Research article Special Issues

The (De)Stabilizing effect of juvenile prey cannibalism in a stage-structured model

  • Received: 28 August 2022 Revised: 04 November 2022 Accepted: 24 November 2022 Published: 05 December 2022
  • Cannibalism, or intraspecific predation, is the act of an organism consuming another organism of the same species. In predator-prey relationships, there is experimental evidence to support the existence of cannibalism among juvenile prey. In this work, we propose a stage-structured predator-prey system where cannibalism occurs only in the juvenile prey population. We show that cannibalism has both a stabilizing and destabilizing effect depending on the choice of parameters. We perform stability analysis of the system and also show that the system experiences a supercritical Hopf, saddle-node, Bogdanov-Takens and cusp bifurcation. We perform numerical experiments to further support our theoretical findings. We discuss the ecological implications of our results.

    Citation: Eric M. Takyi, Kasey Cooper, Ava Dreher, Caroline McCrorey. The (De)Stabilizing effect of juvenile prey cannibalism in a stage-structured model[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3355-3378. doi: 10.3934/mbe.2023158

    Related Papers:

  • Cannibalism, or intraspecific predation, is the act of an organism consuming another organism of the same species. In predator-prey relationships, there is experimental evidence to support the existence of cannibalism among juvenile prey. In this work, we propose a stage-structured predator-prey system where cannibalism occurs only in the juvenile prey population. We show that cannibalism has both a stabilizing and destabilizing effect depending on the choice of parameters. We perform stability analysis of the system and also show that the system experiences a supercritical Hopf, saddle-node, Bogdanov-Takens and cusp bifurcation. We perform numerical experiments to further support our theoretical findings. We discuss the ecological implications of our results.



    加载中


    [1] G. A. Polis, The evolution and dynamics of intraspecific predation, Ann. Rev. Ecol. Syst., 12 (1981), 225–251. https://doi.org/10.1146/annurev.es.12.110181.001301 doi: 10.1146/annurev.es.12.110181.001301
    [2] M. L. Crump, Opportunistic cannibalism by amphibian larvae in temporary aquatic environments, Am. Natl., 121 (1983), 281–289. https://doi.org/10.1086/284058 doi: 10.1086/284058
    [3] C. Smith, P. Reay, Cannibalism in teleost fish. Rev. Fish Biol. Fish., 1 (1991), 41–64. https://doi.org/10.1007/BF00042661 doi: 10.1007/BF00042661
    [4] V. Puvanendran, B. J. Laurel, J. A. Brown, Cannibalism of Atlantic cod Gadus morhua larvae and juveniles on first-week larvae, Aquat. Biol., 2 (2008), 113–118. https://doi.org/10.3354/ab00044 doi: 10.3354/ab00044
    [5] C. Ingram, The importance of juvenile cannibalism in the breeding biology of certain birds of prey, Auk, 76 (1959), 218–226. https://doi.org/10.2307/4081778 doi: 10.2307/4081778
    [6] A. E. Pusey, C. Packer, Infanticide in lions: Consequences and counterstrategies, in Infanticide and Parental Care, (eds. Parmigiani and F. S. vom Saal), Harwood Academic Publishers, Chur, Switzerland, (1994), 277–299. https://doi.org/10.1042/bj2990277
    [7] J. Bhattacharyya, S. Pal, The role of space in stage-structured cannibalism with harvesting of an adult predator, Comput. Math. Appl., 66 (2013), 339–355. https://doi.org/10.1016/j.camwa.2013.05.011 doi: 10.1016/j.camwa.2013.05.011
    [8] J. Van Buskirk, Density-dependent cannibalism in larval dragonflies, Ecology, 70 (1989), 1442–1449. https://doi.org/10.2307/1938203 doi: 10.2307/1938203
    [9] J. L. Hayward, L. M. Weldon, S. M. Henson, L. C. Megna, B. G. Payne, A. E. Moncrieff, Egg cannibalism in a gull colony increases with sea surface temperature, Condor, 116 (2014), 62–73. https://doi.org/10.1650/CONDOR-13-016-R1.1 doi: 10.1650/CONDOR-13-016-R1.1
    [10] S. C. Amstrup, I. Stirling, T. S. Smith, C. Perham, G. W. Thiemann, Recent observations of intraspecific predation and cannibalism among polar bears in the southern Beaufort sea, Polar Biol., 29 (2006), 997–1002. https://doi.org/10.1007/s00270-003-0093-y doi: 10.1007/s00270-003-0093-y
    [11] J. M. Cushing, A simple model of cannibalism, Math. Biosci., 107 (1991), 47–71. https://doi.org/10.1016/0025-5564(91)90071-P doi: 10.1016/0025-5564(91)90071-P
    [12] J. M. Cushing, A size-structured model for cannibalism, Theor. Popul. Biol., 42 (1992), 347–361. https://doi.org/10.1016/0040-5809(92)90020-T doi: 10.1016/0040-5809(92)90020-T
    [13] A. Al Basheer, R. D Parshad, E. Quansah, S. Yu, R. K. Upadhyay, Exploring the dynamics of a Holling–Tanner model with cannibalism in both predator and prey population, Int. J. Biomath., 11 (2018), 1850010.
    [14] C. Kohlmeier, W. Ebenhöh, The stabilizing role of cannibalism in a predator-prey system, Bull. Math. Biol., 57 (1995), 401–411.
    [15] K. G Magnússon, Destabilizing effect of cannibalism on a structured predator-prey system, Math. Biosci., 155 (1999), 61–75. https://doi.org/10.1016/S0025-5564(98)10051-2 doi: 10.1016/S0025-5564(98)10051-2
    [16] C. Kaewmanee, I. M. Tang, Cannibalism in an age-structured predator-prey system, Ecol. Modell., 167 (2013), 213–220.
    [17] H. Deng, F. Chen, Z. Zhu, Z. Li, Dynamic behaviors of Lotka–Volterra predator–prey model incorporating predator cannibalism, Adv. Differ. Equations, 2019 (2019), 1–17.
    [18] S. Fasani, S. Rinaldi, Remarks on cannibalism and pattern formation in spatially extended prey-predator systems, Nonlinear Dyn., 67 (2012), 2543–2548. https://doi.org/10.1007/s11071-011-0166-4 doi: 10.1007/s11071-011-0166-4
    [19] A. Al Basheer, J. Lyu, A. Giffin, R. D Parshad, The "destabilizing" effect of cannibalism in a spatially explicit three-species age structured predator-prey model, Complexity, 2017 (2017), 3896412. https://doi.org/10.1155/2017/3896412 doi: 10.1155/2017/3896412
    [20] G. Q. Sun, G. Zhang, Z. Jin, L. Li, Predator cannibalism can give rise to regular spatial pattern in a predator–prey system, Nonlinear Dyn., 58 (2009), 75–84. https://doi.org/10.1007/s11071-008-9462-z doi: 10.1007/s11071-008-9462-z
    [21] M. L. Crump, Cannibalism by younger tadpoles: another hazard of metamorphosis, Copeia, 1986 (1986), 1007–1009.
    [22] A. M. Edwards, A. Yool, The role of higher predation in plankton population models, J. Plankton Res., 22 (2000), 1085–1112. https://doi.org/10.1093/plankt/22.6.1085 doi: 10.1093/plankt/22.6.1085
    [23] M. Baurmann, T. Gross, U. Feudel, Instabilities in spatially extended predator–prey systems: Spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations, J. Theor. Biol., 245 (2007), 220–229.
    [24] S. Rana, A. R. Bhowmick, T. Sardar, Invasive dynamics for a predator–prey system with Allee effect in both populations and a special emphasis on predator mortality, Chaos Interdiscip. J. Nonlinear Sci., 31 (2021), 033150. https://doi.org/10.1063/5.0035566 doi: 10.1063/5.0035566
    [25] M. Pierre, D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev., 42 (2000), 93–106.
    [26] M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417–455. https://doi.org/10.1007/s00032-010-0133-4 doi: 10.1007/s00032-010-0133-4
    [27] L. Perko, Differential Equations and Dynamical Systems, Springer Science & Business Media, Springer-Verlag, New York, 2013.
    [28] P. A. Naik, Z. Eskandari, H. E. Shahraki, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Math. Modell. Numer. Simul. Appl., 1 (2021), 95–101. https://doi.org/10.53391/mmnsa.2021.01.009 doi: 10.53391/mmnsa.2021.01.009
    [29] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. Meijer, B. Sautois, New features of the software matcont for bifurcation analysis of dynamical systems, Math. Comput. Modell. Dyn. Syst., 14 (2008), 147–175.
    [30] B. Buonomo, D. Lacitignola, On the stabilizing effect of cannibalism in stage-structured population models, Math. Biosci. Eng., 3 (2006), 717. https://doi.org/10.3934/mbe.2006.3.717 doi: 10.3934/mbe.2006.3.717
    [31] F. van den Bosch, W. Gabriel, The impact of cannibalism on the population dynamics of cyclopoid copepods, Int.Ver. Theor. Angew. Limnol. Verh., 24 (1991), 2848–2850. https://doi.org/10.1080/03680770.1989.11899180 doi: 10.1080/03680770.1989.11899180
    [32] M. E. Dorcas, J. D. Willson, R. N. Reed, R. W. Snow, M. R. Rochford, M. A. Miller, et al., Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park, Proc. Natl. Acad. Sci., 109 (2012), 2418–2422. https://doi.org/10.1073/pnas.1115226109 doi: 10.1073/pnas.1115226109
    [33] P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401
    [34] M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fractional, 4 (2020), 35. https://doi.org/10.3390/fractalfract4030035 doi: 10.3390/fractalfract4030035
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1192) PDF downloads(91) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog