Research article Special Issues

Initial boundary value problem for fractional $ p $-Laplacian Kirchhoff type equations with logarithmic nonlinearity

  • Received: 16 February 2021 Accepted: 15 March 2021 Published: 24 March 2021
  • In this paper, we study the initial boundary value problem for a class of fractional $ p $-Laplacian Kirchhoff type diffusion equations with logarithmic nonlinearity. Under suitable assumptions, we obtain the extinction property and accurate decay estimates of solutions by virtue of the logarithmic Sobolev inequality. Moreover, we discuss the blow-up property and global boundedness of solutions.

    Citation: Peng Shi, Min Jiang, Fugeng Zeng, Yao Huang. Initial boundary value problem for fractional $ p $-Laplacian Kirchhoff type equations with logarithmic nonlinearity[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2832-2848. doi: 10.3934/mbe.2021144

    Related Papers:

  • In this paper, we study the initial boundary value problem for a class of fractional $ p $-Laplacian Kirchhoff type diffusion equations with logarithmic nonlinearity. Under suitable assumptions, we obtain the extinction property and accurate decay estimates of solutions by virtue of the logarithmic Sobolev inequality. Moreover, we discuss the blow-up property and global boundedness of solutions.



    加载中


    [1] M. Xiang, V. D. RaDulescu, B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228–3250. doi: 10.1088/1361-6544/aaba35
    [2] M. Kirkilionis, S. KraMker, R. Rannacher, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends Nonlinear Anal., 3 (2003), 153–191.
    [3] L. Caffarelli, Nonlocal diffusions, drifts and games, Nonlinear Partial Differ. Equ., 7 (2012), 37–52. doi: 10.1007/978-3-642-25361-4_3
    [4] E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 5 (2012), 521–573.
    [5] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differ. Equ., 49 (2014), 795–826. doi: 10.1007/s00526-013-0600-1
    [6] H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evolut. Equ., 4 (2001), 387–404.
    [7] E. Azroul, A. Benkirane, A. Boumazourh, M. Shimi, Exstence results for fractional $p(x, \cdot)$-Laplacian problem via the nehari manifold approach, Appl. Math. Optim., 50 (2020), 968–1007.
    [8] M. Xiang, V. D. RaDulescu, B. Zhang, A critical fractional Choquard-Kirchhoff problem with magnetic field, Commun. Contemp. Math., 21 (2019), 1850004. doi: 10.1142/S0219199718500049
    [9] L. X. Truong, The nehari manifold for a class of Schrdinger equation involving fractional $p$-Laplacian and sign-changing logarithmic nonlinearity, J. Math. Phys., 60 (2019), 111505. doi: 10.1063/1.5084062
    [10] L. X. Truong, The nehari manifold for fractional $p$-Laplacian equation with logarithmic nonlinearity on whole space, Comput. Math. Appl., 78 (2019), 3931–3940. doi: 10.1016/j.camwa.2019.06.024
    [11] M. Xiang, V. D. RaDulescu, B. Zhang, Combined effects for fracttonal Schrodinger-Kirchhoff systems with critical, Contr. Opti. Calc. Vari., 24 (2018), 1249–1273. doi: 10.1051/cocv/2017036
    [12] A. Ardila, H. Alex, Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Anal. Theor. Methods Appl., 4 (2017), 52–64.
    [13] Y. L. Li, D. B. Wang, J. L. Zhang, Sign-changing solutions for a class of $p$-Laplacian Kirchhoff-type problem with logarithmic nonlinearity, AIMS Math., 5(2020), 2100–2112. doi: 10.3934/math.2020139
    [14] T. Boudjeriou, Global existence and blow-up for the fractional $p$-Laplacian with logarithmic nonlinearity, Mediterr J. Math., 17 (2020), 1-24. doi: 10.1007/s00009-019-1430-y
    [15] T. Boudjeriou, Stability of solutions for a parabolic problem involving fractional $p$-Laplacian with logarithmic nonlinearity, Mediterr J. Math., 17 (2020), 27–51. doi: 10.1007/s00009-019-1442-7
    [16] P. Dai, C. Mu, G. Xu, Blow-up phenomena for a pseudo-parabolic equation with $p$-Laplacian and logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2019), 123439.
    [17] W. Liu, Extinction properties of solutions for a class of fast diffusive $p$-Laplacian equations, Nonlinear Anal. Theory Meth. Appl., 74 (2011), 4520–4532. doi: 10.1016/j.na.2011.04.016
    [18] S. Toualbia, Z. Abderrahmane, S. Boulaaras, Decay estimate and non-extinction of solutions of $p$-Laplacian nonlocal heat equations, AIMS Math., 5 (2020), 1663–1679. doi: 10.3934/math.2020112
    [19] M. Xiang, D. Yang, Nonlocal Kirchhoff problems: Extinction and non-extinction of solutions, J. Math. Anal. Appl., 477 (2019), 133–152. doi: 10.1016/j.jmaa.2019.04.020
    [20] B. Guo, W. Gao, Non-extinction of solutions to a fast diffusive $p$-Laplace equation with Neumann boundary conditions, J. Math. Anal. Appl., 2 (2015), 1527–1531.
    [21] W. Gao, B. Guo, Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x, t)$-Laplace operator and a non-local term, Discrete Contin. Dyn. Syst., 36 (2015), 715–730. doi: 10.3934/dcds.2016.36.715
    [22] L. Yan, Z. Yang, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Bound. Value. Probl., 121 (2018), 1–11.
    [23] Y. Tian, C. Mu, Extinction and non-extinction for a p-Laplacian equation with nonlinear source, Nonlinear Anal., 69 (2008), 2422–2431. doi: 10.1016/j.na.2007.08.021
    [24] Y. Cao, C. Liu, Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differ. Equ., 18 (2018), 1–19.
    [25] M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Anal., 198 (2020), 111899. doi: 10.1016/j.na.2020.111899
    [26] S. Chen, The extinction behavior of solutions for a class of reaction diffusion equations, Appl. Math. Mech., 22 (2001), 1352–1356.
    [27] M. Xiang, D. Yang, B. Zhang, Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity, Asympt. Anal., 188 (2019), 1–17.
    [28] H. Ding, J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Appl. Math. Optim., 478 (2019), 393–420.
    [29] S. Boulaaras, Some existence results for elliptic Kirchhoff equation with changing sign data and a logarithmic nonlinearity, J. Intell. Fuzzy Syst., 42 (2019), 8335–8344.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(503) PDF downloads(91) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog