X. Xu, Y. Liu, H. Li, F. E. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects, Nonlinear Anal. Modell. Control, 23 (2018), 553–567. https://doi.org/10.15388/NA.2018.4.6 doi: 10.15388/NA.2018.4.6
    [41] Y. Li, H. Li, W. Sun, Event-triggered control for robust set stabilization of logical control networks, Automatica, 95 (2018), 556–560. https://doi.org/10.1016/j.automatica.2018.06.030 doi: 10.1016/j.automatica.2018.06.030
    [42] X. Li, H. Li, Y. Li, X. Yang, Function perturbation impact on stability in distribution of probabilistic Boolean networks, Math. Comput. Simul., 177 (2020), 1–12. https://doi.org/10.1016/j.matcom.2020.04.008 doi: 10.1016/j.matcom.2020.04.008
    [43] Y. Guo, R. Zhou, Y. Wu, W. Gui, C. Yang, Stability and set stability in distribution of probabilistic Boolean networks, IEEE Trans. Autom. Control, 64 (2018), 736–742. https://doi.org/10.1109/TAC.2018.2833170 doi: 10.1109/TAC.2018.2833170
    [44] Z. Liu, Y. Wang, Disturbance decoupling of mix-valued logical networks via the semi-tensor product method, Automatica, 48 (2012), 1839–1844. https://doi.org/10.1016/j.automatica.2012.05.053 doi: 10.1016/j.automatica.2012.05.053
    [45] J. Zhong, D. W. C. Ho, J. Lu, A new approach to pinning control of Boolean networks, IEEE Trans. Control Network Syst., 2021 (2021), 415–426. https://doi.org/10.1109/TCNS.2021.3106453 doi: 10.1109/TCNS.2021.3106453
    [46] J. Zhong, Y. Liu, J. Lu, W. Gui, Pinning control for stabilization of Boolean networks under knock-out perturbation, IEEE Trans. Autom. Control, 67 (2021), 1550–1557. https://doi.org/10.1109/TAC.2021.3070307 doi: 10.1109/TAC.2021.3070307
    [47] X. Li, D. W. C. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [48] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [49] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [50] X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
    [51] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1161) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog