Heart diseases are one of the leading causes of death worldwide, and a dysfunction of the cardiac electrical mechanisms is responsible for a significant portion of these deaths. One of these mechanisms, the mechano-electric feedback (MEF), is the electrical response of the heart to local mechanical changes in the environment. This electrical response, in turn, leads to macroscopic changes in heart function. In this paper, we demonstrate that the MEF plays a crucial role in mechanical generation and recovery from arrhythmia which has been observed in experimental studies. To this end, we investigate the cardiac response to a mechanical stimulation using a minimal, multiscale model of the heart which couples the organ level dynamics (left ventricular pressure and volume) and contractile dynamics. By including a mechanical stimulation into the model as a (short, sudden) impulse in the muscle microscale stress, we investigate how the timing, amplitude and duration of the impulse affect the cardiac cycle. In particular, when introduced in the diastolic period of the cardiac cycle, the pulse rate can be stabilised, and ectopic beats and bifurcation can be eliminated, either temporarily or permanently. The stimulation amplitude is a key indicator to this response. We find an optimal value of the impulse amplitude above or below which the impulse maximises the stabilisation. As a result a dysfunction of the MEF can be helped using a mechanical stimulation, by allowing the heart to recover its pumping power. On the other hand, when the mechanical stimulation is introduced towards the end of systole, arrhythmia can be generated.
Citation: Nicholas Pearce, Eun-jin Kim. Modelling the cardiac response to a mechanical stimulation using a low-order model of the heart[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4871-4893. doi: 10.3934/mbe.2021248
[1] | Acile S. Hammoud, Jessica Leung, Sabitri Tripathi, Adrian P. Butler, May N. Sule, Michael R. Templeton . The impact of latrine contents and emptying practices on nitrogen contamination of well water in Kathmandu Valley, Nepal. AIMS Environmental Science, 2018, 5(3): 143-153. doi: 10.3934/environsci.2018.3.143 |
[2] | Romie D. Laranjo, Maria Rio A. Naguit, Farida C. Jamolod, Kristine Gladys E. Jambre, Norma I. Cabornay, Victor B. Bernido, Maricon Denber S. Gahisan . Evaluation of the physicochemical parameters on the water quality of the major rivers of Zamboanga del Norte, Philippines. AIMS Environmental Science, 2023, 10(3): 382-397. doi: 10.3934/environsci.2023022 |
[3] | Africa de la Hera, Emilio Custodio Gimena, Àngel García Cortés . Evaluating ecosystem services and drivers of change in Spanish groundwater-related wetlands included in the Ramsar Convention. AIMS Environmental Science, 2017, 4(2): 232-250. doi: 10.3934/environsci.2017.2.232 |
[4] | Sreenivasulu Kutala, Harshavardhan Awari, Sangeetha Velu, Arun Anthonisamy, Naga Jyothi Bathula, Syed Inthiyaz . Hybrid deep learning-based air pollution prediction and index classification using an optimization algorithm. AIMS Environmental Science, 2024, 11(4): 551-575. doi: 10.3934/environsci.2024027 |
[5] | Maryem EL FAHEM, Abdellah BENZAOUAK, Habiba ZOUITEN, Amal SERGHINI, Mohamed FEKHAOUI . Hydrogeochemical assessment of mine water discharges from mining activity. Case of the Haut Beht mine (central Morocco). AIMS Environmental Science, 2021, 8(1): 60-85. doi: 10.3934/environsci.2021005 |
[6] | Nicholas Woodward, Caleb E. Finch, Todd E. Morgan . Traffic-related air pollution and brain development. AIMS Environmental Science, 2015, 2(2): 353-373. doi: 10.3934/environsci.2015.2.353 |
[7] | Delianis Pringgenies, Wilis Ari Setyati, Nirwani Soenardjo, Rini Pramesti . Investigation of extra-cellular protease in indigenous bacteria of sea cucumbers as a candidate for bio-detergent material in bio-industry. AIMS Environmental Science, 2020, 7(4): 335-349. doi: 10.3934/environsci.2020022 |
[8] | Fabiana Carriera, Cristina Di Fiore, Pasquale Avino . Trojan horse effects of microplastics: A mini-review about their role as a vector of organic and inorganic compounds in several matrices. AIMS Environmental Science, 2023, 10(5): 732-742. doi: 10.3934/environsci.2023040 |
[9] | Tharwat Mokalled, Stéphane Le Calvé, Nada Badaro-Saliba, Maher Abboud, Rita Zaarour, Wehbeh Farah, Jocelyne Adjizian-Gérard . Atmospheric dispersion modelling of gaseous emissions from Beirutinternational airport activities. AIMS Environmental Science, 2022, 9(5): 553-572. doi: 10.3934/environsci.2022033 |
[10] | David P. Dolowitz . Stormwater management the American way: why no policy transfer?. AIMS Environmental Science, 2015, 2(3): 868-883. doi: 10.3934/environsci.2015.3.868 |
Heart diseases are one of the leading causes of death worldwide, and a dysfunction of the cardiac electrical mechanisms is responsible for a significant portion of these deaths. One of these mechanisms, the mechano-electric feedback (MEF), is the electrical response of the heart to local mechanical changes in the environment. This electrical response, in turn, leads to macroscopic changes in heart function. In this paper, we demonstrate that the MEF plays a crucial role in mechanical generation and recovery from arrhythmia which has been observed in experimental studies. To this end, we investigate the cardiac response to a mechanical stimulation using a minimal, multiscale model of the heart which couples the organ level dynamics (left ventricular pressure and volume) and contractile dynamics. By including a mechanical stimulation into the model as a (short, sudden) impulse in the muscle microscale stress, we investigate how the timing, amplitude and duration of the impulse affect the cardiac cycle. In particular, when introduced in the diastolic period of the cardiac cycle, the pulse rate can be stabilised, and ectopic beats and bifurcation can be eliminated, either temporarily or permanently. The stimulation amplitude is a key indicator to this response. We find an optimal value of the impulse amplitude above or below which the impulse maximises the stabilisation. As a result a dysfunction of the MEF can be helped using a mechanical stimulation, by allowing the heart to recover its pumping power. On the other hand, when the mechanical stimulation is introduced towards the end of systole, arrhythmia can be generated.
[1] | P. Kohl, P. Hunter, D. Noble, Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models, Biophys. Mol. Biol., 71 (1999), 91–138. |
[2] | T. A, Quinn, P. Kohl, Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm, Physiol Rev., 101 (2021), 37–92. |
[3] | A. Quarteroni, T. Lassila, S. Rossi, R. Ruiz-Baier, Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function, Comput. Methods Appl. Mech. Eng., 314 (2017), 345–407. |
[4] | Z. Knudsen, A. Holden, J. Brindley, Qualitative modeling of mechano-electrical feedback in a ventricular cell, Bull. Math. Biol., 6 (1997), 115–181. |
[5] | S. N. Healy, A. D. McCulloch, An ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes, Europace, 2 (2006), 128–134. |
[6] | G. Tse, S. T. Wong, V. Tse, Y. T. Lee, H. Y. Lin, J. M. Yeo, Cardiac dynamics: Alternans and arrhythmogenesis, J. Arrhythm, 32 (2016), 411–417. |
[7] | T. A. Quinn, H. Jin, P. Lee, P. Kohl, Mechanically Induced Ectopy via Stretch-Activated Cation-Nonselective Channels Is Caused by Local Tissue Deformation and Results in Ventricular Fibrillation if Triggered on the Repolarization Wave Edge (Commotio Cordis), Circ Arrhythm Electrophysiol., 8 (2017), e004777. |
[8] | T. L. Riemer, E. A. Sobie, L. Tung, Stretch-induced changes in arrhythmogenesis and excitability in experimentally based heart cell models, Am. J. Physiol., 275 (1998), 431–442. |
[9] | P. Kohl, C. Bollensdorff, A. Garny, Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models, Exp Physiol., 91 (2006), 307–328. |
[10] | M, Zabel, S. Portnoy, M.R. Franz, Effect of sustained load on dispersion of ventricular repolarization and conduction time in the isolated intact rabbit heart, J. Cardiovasc. Electrophysiol., 7 (1996), 9–16. |
[11] | M. R. Franz, J. Schaefer, M. Schottler, W. A. Seed, M. I. M. Noble, Electrical and mechanical restitution of the human heart at different rates of stimulation, Circ. Res., 53 (1982), 815–822. |
[12] | N. Westerhof, N. Stergiopulos, M. I. M. Noble, Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education, Springer US, 2005. |
[13] | R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Bull. Math. Biol., 1 (1961), 445-466e. |
[14] | N. A. Vikulova, L. B. Katsnelson, A. G. Kursanov, O. Solovyova, V. S. Markhasin, Mechano-electric feedback in one-dimensional model of myocardium, J. Math. Biol., 2 (2016), 335–366. |
[15] | A. Collet, J Bragard, P. C. Dauby, Temperature, geometry, and bifurcations in the numerical modeling of the cardiac mechano-electric feedback, Chaos Interdiscip. J. Nonlinear Sci., 27 (2017), 093924. |
[16] | A. Gizzi, A. Loppini, R. Ruiz-Baier, A. Ippolito, A. Camassa, A. La Camera, et al., Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential, Chaos, 27 (2017), 093919. |
[17] | Z. Qu, G. Hu, A. Garfinkel, J. N. Weiss, Nonlinear and stochastic dynamics in the heart, Phys. Rep., 543 (2014), 61–162. |
[18] | C. Franzone, L. F. Pavarino, S. Scacchiet, Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study, Chaos, 27 (2017), 093905. |
[19] | A. Amar, S. Zlochiver, O. Barnea, Mechano-electric feedback effects in a three-dimensional (3D) model of the contracting cardiac ventricle, PLoS One, 13 (2018), e0191238. |
[20] | A. Hazim, Y. Belhamadia, S. Dubljevic, Effects of mechano-electrical feedback on the onset of alternans: A computational study, Chaos, 29 (2019), 063126. |
[21] | M. S. Link, P. J. Wang, N. G. Pandian, S. Bharati, J. E. Udelson, M. Y. Lee, et al., An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis), N. Engl. J. Med., 18 (1998), 1805–1811. |
[22] | C. Madias, B. J. Maron, A. A. Alsheikh-Ali, M. Rajab, N. A. Estes 3rd, M. S. Link, Precordial thump for cardiac arrest is effective for asystole but not for ventricular fibrillation, Heart Rhythm, 3 (2009), 1495–1500. |
[23] | W. Li, P. Kohl, N. Trayanova, Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations, Heart Rhythm, 3 (2006), 179–186. |
[24] | T. A. Quinn, P. Kohl, Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart, Europace, 18 (2016), iv85–iv93. |
[25] | M. S. Link, P. J. Wang, B. A. VanderBrink, E. Avelar, N. G. Pandian, B. J. Maron, et al., Selective activation of the KATP+ channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (Commotio cordis), Circulation, 100 (1999), 413–418. |
[26] | B. J. Maron, M. S. Link, P. J. Wang, N. A. Estes 3rd, Clinical profile of commotio cordis: an under appreciated cause of sudden death in the young during sports and other activities, J. Cardiovasc. Electrophysiol., 10 (1999), 114–120. |
[27] | A. Garny, P. Kohl, Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions, Ann. N. Y. Acad. Sci., 1015 (2004), 133–143. |
[28] | W. Li, P. Kohl, N. Trayanova, Induction of ventricular arrhythmias following mechanical impact: A simulation study in 3D, J. Mol. Histol., 35 (2004), 679–686. |
[29] | E. Kim, M. Capoccia, Synergistic model of cardiac function with a heart assist device, Bioengineering, 7 (2019), 1–16. |
[30] | K. Sagawa, The ventricular pressure-volume diagram revisited, Circ. Res., 43 (1978), 677–687. |
[31] | M. A. Simaan, A. Ferreira, S. Chen, J. F. Antaki, D. G. Galati, A dynamical state space representation and performance analysis of feedback-controlled rotary left ventricular assist device, IEEE Trans. Control Syst. Tech., 17 (2019), 15–28. |
[32] | T. E. Claessens, D. Georgakopoulos, M. Afanasyeva, S. J. Vermeersch, H. D. Millar, N. Stergiopulos, et al., Nonlinear isochrones in murine left ventricular pressure-volume loops: how well does the time-varying elastance concept hold?, Am. J. Physiol. Heart Circ. Physiol., 290 (2006), H1474–H1483. |
[33] | E. Kim, M. Capoccia, Mechano-electric effect and a heart assist device in the synergistic model of cardiac function, Math. Biosci. Eng., 17 (2020), 5212–5233. |
[34] | M. R. Franz, Mechano-electrical feedback in ventricular myocardium, Cardiovascular Res., 32 (1996), 263–266. |
[35] | M. A. Simaan, A. Ferreira, S. Chen, J. F. Antaki and D. G. Galati, A Dynamical State Space Representation and Performance Analysis of a Feedback-Controlled Rotary Left Ventricular Assist Device, IEEE Trans. Control Syst. Technol., 3 (2009), 15–28. |
[36] | J. Bestel, Modele differentiel de la contraction musculaire controlee: Application au systeme cardio-vasculaire, Ph.D thesis, Universit Paris 9, 2000. |
[37] | J. Sainte-Marie, D. Chapelle, R. Cimrman, M. Sorine, Modeling and estimation of the cardiac electromechanical activity, Comput. Struct., 84 (2006), 1743–1759. |
[38] | J. Bestel, F. Clément, M. Sorine, A biomechanical model of muscle contraction, in Medical Image Computing and Computer-Assisted Intervention MICCAI 2001, Springer: Berlin, Germany, (2001), 1159–1161. |
[39] | P. Krejci, J. Marie, M. Sorine, J. M. Urquiza, Modelling and simulation of an active fibre for cardiac muscle, 2006. Available from: http://www.crm.umontreal.ca/pub/Rapports/3200-3299/3208.pdf. |
[40] | A. M. Katz, Physiology of the Heart, Lippincott Williams & Wilkins, 2010. |
[41] | G. Giantesio, A Musesti, D, Riccobelli, A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials, J. Elasticity, 137 (2019), 63–82. |
[42] | A. Gizzi, C. Cherubini, S. Filippi, A. Pandolfi, Theoretical and Numerical Modeling of Nonlinear Electromechanics with applications to Biological Active Media, Communications in Computational Physics, 17 (2015), 93–126. |
1. | Behzad Nasri, Florent Brun, Olivier Fouché, Evaluation of the quality and quantity of compost and leachate from household waterless toilets in France, 2019, 26, 0944-1344, 2062, 10.1007/s11356-017-0604-z | |
2. | Bloodless Dzwairo, Multi-date trends in groundwater pollution from pit latrines, 2018, 8, 2043-9083, 607, 10.2166/washdev.2018.177 | |
3. | Voahirana Ramaroson, Jean Rémi Randriantsivery, Joel Rajaobelison, Lahimamy Paul Fareze, Christian Ulrich Rakotomalala, Falintsoa A. Razafitsalama, Mamiseheno Rasolofonirina, Nitrate contamination of groundwater in Ambohidrapeto–Antananarivo-Madagascar using hydrochemistry and multivariate analysis, 2020, 10, 2190-5487, 10.1007/s13201-020-01265-5 | |
4. | Sudhakar M. Rao, Nitish V. Mogili, Lydia Arkenadan, Role of evaporation in NH4-N transformations in soils artificially contaminated with blackwater, 2020, 20, 1606-9749, 165, 10.2166/ws.2019.145 | |
5. | J.P.R. Sorensen, A. Sadhu, G. Sampath, S. Sugden, S. Dutta Gupta, D.J. Lapworth, B.P. Marchant, S. Pedley, Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence, 2016, 88, 00431354, 923, 10.1016/j.watres.2015.11.006 | |
6. | Ross Sadler, Brooke Maetam, Benjamin Edokpolo, Des Connell, Jimmy Yu, Donald Stewart, M.-J. Park, Darren Gray, Budi Laksono, Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang, Indonesia, 2016, 216, 02697491, 738, 10.1016/j.envpol.2016.06.041 | |
7. | Acile S. Hammoud, Jessica Leung, Sabitri Tripathi, Adrian P. Butler, May N. Sule, Michael R. Templeton, The impact of latrine contents and emptying practices on nitrogen contamination of well water in Kathmandu Valley, Nepal, 2018, 5, 2372-0352, 143, 10.3934/environsci.2018.3.143 | |
8. | Isimemen Osemwegie, Adjoua Nadège Boko-Koiadia, 2020, Chapter 114, 978-3-319-93335-1, 359, 10.1007/978-3-319-93336-8_114 | |
9. | Shrikant Mukate, Dipak Panaskar, Vasant Wagh, Aniket Muley, Chandrakant Jangam, Ranjitsinh Pawar, Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India, 2018, 7, 2352801X, 359, 10.1016/j.gsd.2017.11.001 | |
10. | Simon Willcock, Alison Parker, Charlotte Wilson, Tim Brewer, Dilshaad Bundhoo, Sarah Cooper, Kenneth Lynch, Sneha Mekala, Prajna Paramita Mishra, Dolores Rey, Indunee Welivita, Kongala Venkatesh, Paul Hutchings, Nature provides valuable sanitation services, 2021, 4, 25903322, 192, 10.1016/j.oneear.2021.01.003 | |
11. | Akshit Mittal, Rahul Singh, Sumedha Chakma, Gaurav Goel, Permeable reactive barrier technology for the remediation of groundwater contaminated with nitrate and phosphate resulted from pit-toilet leachate, 2020, 37, 22147144, 101471, 10.1016/j.jwpe.2020.101471 | |
12. | Kory C. Russel, Kelvin Hughes, Mary Roach, David Auerbach, Andrew Foote, Sasha Kramer, Raúl Briceño, Taking Container-Based Sanitation to Scale: Opportunities and Challenges, 2019, 7, 2296-665X, 10.3389/fenvs.2019.00190 | |
13. | Jade S.T. Ward, Daniel J. Lapworth, Daniel S. Read, Steve Pedley, Sembeyawo T. Banda, Maurice Monjerezi, Gloria Gwengweya, Alan M. MacDonald, Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water, 2021, 750, 00489697, 141284, 10.1016/j.scitotenv.2020.141284 | |
14. | Isimemen Osemwegie, Adjoua Nadège Boko-Koiadia, 2018, Chapter 114-1, 978-3-319-71025-9, 1, 10.1007/978-3-319-71025-9_114-1 | |
15. | Callum Lowe, Johanna Kurscheid, Aparna Lal, Ross Sadler, Matthew Kelly, Donald Stewart, Budi Laksono, Salvador Amaral, Darren Gray, Health Risk Assessment for Exposure to Nitrate in Drinking Water in Central Java, Indonesia, 2021, 18, 1660-4601, 2368, 10.3390/ijerph18052368 | |
16. | David Baloye., Lobina Palamuleni, A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria, 2015, 12, 1660-4601, 12225, 10.3390/ijerph121012225 | |
17. | André Marques Arsénio, Iana Câmara Salim, Mingming Hu, Nelson Pedro Matsinhe, Ruth Scheidegger, Luuk Rietveld, Mitigation Potential of Sanitation Infrastructure on Groundwater Contamination by Nitrate in Maputo, 2018, 10, 2071-1050, 858, 10.3390/su10030858 | |
18. | Ibrahim Baba Goni, Baba Musami Sheriff, Alhaji Mohammed Kolo, Mohammed Bashir Ibrahim, Assessment of nitrate concentrations in the shallow groundwater aquifer of Maiduguri and environs, Northeastern Nigeria, 2019, 4, 24682276, e00089, 10.1016/j.sciaf.2019.e00089 | |
19. | Mor Talla Diaw, Seynabou Cissé-Faye, Cheikh Becaye Gaye, Seydou Niang, Abdoulaye Pouye, Luiza C. Campos, Richard G. Taylor, On-site sanitation density and groundwater quality: evidence from remote sensing and in situ observations in the Thiaroye aquifer, Senegal, 2020, 10, 2043-9083, 927, 10.2166/washdev.2020.162 | |
20. | George Lutterodt, Michael K. Miyittah, Bright Addy, Ebenezer D.O. Ansa, Mohammed Takase, Groundwater pollution assessment in a coastal aquifer in Cape Coast, Ghana, 2021, 7, 24058440, e06751, 10.1016/j.heliyon.2021.e06751 | |
21. | R. Siddthan, PM. Shanthi, 2022, A Comprehensive Survey on CNN Models on Assessment of Nitrate Contamination in Groundwater, 978-1-6654-8271-4, 1250, 10.1109/ICECA55336.2022.10009152 | |
22. | Silvia Díaz-Alcaide, Wennegouda Jean-Pierre Sandwidi, Pedro Martínez-Santos, Miguel Martín-Loeches, José Luis Cáceres, Naomi Seijas, Mapping Ground Water Access in Two Rural Communes of Burkina Faso, 2021, 13, 2073-4441, 1356, 10.3390/w13101356 | |
23. | Franella Francos Halla, Said Maneno Massawa, Elihaika Kengalo Joseph, Kishor Acharya, Shadrack Mwita Sabai, Shaaban Mrisho Mgana, David Werner, Attenuation of bacterial hazard indicators in the subsurface of an informal settlement and their application in quantitative microbial risk assessment, 2022, 167, 01604120, 107429, 10.1016/j.envint.2022.107429 | |
24. | Mahmooda Khaliq, Silvia Sommariva, Adaline M. Buerck, Rinah Rakotondrazaka, Lova Rakotoarisoa, Luke John Paul Barrett, James R. Mihelcic, Midstream Players Determine Population-Level Behavior Change: Social Marketing Research to Increase Demand for Lead-Free Components in Pitcher Pumps in Madagascar, 2021, 18, 1660-4601, 7297, 10.3390/ijerph18147297 | |
25. | Chipo P. Mungenge, Ryan J. Wasserman, Farai Dondofema, Chad Keates, Fannie M. Masina, Tatenda Dalu, Assessing chlorophyll–a and water quality dynamics in arid–zone temporary pan systems along a disturbance gradient, 2023, 873, 00489697, 162272, 10.1016/j.scitotenv.2023.162272 | |
26. | Muhammad Awais, Bilal Aslam, Ahsen Maqsoom, Umer Khalil, Fahim Ullah, Sheheryar Azam, Muhammad Imran, Assessing Nitrate Contamination Risks in Groundwater: A Machine Learning Approach, 2021, 11, 2076-3417, 10034, 10.3390/app112110034 | |
27. | Abu Reza Md. Towfiqul Islam, Subodh Chandra Pal, Indrajit Chowdhuri, Roquia Salam, Md. Saiful Islam, Md. Mostafizur Rahman, Anwar Zahid, Abubakr M. Idris, Application of novel framework approach for prediction of nitrate concentration susceptibility in coastal multi-aquifers, Bangladesh, 2021, 801, 00489697, 149811, 10.1016/j.scitotenv.2021.149811 | |
28. | Michael O. Rivett, Laurent-Charles Tremblay-Levesque, Ruth Carter, Rudi C.H. Thetard, Morris Tengatenga, Ann Phoya, Emma Mbalame, Edwin Mchilikizo, Steven Kumwenda, Prince Mleta, Marc J. Addison, Robert M. Kalin, Acute health risks to community hand-pumped groundwater supplies following Cyclone Idai flooding, 2022, 806, 00489697, 150598, 10.1016/j.scitotenv.2021.150598 | |
29. | Willis Gwenzi, Jerikias Marumure, Zakio Makuvara, Tinoziva T. Simbanegavi, Emma Laureane Njomou-Ngounou, Esther Laurentine Nya, Korbinian Kaetzl, Chicgoua Noubactep, Piotr Rzymski, The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot?, 2023, 879, 00489697, 163179, 10.1016/j.scitotenv.2023.163179 | |
30. | C.D. Aju, Achu A L, Mohammed Maharoof P, M.C. Raicy, Rajesh Reghunath, Girish Gopinath, Emerging nitrate contamination in groundwater: Changing phase in a fast-growing state of India, 2024, 357, 00456535, 141964, 10.1016/j.chemosphere.2024.141964 | |
31. | Mercy Simaubi, Kawawa Banda, Jonathan Levy, Joe Meiman, Imasiku Nyambe, Dye tracing of the Lusaka karstified aquifer system: implications towards urban groundwater quality protection, 2023, 195, 0167-6369, 10.1007/s10661-023-11272-z | |
32. | Christopher Nenninger, Jeffrey Cunningham, James R. Mihelcic, A historical and critical review of latrine-siting guidelines, 2023, 13, 2043-9083, 833, 10.2166/washdev.2023.140 | |
33. | Rebekah G.K. Hinton, Robert M. Kalin, Limbikani C. Banda, Modesta B. Kanjaye, Christopher J.A. Macleod, Mads Troldborg, Peaches Phiri, Sydney Kamtukule, Mixed method analysis of anthropogenic groundwater contamination of drinking water sources in Malawi, 2024, 957, 00489697, 177418, 10.1016/j.scitotenv.2024.177418 |