Research article

Extensions of mean-field approximations for environmentally-transmitted pathogen networks


  • Received: 12 August 2022 Revised: 26 September 2022 Accepted: 08 October 2022 Published: 04 November 2022
  • Many pathogens spread via environmental transmission, without requiring host-to-host direct contact. While models for environmental transmission exist, many are simply constructed intuitively with structures analogous to standard models for direct transmission. As model insights are generally sensitive to the underlying model assumptions, it is important that we are able understand the details and consequences of these assumptions. We construct a simple network model for an environmentally-transmitted pathogen and rigorously derive systems of ordinary differential equations (ODEs) based on different assumptions. We explore two key assumptions, namely homogeneity and independence, and demonstrate that relaxing these assumptions can lead to more accurate ODE approximations. We compare these ODE models to a stochastic implementation of the network model over a variety of parameters and network structures, demonstrating that with fewer restrictive assumptions we are able to achieve higher accuracy in our approximations and highlighting more precisely the errors produced by each assumption. We show that less restrictive assumptions lead to more complicated systems of ODEs and the potential for unstable solutions. Due to the rigour of our derivation, we are able to identify the reason behind these errors and propose potential resolutions.

    Citation: Kale Davies, Suzanne Lenhart, Judy Day, Alun L. Lloyd, Cristina Lanzas. Extensions of mean-field approximations for environmentally-transmitted pathogen networks[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 1637-1673. doi: 10.3934/mbe.2023075

    Related Papers:

  • Many pathogens spread via environmental transmission, without requiring host-to-host direct contact. While models for environmental transmission exist, many are simply constructed intuitively with structures analogous to standard models for direct transmission. As model insights are generally sensitive to the underlying model assumptions, it is important that we are able understand the details and consequences of these assumptions. We construct a simple network model for an environmentally-transmitted pathogen and rigorously derive systems of ordinary differential equations (ODEs) based on different assumptions. We explore two key assumptions, namely homogeneity and independence, and demonstrate that relaxing these assumptions can lead to more accurate ODE approximations. We compare these ODE models to a stochastic implementation of the network model over a variety of parameters and network structures, demonstrating that with fewer restrictive assumptions we are able to achieve higher accuracy in our approximations and highlighting more precisely the errors produced by each assumption. We show that less restrictive assumptions lead to more complicated systems of ODEs and the potential for unstable solutions. Due to the rigour of our derivation, we are able to identify the reason behind these errors and propose potential resolutions.



    加载中


    [1] J. D. Brown, G. Goekjian, R. Poulson, S. Valeika, D. E. Stallknecht, Avian influenza virus in water: Infectivity is dependent on ph, salinity and temperature, Vet. Microbiol., 136 (2009), 20–26. https://doi.org/10.1016/j.vetmic.2008.10.027 doi: 10.1016/j.vetmic.2008.10.027
    [2] M. C. Faires, D. L. Pearl, O. Berke, R. J. Reid-Smith, J. S. Weese, The identification and epidemiology of meticillin-resistant Staphylococcus aureus and Clostridium difficile in patient rooms and the ward environment, BMC Infect. dis., 13 (2013), 342. https://doi.org/10.1186/1471-2334-13-342 doi: 10.1186/1471-2334-13-342
    [3] S. M. Faruque, K. Biswas, S. M. N. Udden, Q. S. Ahmad, D. A. Sack, G. B. Nair, et al., Transmissibility of cholera: In vivo-formed biofilms and their relationship to infectivity and persistence in the environment, Proc. Natl. Acad. Sci., 103 (2006), 6350–6355. https://doi.org/10.1073/pnas.0601277103 doi: 10.1073/pnas.0601277103
    [4] B. Lopman, P. Gastañaduy, G. W. Park, A. J. Hall, U. D. Parashar, J. Vinjé, Environmental transmission of norovirus gastroenteritis, Curr. Opin. Virol., 2 (2012), 96–102. https://doi.org/10.1016/j.coviro.2011.11.005 doi: 10.1016/j.coviro.2011.11.005
    [5] J. L. Mawdsley, R. D. Bardgett, R. J. Merry, B. F. Pain, M. K. Theodorou, Pathogens in livestock waste, their potential for movement through soil and environmental pollution, Appl. Soil Ecol., 2 (1995), 1–15. https://doi.org/10.1016/0929-1393(94)00039-A doi: 10.1016/0929-1393(94)00039-A
    [6] T. Caraco, I.-N. Wang, Free-living pathogens: Life-history constraints and strain competition, J. Theor. Biol., 250 (2008), 569–579. https://doi.org/10.1016/j.jtbi.2007.10.029 doi: 10.1016/j.jtbi.2007.10.029
    [7] A. M. Kuris, K. D. Lafferty, S. H. Sokolow, Sapronosis: a distinctive type of infectious agent, Trends Parasitol., 30 (2014), 386–393. https://doi.org/10.1016/j.pt.2014.06.006 doi: 10.1016/j.pt.2014.06.006
    [8] M. W. Miller, N. T. Hobbs, S. J. Tavener, Dynamics of prion disease transmission in mule deer, Ecol. Appl., 16 (2006), 2208–2214. https://doi.org/10.1890/1051-0761(2006)016[2208:DOPDTI]2.0.CO;2 doi: 10.1890/1051-0761(2006)016[2208:DOPDTI]2.0.CO;2
    [9] F. Sauvage, M. Langlais, N. G. Yoccoz, D. Pontier, Modelling hantavirus in fluctuating populations of bank voles: the role of indirect transmission on virus persistence, J. Anim. Ecol., 72 (2003), 1–13. https://doi.org/10.1046/j.1365-2656.2003.00675.x doi: 10.1046/j.1365-2656.2003.00675.x
    [10] S. Chen, M. W. Sanderson, B. J. White, D. E. Amrine, C. Lanzas, Temporal-spatial heterogeneity in animal-environment contact: implications for the exposure and transmission of pathogens, Sci. Rep., 3 (2013), 3112. https://doi.org/10.1038/srep03112 doi: 10.1038/srep03112
    [11] P. Rohani, R. Breban, D. E. Stallknecht, J. M. Drake, Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion, Proc. Natl. Acad. Sci., 106 (2009), 10365–10369. https://doi.org/10.1073/pnas.0809026106 doi: 10.1073/pnas.0809026106
    [12] R. H. Wang, Z. Jin, Q. X. Liu, J. van de Koppel, D. Alonso, A simple stochastic model with environmental transmission explains multi-year periodicity in outbreaks of avian flu, PLoS ONE, 7 (2012), e28873. https://doi.org/10.1371/journal.pone.0028873 doi: 10.1371/journal.pone.0028873
    [13] M. J. Ferrari, S. E. Perkins, L. W. Pomeroy, O. N. Bjørnstad, Pathogens, social networks, and the paradox of transmission scaling, Interdiscip. Perspect. Infect. Dis., 2011 (2011), 267049. https://doi.org/10.1155/2011/267049 doi: 10.1155/2011/267049
    [14] C. Lanzas, K. Davies, S. Erwin, D. Dawson, On modelling environmentally transmitted pathogens, Interface Focus, 10 (2019), 20190056. https://doi.org/10.1098/rsfs.2019.0056 doi: 10.1098/rsfs.2019.0056
    [15] J. Turner, M. Begon, R. G. Bowers, Modelling pathogen transmission: the interrelationship between local and global approaches, Proc. R. Soc. London, 270 (2003), 105–112. https://doi.org/10.1098/rspb.2002.2213 doi: 10.1098/rspb.2002.2213
    [16] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), 925–979. https://doi.org/10.1103/RevModPhys.87.925 doi: 10.1103/RevModPhys.87.925
    [17] M. Keeling, The effects of local spatial structure on epidemiological invasions, Princeton University Press, 266 (1999), 859-–867. http://doi.org/10.1098/rspb.1999.0716.
    [18] M. Taylor, P. L. Simon, D. M. Green, T. House, I. Z. Kiss, From Markovian to pairwise epidemic models and the performance of moment closure approximations, J. Math. Biol., 64 (2011), 1021–1042. https://doi.org/10.1007/s00285-011-0443-3 doi: 10.1007/s00285-011-0443-3
    [19] C. Kyriakopoulos, G. Grossmann, V. Wolf, L. Bortolussi, Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes, Phys. Rev. E, 97 (2018), 1–15. https://doi.org/10.1103/PhysRevE.97.012301 doi: 10.1103/PhysRevE.97.012301
    [20] P. G. Fennell, J. P. Gleeson, Multistate dynamical processes on networks: Analysis through degree-based approximation frameworks, SIAM Rev., 61 (2019), 92–118. https://doi.org/10.1137/16M1109345 doi: 10.1137/16M1109345
    [21] K. Devriendt, P. Van Mieghem, Unified mean-field framework for susceptible-infected-susceptible epidemics on networks, based on graph partitioning and the isoperimetric inequality, Phys. Rev. E, 96 (2017), 1–18. https://doi.org/10.1103/PhysRevE.96.052314 doi: 10.1103/PhysRevE.96.052314
    [22] L. Bortolussi, J. Hillston, D. Latella, M. Massink, Continuous approximation of collective system behaviour: A tutorial, Perform. Eval., 70 (2013), 317–349. https://doi.org/10.1016/j.peva.2013.01.001 doi: 10.1016/j.peva.2013.01.001
    [23] Y. Xiao, N. P. French, R. G. Bowers, D. Clancy, Pair approximations and the inclusion of indirect transmission: Theory and application to between farm transmission of salmonella, J. Theor. Biol., 244 (2007), 532–540. https://doi.org/10.1016/j.jtbi.2006.08.019 doi: 10.1016/j.jtbi.2006.08.019
    [24] S. F. Railsback, V. Grimm, Agent-Based and Individual-Based Modeling: A Practical Introduction, Princeton University Press, 2011. https://www.jstor.org/stable/j.ctt7sns7
    [25] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, S. F. Railsback, The ODD protocol: A review and first update, Ecolological Model., 221 (2010), 2760—2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019 doi: 10.1016/j.ecolmodel.2010.08.019
    [26] G. An, B. G. Fitzpatrick, S. Christley, P. Federico, A. Kanarek, R. Miller Neilan, et al., Optimization and control of agent-based models in biology: A perspective, Bull. Math. Biol., 79 (2017), 63–87. https://doi.org/10.1007/s11538-016-0225-6 doi: 10.1007/s11538-016-0225-6
    [27] C. Lanzas, S. Chen, Complex system modelling for veterinary epidemiology, Prev. Vet. Med., 118 (2015), 207–214. https://doi.org/10.1016/j.prevetmed.2014.09.012 doi: 10.1016/j.prevetmed.2014.09.012
    [28] S. Eubank, Network based models of infectious disease spread, Japan J. Infect. Dis., 58 (2005), 9–13.
    [29] P. Stroud, S. Del Valle, S. Sydoriak, J. Riese, S. Mniszewski, Spatial dynamics of pandemic influenza in a massive artificial society, J. Artificai Soc. Soc. Simuluations, 10 (2007), 1–9. https://www.jasss.org/10/4/9.html
    [30] F. Ball, P. Neal, Network epidemic models with two levels of mixing, Math. Biosci., 212 (2008), 69–87. https://doi.org/10.1016/j.mbs.2008.01.001 doi: 10.1016/j.mbs.2008.01.001
    [31] L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts, et al., Networks and the epidemiology of infectious disease, Interdiscip. Perspect. Infect. Dis., 2011 (2011), 1–28. https://doi.org/10.1155/2011/284909 doi: 10.1155/2011/284909
    [32] R. R. Kao, L. Danon, D. M. Green, I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in great britain, Proc. R. Soc. B, 273 (2006), 1999–2007. https://doi.org/10.1098/rspb.2006.3505 doi: 10.1098/rspb.2006.3505
    [33] M. J. Keeling, K. T. D. Eames, Networks and epidemic models, J. R. Soc. Interface, 2 (2005), 295–307. https://doi.org/10.1098/rsif.2005.0051
    [34] I. Z. Kiss, D. M. Green, R. R. Kao, The network of sheep movements within great britain: network properties and their implications for infectious disease spread, J. R. Soc. Interface, 3 (2006), 669–677. https://doi.org/10.1098/rsif.2006.0129 doi: 10.1098/rsif.2006.0129
    [35] A. J. Leigh Brown, S. J. Lycett, L. Weinert, G. J. Hughes, E. Fearnhill, D. T. Dunn, Transmission network parameters estimated from hiv sequences for a nationwide epidemic, J. Infect. Dis., 204 (2011), 1463–1469. https://doi.org/10.1093/infdis/jir550 doi: 10.1093/infdis/jir550
    [36] R. Olinky, L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys. Rev. E, 70 (2004), 030902. https://doi.org/10.1103/PhysRevE.70.030902 doi: 10.1103/PhysRevE.70.030902
    [37] M. J. Keeling, T. House, A. J. Cooper, L. Pellis, Systematic approximations to susceptible-infectious-susceptible dynamics on networks, PLOS Comput. Biol., 12 (2016), e1005296. https://doi.org/10.1371/journal.pcbi.1005296 doi: 10.1371/journal.pcbi.1005296
    [38] I. Z. Kiss, J. C. Miller, P. L. Simon, Mathematics of Epidemics on Networks: From Exact to Approximate Models, Springer International Publishing, 2017.
    [39] P. L. Simon, I. Kiss, On bounding exact models of epidemic spread on networks, Discrete Contin. Dyn. Syst. Ser. B, 23 (2017). https://doi.org/10.48550/arXiv.1704.01726
    [40] M. J. M. Bonten, D. J. Austin, M. Lipsitch, Understanding the spread of antibiotic resistant pathogens in hospitals: Mathematical models as tools for control, Clin. Infect. Dis., 33 (2001), 1739–1746. https://doi.org/10.1086/323761 doi: 10.1086/323761
    [41] B. S. Cooper, G. F. Medley, G. M. Scott, Preliminary analysis of the transmission dynamics of nosocomial infections: Stochastic and management effects, J. Hosp. Infect., 43 (1999), 131–147. https://doi.org/10.1053/jhin.1998.0647 doi: 10.1053/jhin.1998.0647
    [42] K. J. Davies, J. E. F. Green, N. G. Bean, B. J. Binder, J. V. Ross, On the derivation of approximations to cellular automata models and the assumption of independence, Math. Biosci., 253 (2014), 63–71. https://doi.org/10.1016/j.mbs.2014.04.004 doi: 10.1016/j.mbs.2014.04.004
    [43] I. Krishnarajah, A. Cook, G. Marion, G. Gibson, Novel moment closure approximations in stochastic epidemics, Bull. Math. Biol., 67 (2005), 855—873. https://doi.org/10.1016/j.bulm.2004.11.002 doi: 10.1016/j.bulm.2004.11.002
    [44] E. Lakatos, A. Ale, P. D. W. Kirk, M. P. H. Stumpf, Multivariate moment closure techniques for stochastic kinetic models, J. Chem. Physics, 143 (2015), 094107. https://doi.org/10.1063/1.4929837 doi: 10.1063/1.4929837
    [45] D. Schnoerr, G. Sanguinetti, R. Grima, Validity conditions for moment closure approximations in stochastic chemical kinetics, J. Chem. Phys., 141 (2014), 084103. https://doi.org/10.1063/1.4892838 doi: 10.1063/1.4892838
    [46] C. H. Lee, K.-H. Kim, P. Kim, A moment closure method for stochastic reaction networks, J. Chem. Phys., 130 (2009), 134107. https://doi.org/10.1063/1.3103264 doi: 10.1063/1.3103264
    [47] C. T. Codeço, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1. https://doi.org/10.1186/1471-2334-1-1 doi: 10.1186/1471-2334-1-1
    [48] R. I. Joh, H. Wang, H. Weiss, J. S. Weitz, Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bull. Math. Biol., 71 (2008), 845–862. https://doi.org/10.1007/s11538-008-9384-4 doi: 10.1007/s11538-008-9384-4
    [49] S. S. Stevens, On the theory of scales of measurement, Science, 103 (1946), 677–680. https://www.science.org/doi/10.1126/science.103.2684.677
    [50] J. R. Norris, Markov chains, Cambridge University Press, 1997.
    [51] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), 2340–2361. https://doi.org/10.1021/j100540a008 doi: 10.1021/j100540a008
    [52] D. G. Kendall, An artificial realization of a simple "birth-and-death" process, J. R. Stat. Soc. Ser. B, 12 (1950), 116–119. https://www.jstor.org/stable/2983837
    [53] M. J. Keeling, J. V. Ross, On methods for studying stochastic disease dynamics, J. R. Soc. Interface, 5 (2008), 171–181. https://doi.org/10.1098/rsif.2007.1106 doi: 10.1098/rsif.2007.1106
    [54] I. Nåsell, On the quasi-stationary distribution of the stochastic logistic epidemic, Math. Biosci., 156 (1999), 21–40. https://doi.org/10.1016/S0025-5564(98)10059-7 doi: 10.1016/S0025-5564(98)10059-7
    [55] I. Nåsell, Extinction and quasi-stationarity in the verhulst logistic model, J. Theor. Biol., 211 (2001), 11–27. https://doi.org/10.1006/jtbi.2001.2328 doi: 10.1006/jtbi.2001.2328
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1481) PDF downloads(89) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog